Lustre at CEA/DAM

Stéphane Thiell, CEA/DAM, France

stephane.thiell@cea.fr
Lustre at CEA/DAM :: Outline

- CEA Computing Complex
 - Overview
 - TERA/CCRT : Applications and Evolution

- The Lustre filesystem
 - Introduction

- TERA-100 and Lustre
 - TERA-100 project overview
 - New data-centric computing center architecture
 - Servers, Networks and I/O cells configuration
 - Lustre Strategy
 - Lustre Developments
Defense Computing Center
TERA

Computing Center for Research and Technology CCRT

R&D on HPC Technologies

To mutualize

✓ Expertise in HPC technologies
✓ R&D Efforts
✓ Infrastructures

To manage

✓ The credibility of deterrence
✓ The access to key technologies
✓ The risks inherent to leading edge computing equipments

To fulfill needs of:

✓ CEA/DAM Simulation Program
✓ European Research Infrastructure
✓ Large scientific and industrials projects
What’s Lustre?

- **A high performance filesystem**
 - A new storage architecture (storage object)
 - Designed for performances
 - Ten of thousands nodes, peta-bytes of storage, huge directories, …
 - 90 % hardware efficiency

- **Open Source Project**
 - Available as tarball and rpm from Sun (RHEL, Suse)
 - All tools are available to build site specific rpm
 - RHEL and Suse Linux kernels support (at least)
 - Available through vendors integration (HP, LNXI, Cray, Bull, …)

- **Managed by Sun as a product, not as a best effort project**
Lustre cluster

MDS/MGS cluster

QSW Elan
Myrinet
IB

GigE

Clients
Up to X0,000’s

Multiple storage networks are supported

Commodity SAN or disks

failover

Pools of Lustre OSS (1000’s)

Enterprise-class RAID storage

OST 1
OST 2
OST 3
OST 4
OST 5
OST 6
OST 7
Lustre Design Rules

- **Software uses stackable modules**
 - Storage devices are accessed through a local filesystem ldiskfs (an ext3 based FS, very close to ext4) and others in the future (eg. ZFS)
 - Uses LNET, a dedicated message passing library
 - Hardware independence
 - Transactional RPC or Bulk transfers
 - Support of heterogeneous networks through use of LNET routers

- **IO performances**
 - Large I/O sizes on networks and storage devices
 - Massively parallel
 - Huge client cache

- **Metadata performances**
 - Byte range locking granularity

- **Robust design**
 - High Availability
 - Journals
TERA-100 Project Overview

Major goals
- Multiply by ~20 the classified computing capacity
- Keep one platform, based on COTS
- General purpose (compatible with all programming models)
- Top I/O capabilities for large files

Main characteristics
- PetaFLOPS class system
- x86_64 processors
- Some nodes are faster than 500 Gflops
- Up to 2 GB of memory per core
- 300 + 200 GB/s on 2 Lustre filesystems
- Less than 5 MW electric power
- Installation Q2 2010
TERA-100 sizing challenges

<table>
<thead>
<tr>
<th></th>
<th>TERA-1</th>
<th>TERA-10</th>
<th>TERA-100 estim. with same architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak compute power</td>
<td>5 TFlops</td>
<td>63.8 TFlops</td>
<td>>1 PFlops</td>
</tr>
<tr>
<td>Data transfers</td>
<td>5 TB/day</td>
<td>50 TB/day</td>
<td>600 TB to 1 PB/day</td>
</tr>
<tr>
<td>Volume growth in HPSS</td>
<td>+1.3 TB/day</td>
<td>+15 TB/day</td>
<td>+200 TB to +300 TB/day</td>
</tr>
</tbody>
</table>
New data-centric compute center architecture

- **T100** compute nodes
 - Lustre clients
 - 300 GB/s

- **GL100**
 - Global (shared) Lustre servers
 - 200 GB/s

- **ST100**
 - Storage servers, disks and tapes

- **SHERPA servers**
 - Lustre clients
 - 20 GB/s

- **Post processing, rendering clusters**
 - \(\sum = 100 \text{ GB/s} \)

- **Private Lustre servers**
 - 300 GB/s
New data-centric compute center architecture (cont’d)

- T100 compute nodes
- GL100 Global (shared) Lustre servers
- ST100 Storage servers, disks and tapes
- Post processing, rendering clusters

Connections:
- 200 GB/s between T100 and GL100
- 20 GB/s between GL100 and ST100
- 300 GB/s between Private Lustre servers and GL100

Overall: \(\sum = 100 \text{ GB/s} \)
TERA-100 Lustre Servers

- **MDS and OSS nodes**
 - 4-socket Nehalem-EX

- **4 nodes HA architecture for I/O cells**
 - Smooth OST failover

- **Multiple storage systems per I/O cell**
TERA-100 Storage Network

- 2 choices for 200 GB/s
 - InfiniBand QDR
 - 10 GbE or 40 GbE (later)
 - With iWARP NICS (Chelsio T3/T4)
 - LNET tests with iWARP are promising
 - L2 switches (fully connected)
 - Waiting for 40 GbE switches
TERA-100 Lustre Strategy

