Effective field theory, precision measurements, and LHC Higgs

Rema, 10 April 2017

Status report

- SM has been shamelessly successful in describing all collider and lowenergy experiments. Discovery of 125 GeV Higgs boson is last piece of puzzle that falls into place. No more free parameters in SM
- We know physics beyond SM exists (neutrino masses, dark matter, inflation, baryon asymmetry). There are also some theoretical hints for new physics (strong CP problem, flavor hierarchies, gauge coupling unifications, naturalness problem)
- Models addressing naturalness problem (supersymmetry, composite Higgs, ...) make very definite predictions about new particles and interactions that should become visible around 1 TeV energy scale. But there isn't one model or class of models that is strongly preferred, and all existing models addressing naturalness have certain tensions that cast doubt on whether they really describe nature
- We need to keep open mind on many possible forms of new physics that may show up in experiment. This requires model independent approach to complete other model-dependent searches

x) It looks more and more likely that new degrees of freedom beyond the SM may not be directly available at the LHC or even at future colliders
x) However, even if it is not possible to see the head, it may be possible to see the tail...
- Assume that the SM degrees of freedom is all there is at the weak scale. But we treat the SM as an EFT, and call it the SM EFT
- In the SM EFT, the SM Lagrangian is treated as the lowest order approximation of the dynamics. Effects of heavy particles are encoded in new contact interactions of the SM fields in the Lagrangian
- The SM EFT Lagrangian can be defined as an expansion in the inverse mass scale of heavy particles, which coincides with the expansion in operator dimensions
- Under certain (mild) assumptions, the SM EFT framework allows one to describe effects of new physics beyond the SM in a model independent way

SM EFT Approach to BSM

Basic assumptions

- Much as in SM, relativistic QFT with linearly realized $S U(3) \times S U(2) \times U(1)$ local symmetry spontaneously broken by VEV of Higgs doublet field
- Mass scale Λ of new particles separated from characteristic energy scale E of experiment, $\Lambda \gg E$, such that experimental observables can be expanded in powers of E / Λ
SM EFT Lagrangian expanded in inverse powers of Λ, equivalently in operator dimension D

Lepton number or B-L violating, hence too small to probed at present and near-future colliders

By assumption, subleading

 to $D=6$Generated by integrating out heavy particle with mass scale \wedge
In large class of BSM models, describe leading effects of new physics on collider observables at $E \ll \Lambda$

Bosonic CP-even

O_{H}	$\left(H^{\dagger} H\right)^{3}$
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Bosonic CP-odd
Grządkowski et al. 1008.4884

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.

Warsaw basis for B-conserving $D=6$ operators

Yukawa

$\left[O_{e H}^{\dagger}\right]_{I J}$	$H^{\dagger} H e_{I}^{c} H^{\dagger} \ell_{J}$
$\left[O_{u H}^{\dagger}\right]_{I J}$	$H^{\dagger} H u_{I}^{c} \widetilde{H}^{\dagger} q_{J}$
$\left[O_{d H}^{\dagger}\right]_{I J}$	$H^{\dagger} H d_{I}^{c} H^{\dagger} q_{J}$

Vertex	
$\left[O_{H \ell}^{(1)}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H \ell}^{(3)}\right]_{I J}$	$i \bar{\ell}_{I} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}\right]_{I J}$	$i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{(1)}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{(3)}\right]_{I J}$	$i \bar{q}_{I} \sigma^{i} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$

Dipole		
$\left[O_{e W}^{\dagger}\right]_{I J}$	$e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \sigma^{i} \ell_{J} W_{\mu \nu}^{i}$	
$\left[O_{e B}^{\dagger}\right]_{I J}$	$e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \ell_{J} B_{\mu \nu}$	
$\left[O_{u G}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} T^{a} \widetilde{H}^{\dagger} q_{J} G_{\mu \nu}^{a}$	
$\left[O_{u W}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$	
$\left[O_{u B}^{\dagger}\right]_{I J}$	$u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} q_{J} B_{\mu \nu}$	
$\left[O_{d G}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} T^{a} H^{\dagger} q_{J} G_{\mu \nu}^{a}$	
$\left[O_{d W}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} \bar{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$	
$\left[O_{d B}^{\dagger}\right]_{I J}$	$d_{I}^{c} \sigma_{\mu \nu} H^{\dagger} q_{J} B_{\mu \nu}$	

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indices are denoted by I, J. For complex operators $\left(O_{H u d}\right.$ and all Yukawa and dipole operators) the corresponding complex conjugate operator is implicitly included.