- **Lustre version**
 - 1.8 minimum (available today)
 - 2.0 targeted (must be available Q2 2010)

- **LNET**
 - Private Lustre File System
 - Native access to InfiniBand QDR network through (o2ib)
 - Shared Lustre File System
 - Compute nodes access servers through LNET routers
 - Number of routers defines the bandwidth (used for QoS)
 - tcp or o2ib in iWARP mode for 10 GigE
Manage your data with Robinhood

● Robinhood is a filesystem accounting and purge tool

● Project
 ■ GPL-compatible, CEA development.
 ■ Website: http://robinhood.sf.net/

● Main features
 ■ Gather filesystem information from scans (POSIX scan) or event-based (Lustre 2.0).
 ■ Trigger file purges depending on policy rules.
 ■ Trigger file migration depending on policy rules (for Lustre HSM).
 ■ Policies based on file attributes and thresholds.
Robinhood example: OST purge

purge OST #1 until its usage decreases to 10%
[root@test ~]# robinhood --purge-ost=1,10
2009/11/04 19:40:24 robinhood@test: ResMonitor | OST #1 usage: 11.90% (55587 blocks) / high watermark: 10.00% (46711 blocks)
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.2/file.27' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811816, last_mod=1256811816, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.2/file.29' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811816, last_mod=1256811816, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.3/file.5' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811824, last_mod=1256811824, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.3/file.3' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811824, last_mod=1256811824, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.3/file.7' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811822, last_mod=1256811822, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/dir.1/dir.1/dir.3/file.9' using policy 'default',
 last access 6.0d ago | size=2097152, last_access=1256811826, last_mod=1256811826, storage_units=OST #1
2009/11/04 19:40:24 robinhood@test: Released '/mnt/lustre/cthon/file.75' using policy 'empty_files',
 last access 5.9d ago | size=6, last_access=1256826332, last_mod=1256826332, storage_units=OST #1
2009/11/04 19:40:25 robinhood@test: ResMonitor | OST #1 purge summary: 30864 blocks purged in OST #1 (36864 total)/36860 blocks needed
[root@test ~]#
Robinhood example: accounting reports

```
[root@test]# robinhood-report --csv --userinfo --filter-path=/mnt/lustre/projectA

/mnt/lustre/projectA:
user , type, count, spc_used, min_size, max_size, avg_size
foo , dir, 21, 86016, 1, 49, 16
foo , file, 268, 10039296, 0, 808968, 34475
root , dir, 18, 73728, 1, 13, 5
root , file, 120, 8642129920, 0, 8589934592, 71944253

[root@test]# robinhood-report --csv --topusers --filter-path=/mnt/lustre/projectB

/mnt/lustre/projectB:
rank, user , spc_used, nb_entries, min_size, max_size, avg_size
1, root , 107895812096, 461594, 0, 10737418240, 231018
2, alpha , 2106515456, 552, 80, 297695276, 3807940
3, bravo , 676777984, 996, 278, 18084633, 675235
4, charlie , 494657536, 25523, 0, 1255946, 16797
5, delta , 307081216, 33, 953, 43184457, 9289321

[root@test]#
```
Lustre developments for TERA-100: Lustre HSM

- **Lustre HSM**
 - Binding between Lustre and a HSM
 - The goal is to add a transparent frontend to an HSM with the benefits of Lustre performance
 - Will support HPSS, Sun SAM-QFS, SGI DMF

\[\text{automatic data migration}\]
Lustre HSM (cont’d)

- Collaboration between Sun and CEA

- Project Status/Timeline:
 - Coding in progress
 - First prototype running
 - Target Lustre 2.x (feature available) and 3.0 (feature supported)
 - First release expected Q4 2009
Lustre HSM (cont’d)

- Lustre HSM first prototype

![Graph showing space used over time for different OSTs and total Lustre, with labels for OST1, OST2, Lustre total (OST1+OST2), and backend.]
Shine

- **Lustre administration with Shine**
 - Common Python library and tool to manage Lustre components in the Compute Center
 - Open Source project in collaboration with Bull
 http://lustre-shine.sourceforge.net/
 - Complies with Lustre management features
 - Focus on Lustre, eg. tool scalability aspect has moved to a CEA open source project named ClusterShell
 http://clustershell.sourceforge.net/

- Project Status/Timeline
 - beta version available today (v0.904)
 - 1.0 in Q4’09 (HA support, fsck, update…)
 - 1.2 in 2010 fully featured: OST Pools, routers, multi-NIDs…
Questions ?