Warsaw basis for B-conserving $D=6$ operators

	$(\bar{R} R)(\bar{R} R)$
$O_{e e}$	$\eta\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)$
$O_{u u}$	$\eta\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{d d}$	$\eta\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{e u}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{e d}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{u d}$	$\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{u d}^{\prime}$	$\left(u^{c} \sigma_{\mu} T^{a} \bar{u}^{c}\right)\left(d^{c} \sigma_{\mu} T^{a} \bar{d}^{c}\right)$
$O_{\ell \ell}$	$(\bar{L} L)(\bar{L} L)$
$O_{q q}$	$\eta\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)$
$O_{q q}^{\prime}$	$\eta\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
$O_{\ell q}$	$\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)$
$O_{\ell q}^{\prime}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
$\left(\bar{\ell} \bar{\sigma}_{\mu} \sigma^{i} \ell\right)\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)$	

$(\bar{L} L)(\bar{R} R)$	
$O_{\ell e}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)$
$O_{\ell u}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{\ell d}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{e q}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
$O_{q u}$	$\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{q u}^{\prime}$	$\left(\bar{q} \bar{\sigma}_{\mu} T^{a} q\right)\left(u^{c} \sigma_{\mu} T^{a} \bar{u}^{c}\right)$
$O_{q d}$	$\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{q d}^{\prime}$	$\left(\bar{q} \bar{\sigma}_{\mu} T^{a} q\right)\left(d^{c} \sigma_{\mu} T^{a} \bar{d}^{c}\right)$

	$(\bar{L} R)(\bar{L} R)$
$O_{q u q d}$	$\left(u^{c} q^{j}\right) \epsilon_{j k}\left(d^{c} q^{k}\right)$
$O_{q u q d}^{\prime}$	$\left(u^{c} T^{a} q^{j}\right) \epsilon_{j k}\left(d^{c} T^{a} q^{k}\right)$
$O_{\ell e q u}$	$\left(e^{c} \ell^{j}\right) \epsilon_{j k}\left(u^{c} q^{k}\right)$
$O_{\ell \ell q u}^{\prime}$	$\left(e^{c} \bar{\sigma}_{\mu \nu} \nu^{j}\right) \epsilon_{j k}\left(u^{c} \bar{\sigma}^{\mu \nu} q^{k}\right)$
$O_{\ell e d q}$	$\left(\bar{\ell} \bar{e}^{c}\right)\left(d^{c} q\right)$

Table 2.4: Four-fermion $D=6$ operators in the Warsaw basis. Flavor indices are suppressed here to reduce the clutter. The factor η is equal to $1 / 2$ when all flavor indices are equal (e.g. in $\left[O_{e e}\right]_{1111}$), and $\eta=1$ otherwise. For each complex operator the complex conjugate should be included.

Advantages of SM EFT

- Framework general enough to describe leading effects of a large class (though not all!) of BSM scenarios
- Very easy to recast SM EFT results as constraints on specific BSM models
- Theoretical correlations between signal and background and different signal channels taken into account
- SM EFT is consistent QFT, so that calculations and predictions can be systematically improved (higher-loops, higher order terms in EFT expansion if needed). In particular, SM EFT is renormalizable at each order in $1 / \Lambda$ expansion
- Some tools to assess validity of $1 / \wedge$ expansion
- I will discuss experimental constraints on dimension- 6 operators
- The goal is to obtain a likelihood function for all Wilson coefficients of dimension-6 operators that includes correlations
- Ideally, we want to be totally agnostic, and allow all independent dimension- 6 operators to be simultaneously present. Also, results are basis-independent only if all non-redundant operators are taken into account
- Different BSM theories correspond to different patterns of dimension-6 operators. Identifying that pattern, we can get some idea about the shape of the theory that completes the SM at high energies

Based on

AA,Riva Efrati,AA,Soreq AA,Mimouni $1411.0669 \quad 1503.07782 \quad 1511.07434$

AA,Mimouni,
Gonzalez-Alonso to appear

Pioneered by

Han, Skiba

See also e.g.

de Blas et al Berthier Trott Corbett et al Ellis et al $1608.01509 \quad 1508.05060 \quad 1505.05516 \quad 1410.7703$

Operators to Observables

Two kinds of effects

New interactions not present in SM Lagrangian mass eigenstates into $D=6$ operators

Several subtleties, careful treatment
required
e.g. $\frac{c_{H B}}{\Lambda^{2}} H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$

Operators to Observables

More non-trivial effects $D=6$ operators

- Change normalization of kinetic terms

$$
\begin{aligned}
\frac{c_{H G}}{v^{2}} O_{H G} & =\frac{c_{H G}}{v^{2}} H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu} \\
& \rightarrow \frac{c_{H G}}{2} G_{\mu \nu}^{a} G_{\mu \nu}
\end{aligned}
$$

$$
\frac{c_{T}}{v^{2}} O_{T}=\frac{c_{T}}{v^{2}}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}
$$

$$
\rightarrow-c_{T} \frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4} Z_{\mu} Z_{\mu}
$$

$$
\Rightarrow m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4}\left(1-2 c_{T}\right)
$$

$$
\frac{c_{2 W}}{v^{2}} O_{2 W}=\frac{c_{2 W}}{v^{2}}\left(D_{\nu} W_{\mu \nu}^{i}\right)^{2}
$$

$$
\rightarrow \frac{c_{2 W}}{v^{2}} W_{\mu}^{i} \square^{2} W_{\mu}^{i}
$$

$$
\Rightarrow\left\langle W^{+} W^{-}\right\rangle=\frac{i}{p^{2}-m_{W}^{2}-c_{2 W} \frac{p^{4}}{v^{2}}}
$$

- Introduce kinetic mixing between photon and Z boson
$\frac{c_{W B}}{v^{2}} O_{W B}=\frac{c_{W B}}{v^{2}} g_{L} g_{Y} H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$
e.g. $\quad \rightarrow-c_{W B} \frac{g_{L} g_{Y}}{2} W_{\mu \nu}^{3} B_{\mu \nu}$
- In $S M$, the values of $\operatorname{SU}(2) \times U(1)$ couplings gL, gY, and the Higgs vacuum expectation value v are a-priori free parameters.
- To assign numerical values, we need to express 3 precisely measured observables in terms of these parameters. The common choice is GF (extracted from muon decay rate), $\alpha(0)$ (extracted from Thomson scattering), and $m Z$ (measured at LEP-1).
- At tree-level there is a simple relation between these 3 parameters and 3 observables. Of course, one needs to also take into account loop corrections, which introduce dependence on top mass, Higgs mass and strong coupling.

- Dimension-6 operators will disturb these relations already at tree level. Thus, in SM EFT with dimension-6 operators the meaning of $\mathrm{gL}, \mathrm{gY}, \mathrm{v}$ is different, which affects predictions for all SM observables.

General deformations of SM EW Lagrangian include oblique and vertex corrections

$$
\begin{aligned}
& \eta_{\mu \nu}\left(\Pi_{W W}\left(p^{2}\right) W_{\mu}^{+} W_{\mu}^{-}+\frac{1}{2} \Pi_{Z Z}\left(p^{2}\right) Z_{\mu} Z_{\mu}+\frac{1}{2} \Pi_{\gamma \gamma}\left(p^{2}\right) A_{\mu} A_{\mu}+\Pi_{Z \gamma}\left(p^{2}\right) Z_{\mu} A_{\mu}\right)+p_{\mu} p_{\nu}(\ldots) \\
& \mathcal{L} \supset \frac{g_{L, 0} g_{Y, 0}}{\sqrt{g_{L, 0}^{2}+g_{Y, 0}^{2}}} A_{\mu} \sum_{f} Q_{f}\left(\bar{e}_{I} \bar{\sigma}_{\mu} e_{I}+e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right) \\
& +\left[\frac{\left[g_{L}^{W e}\right]_{I J}}{\sqrt{2}} W_{\mu}^{+} \bar{\nu}_{I} \bar{\sigma}_{\mu} e_{J}+W_{\mu}^{+} \frac{\left[g_{L}^{W q}\right]_{I J}}{\sqrt{2}} \bar{u}_{I} \bar{\sigma}_{\mu} d_{J}+\frac{\left[g_{R}^{W q}\right]_{I J}}{\sqrt{2}} W_{\mu}^{+} u_{I}^{c} \bar{\sigma}_{\mu} \bar{d}_{J}^{c}+\text { h.c. }\right] \\
& +Z_{\mu} \sum_{f=u, d, e, \nu}\left[g_{L}^{Z f}\right]_{I J} \bar{f}_{I} \bar{\sigma}_{\mu} f_{J}+Z_{\mu} \sum_{f=u, d, e}\left[g_{R}^{Z f}\right]_{I J} f_{I}^{c} \bar{\sigma}_{\mu} \bar{f}_{J}^{c} . \\
& \begin{aligned}
{\left[g_{L}^{W e}\right]_{I J} } & =g_{L, 0}\left(\delta_{I J}+\left[\delta g_{L}^{W e}\right]_{I J}\right), \\
{\left[g_{L}^{W q}\right]_{I J} } & =g_{L, 0}\left([V]_{I J, 0}+\left[\delta g_{L}^{W q}\right]_{I J}\right), \\
{\left[g_{R}^{W q}\right]_{I J} } & =\left[\delta g_{R}^{W q}\right]_{I J} \\
{\left[g^{Z f}\right]_{I J} } & =\sqrt{g_{L, 0}^{2}+g_{Y, 0}^{2}}\left(T_{3}^{f}-Q_{f} \frac{g_{Y, 0}^{2}}{g_{L, 0}^{2}+g_{Y, 0}^{2}}+\left[\delta g^{Z f}\right]_{I J}\right)
\end{aligned}
\end{aligned}
$$

Then input observables are modified as

$$
\begin{aligned}
2 \sqrt{2} G_{F} & =\frac{g_{L}^{W e} g_{L}^{W \mu}}{2 \Pi_{W W}(0)}-\left[c_{\ell \ell}\right]_{1221}-2\left[c_{\ell \ell}^{(3)}\right]_{1122} \\
\alpha(0) & =\frac{g_{L, 0}^{2} g_{Y, 0}^{2}}{4 \pi\left(g_{L, 0}^{2}+g_{Y, 0}^{2}\right)} \frac{-1}{\Pi_{\gamma \gamma}^{\prime}(0)}, \\
m_{Z}^{2}\left(m_{Z}\right) & =\Pi_{Z Z}\left(m_{Z}^{2}\right)
\end{aligned}
$$

Valid in general for SM EFT or for SM loop corrections

For small deformations we approximate

$$
\begin{aligned}
2 \sqrt{2} G_{F} & \approx \frac{2}{v_{0}^{2}}\left(1-\frac{\delta \Pi_{W W}(0)}{m_{W}^{2}}+\delta g_{L}^{W e}+\delta g_{L}^{W \mu}-\frac{1}{2}\left[c_{\ell \ell}\right]_{1221}-\left[c_{\ell \ell}^{(3)}\right]_{1122}\right) \\
\alpha(0) & =\frac{g_{L, 0}^{2} g_{Y, 0}^{2}}{4 \pi\left(g_{L, 0}^{2}+g_{Y, 0}^{2}\right)}\left(1+\delta \Pi_{\gamma \gamma}^{\prime}(0)\right), \\
m_{Z}^{2}\left(m_{Z}\right) & =\frac{\left(g_{L, 0}^{2}+g_{Y, 0}^{2}\right) v_{0}^{2}}{4}+\delta \Pi_{Z Z}\left(m_{Z}^{2}\right) .
\end{aligned}
$$

We can then absorb new physics corrections into redefined parameters $\mathrm{gL}, \mathrm{gY}, \mathrm{v}$

$$
\begin{aligned}
v_{0}= & v(1+\delta v), \quad g_{L, 0}=g_{L}\left(1+\delta g_{L}\right), \quad g_{Y, 0}=g_{Y}\left(1+\delta g_{Y}\right), \\
\delta v= & \frac{1}{2}\left(-\frac{\delta \Pi_{W W}(0)}{m_{W}^{2}}+\delta g_{L}^{W e}+\delta g_{L}^{W \mu}-\frac{1}{2}\left[c_{\ell \ell}\right]_{1221}-\left[c_{\ell \ell}^{(3)}\right]_{1122}\right), \\
\delta g_{L}= & \frac{g_{L}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right) v^{2}}\left[-\frac{2 \delta \Pi_{Z Z}\left(m_{Z}^{2}\right)}{m_{Z}^{2}}+\frac{2 \delta \Pi_{W W}(0)}{m_{W}^{2}}+\frac{2 g_{Y}^{2} \delta \Pi_{\gamma \gamma}^{\prime}(0)}{g_{L}^{2}}\right. \\
& \left.+\left[c_{\ell \ell}\right]_{1221}+2\left[c_{\ell \ell}^{(3)}\right]_{1122}-2 \delta g_{L}^{W e}-2 \delta g_{L}^{W \mu}\right], \\
\delta g_{Y}= & \frac{g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right) v^{2}}\left[\frac{2 \delta \Pi_{Z Z}\left(m_{Z}^{2}\right)}{m_{Z}^{2}}-\frac{2 \delta \Pi_{W W}(0)}{m_{W}^{2}}-\frac{2 g_{L}^{2} \delta \Pi_{\gamma \gamma}^{\prime}(0)}{g_{Y}^{2}}\right. \\
& \left.-\left[c_{\ell \ell}\right]_{1221}-2\left[c_{\ell \ell}^{(3)}\right]_{1122}+2 \delta g_{L}^{W e}+2 \delta g_{L}^{W \mu}\right] .
\end{aligned}
$$

Redefined gL, gY, v are connected the same way to the input observables as in the SM

$$
\begin{aligned}
m_{Z} & =\frac{\sqrt{g_{L}^{2}+g_{Y}^{2} v}}{2} \\
\alpha=\frac{e^{2}}{4 \pi} & =\frac{g_{L}^{2} g_{Y}^{2}}{4 \pi\left(g_{L}^{2}+g_{Y}^{2}\right)} \\
\tau_{\mu} & =\frac{384 \pi^{3} v^{4}}{m_{\mu}^{5}}
\end{aligned}
$$

$$
\begin{gather*}
G_{\mu}^{a} \rightarrow\left(1+\delta_{G}\right) G_{\mu}^{a}, \quad A_{\mu} \rightarrow A_{\mu}\left(1+\delta_{A A}\right)+\delta_{A Z} Z_{\mu}, \quad Z_{\mu} \rightarrow Z_{\mu}\left(1+\delta_{Z Z}\right), \quad W_{\mu}^{ \pm} \rightarrow W_{\mu}^{ \pm}\left(1+\delta_{W}\right), \\
g_{s} \rightarrow g_{s}\left(1+\delta g_{s}\right), \quad g_{L} \rightarrow g_{L}\left(1+\delta g_{L}\right), \quad g_{Y} \rightarrow g_{Y}\left(1+\delta g_{Y}\right), \quad v \rightarrow v(1+\delta v) \\
h \rightarrow\left(1+\delta_{h 1}\right) h+\delta_{h 2} h^{2}+\delta_{h 3} h^{3}, \quad \lambda \rightarrow \lambda(1+\delta \lambda) . \tag{2.20}
\end{gather*}
$$

Conceptually, similar to renormalization of couplings and fields to absorb effects of loop corrections in SM

```
\deltaG}=\mp@subsup{c}{HG}{}
\deltaW = c chW,
\deltaZZ = s s
```



```
\delta
```



```
\deltag}=-\mp@subsup{c}{HG}{}
\deltag
\deltag
\delta\lambda = 方䴔 + 
\[
\delta_{h_{1}}=c_{H \square}-\frac{1}{4} c_{H D}, \quad \delta_{h_{2}}=\delta_{h_{1}}, \quad \delta_{h_{3}}=\frac{\delta_{h_{1}}}{3} .
\]
```

From this moment on scale \wedge absorbed into Wilson coefficients

such that
Wilson coefficients should be considered of order $1 / \Lambda^{\wedge} 2$

Using freedom to redefine fields and couplings, at order $1 / \wedge^{\wedge} 2$ one can:

- make all kinetic terms standard and canonically normalized
- ensure same tree level relations between SM parameters $\mathrm{gs}, \mathrm{gL}, \mathrm{gY}, \mathrm{v}$ and input observables $\mathrm{mZ}, \mathrm{GF}, \alpha, \alpha$ s
- impose certain convenient convention choices (e.g. lack of derivative Higgs boson self-interactions)

$$
\begin{aligned}
\mathcal{L}_{\text {kinetic }} & =-\frac{1}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}-\frac{1}{4} Z_{\mu \nu} Z_{\mu \nu}-\frac{1}{4} A_{\mu \nu} A_{\mu \nu}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a} \\
& +\frac{g_{L}^{2} v^{2}}{4}(1+\delta m)^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{8} Z_{\mu} Z_{\mu}+\frac{1}{2} \partial_{\mu} h \partial_{\mu} h-\lambda v^{2} h^{2}
\end{aligned}
$$

$$
\mathcal{L}_{v f f} \subset e A_{\mu} \sum_{f \in u, d, e} Q_{f}\left(\bar{f} \bar{\sigma}_{\mu} f+f^{c} \sigma_{\mu} \bar{f}^{c}\right)+g_{s} G_{\mu}^{a} \sum_{f \in u, d}\left(\bar{f} \bar{\sigma}_{\mu} T^{a} f+f^{c} \sigma_{\mu} T^{a} \bar{f}^{c}\right),
$$

Once tree-level renormalization is performed, effects of dimension-6 operators are visible more intuitively

Observable effects of $D=6$ operators

- Corrections to SM Z and W boson couplings to fermions (so-called vertex corrections)
- Corrections to SM Higgs couplings to matter and new tensor structures of these interactions
- Corrections to triple and quartic gauge couplings and new tensor structures of these interactions
- Contact 4-fermion interactions
... and much more

$$
\begin{aligned}
\mathcal{C}_{v f f} & =\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\text {CKM }}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \overline{\sigma_{\mu}}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right) \\
& +\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d, c, e^{e}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
\end{aligned}
$$

$$
\mathcal{L} \supset \frac{m_{h}^{2}}{2 v}\left(1+\delta \lambda_{3}\right) h^{3}
$$

$$
\mathcal{L}_{\mathrm{hff}}=-\sum_{f=u, d, e} m_{f} f^{c}\left(I+\delta y_{f} e^{i \phi_{f}}\right) f+\text { h.c. }
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tgc}} & =i e\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}+\left(1+\delta \kappa_{\gamma}\right) A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g_{L} c_{\theta}\left[\left(1+\delta g_{1, z}\right)\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\left(1+\delta \kappa_{z}\right) Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i \frac{e}{m_{W}^{2}} \lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+i \frac{g_{L} c_{\theta}}{m_{W}^{2}} \lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}_{\mathrm{hvv}}=\frac{h}{v}\left[2\left(1+\delta c_{w}\right) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\left(1+\delta c_{z}\right) m_{Z}^{2} Z_{\mu} Z_{\mu}\right. \\
& +c_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}+\tilde{c}_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} \tilde{W}_{\mu \nu}^{-}+c_{w \square g_{L}^{2}}\left(W_{\mu}^{-} \partial_{\nu} W_{\mu \nu}^{+}+\text {h.c. }\right) \\
& +c_{g g} \frac{g_{g}^{2}}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+c_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} A_{\mu \nu}+c_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} A_{\mu \nu}+c_{z z} \frac{g_{L}^{2}}{4 c_{\theta}} Z_{\mu \nu} Z_{\mu \nu} \\
& +c_{z \square g_{L}^{2} Z_{\mu} \partial_{\nu} Z_{\mu \nu}+c_{\gamma} \square g_{L} g_{Y} Z_{\mu} \partial_{\nu} A_{\mu \nu}} \\
& \left.+\tilde{c}_{g g} \frac{g_{g}^{2}}{4} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}+\tilde{c}_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} \tilde{Z}_{\mu \nu}\right]
\end{aligned}
$$

Important: correlations between different parameters describing deviations from SM

Constraints from pole precision observables.

Z-pole observables

Observable	Experimental value	Ref.	SM prediction	Definition
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	$[21]$	2.4950	$\sum_{f} \Gamma(Z \rightarrow f f)$
$\sigma_{\text {had }}[\mathrm{nb}]$	41.541 ± 0.037	$[21]$	41.484	$\frac{12 \pi}{m_{Z}^{2}} \frac{\Gamma\left(Z \rightarrow e^{+} e^{-}\right) \Gamma(Z \rightarrow q \bar{q})}{\Gamma_{Z}^{2}}$
R_{e}	20.804 ± 0.050	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
R_{μ}	20.785 ± 0.033	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}$
R_{τ}	20.764 ± 0.045	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
$A_{\mathrm{FB}}^{0, e}$	0.0145 ± 0.0025	$[21]$	0.0163	$\frac{3}{4} A_{e}^{2}$
$A_{\mathrm{FB}}^{0, \mu}$	0.0169 ± 0.0013	$[21]$	0.0163	$\frac{3}{4} A_{e} A_{\mu}$
$A_{\mathrm{FB}}^{0, \tau^{\prime}}$	0.0188 ± 0.0017	$[21]$	0.0163	$\frac{3}{4} A_{e} A_{\tau}$
R_{b}	0.21629 ± 0.00066	$[21]$	0.21578	$\frac{\Gamma(Z \rightarrow b b)}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
R_{c}	0.1721 ± 0.0030	$[21]$	0.17226	$\frac{\Gamma(Z \rightarrow c \bar{c})}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
A_{b}^{FB}	0.0992 ± 0.0016	$[21]$	0.1032	$\frac{3}{4} A_{e} A_{b}$
A_{c}^{FB}	0.0707 ± 0.0035	$[21]$	0.0738	$\frac{3}{4} A_{e} A_{c}$
A_{e}	0.1516 ± 0.0021	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{μ}	0.142 ± 0.015	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow \mu_{L}^{+} \mu_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{\mu}^{+} \mu_{R}^{-}\right)}{\left.\Gamma \rightarrow \mu^{+} \mu^{-}\right)}$
A_{τ}	0.136 ± 0.015	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
A_{b}	0.923 ± 0.020	$[21]$	0.935	$\frac{\Gamma\left(Z \rightarrow b_{L} b_{L}\right)-\Gamma\left(Z \rightarrow b_{R} b_{R}\right)}{\Gamma(Z \rightarrow b \bar{b})}$
A_{c}	0.670 ± 0.027	$[21]$	0.668	$\frac{\Gamma\left(Z \rightarrow c_{L} \bar{c}_{L}\right)-\Gamma\left(Z \rightarrow c_{R} \bar{c}{ }_{R}\right)}{\Gamma(Z \rightarrow c \bar{c})}$
A_{s}	0.895 ± 0.091	$[22]$	0.935	$\frac{\Gamma\left(Z \rightarrow s_{L} \bar{s}_{L}\right)-\Gamma\left(Z \rightarrow s_{R} \bar{s}_{R}\right)}{\Gamma(Z \rightarrow s \bar{s})}$
$R_{u c}$	0.166 ± 0.009	$[23]$	0.1724	$\frac{\Gamma(Z \rightarrow u \bar{u})+\Gamma(Z \rightarrow c \bar{c})}{2 \sum_{q} \Gamma(Z \rightarrow q \bar{q})}$

Table 1: Z boson pole observables. The experimental errors of the observables between the double lines are correlated, which is taken into account in the fit. The results for $A_{e, \mu, \tau}$ listed above come from the combination of leptonic polarization and left-right asymmetry measurements at the SLD; we also include the results $A_{\tau}=0.1439 \pm 0.0043, A_{e}=0.1498 \pm 0.0049$ from tau polarization measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings to light quarks in D0 [26].

W-pole observables

Observable	Experimental value	Ref.	SM prediction	Definition
$m_{W}[\mathrm{GeV}]$	80.385 ± 0.015	$[27]$	80.364	$\frac{g_{L} v}{2}(1+\delta m)$
$\Gamma_{W}[\mathrm{GeV}]$	2.085 ± 0.042	$[23]$	2.091	$\sum_{f} \Gamma\left(W \rightarrow f f^{\prime}\right)$
$\operatorname{Br}(W \rightarrow e \nu)$	0.1071 ± 0.0016	$[28]$	0.1083	$\frac{\Gamma(W \rightarrow e \nu)}{\sum_{f} \Gamma\left(W \rightarrow f f^{\prime}\right)}$
$\operatorname{Br}(W \rightarrow \mu \nu)$	0.1063 ± 0.0015	$[28]$	0.1083	$\frac{\Gamma\left(W \rightarrow \mu \nu^{\prime}\right)}{\sum_{f} \Gamma\left(W \rightarrow f\left(f^{\prime}\right)\right.}$
$\operatorname{Br}(W \rightarrow \tau \nu)$	0.1138 ± 0.0021	$[28]$	0.1083	$\frac{\Gamma\left(W \rightarrow \tau \nu^{\prime}\right)}{\sum_{f} \Gamma\left(W \rightarrow f f^{\prime}\right)}$
$R_{W c}$	0.49 ± 0.04	$[23]$	0.50	$\frac{\Gamma(W \rightarrow c s}{\Gamma(W \rightarrow u d)+\Gamma(W \rightarrow c s)}$
R_{σ}	0.998 ± 0.041	$[29]$	1.000	$g_{L}^{W q_{3}} / g_{L, S \mathrm{SM}}^{W q_{3}}$

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are correlated. For the theoretical predictions of m_{W} and Γ_{W}, we use the best fit SM values from GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

On-shell Z decays: nuts and bolts

Lowest order:

$$
\begin{gathered}
\Gamma(Z \rightarrow f \bar{f})=\frac{N_{f} m_{Z}}{24 \pi} g_{f Z}^{2} \quad g_{f Z}=\sqrt{g_{L}^{2}+g_{Y}^{2}}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}\right) \\
\Gamma\left(W \rightarrow f \bar{f}^{\prime}\right)=\frac{N_{f} m_{W}}{48 \pi} g_{f W, L}^{2} \\
g_{f W, L}=g_{L}
\end{gathered}
$$

w/ new physics:

$$
\begin{aligned}
g_{f W, L ; \text { eff }} & =\frac{g_{L 0}}{\sqrt{1-\delta \Pi_{W W}^{\prime}\left(m_{W}^{2}\right)}}\left(1+\delta g_{L}^{W f}\right) \\
g_{f Z ; \text { eff }} & =\frac{\sqrt{g_{L 0}^{2}+g_{Y 0}^{2}}}{\sqrt{1-\delta \Pi_{Z Z}^{\prime}\left(m_{Z}^{2}\right)}}\left(T_{f}^{3}-s_{\text {eff }}^{2} Q_{f}+\delta g^{Z f}\right) \\
s_{\text {eff }}^{2} & =\frac{g_{Y 0}^{2}}{g_{L 0}^{2}+g_{Y 0}^{2}}\left(1-\frac{g_{L}}{g_{Y}} \frac{\delta \Pi_{\gamma Z}\left(m_{Z}^{2}\right)}{m_{Z}^{2}}\right)
\end{aligned}
$$

- Including leading order new physics corrections amount to replacing W / Z couplings to fermions by effective couplings, which encode the effect of vertex and oblique corrections
- For observables with Z/W bosons on-shell, interference between SM amplitudes and 4-fermion

$$
\delta m=\frac{\delta g_{L}^{W e}+\delta g_{L}^{W \mu}}{2}-\frac{\left[c_{\ell \ell}\right]_{1221}}{4}
$$ operators is suppressed by Γ / m and can be neglected

- In my conventions, mass eigenstate Lagrangian does not have oblique corrections (except for W mass correction) thus $\delta \mathrm{g}$ directly constrained

$$
\begin{aligned}
g_{f W, L ; e f f} & =g_{L}\left(1+\delta g_{L}^{W f}\right) \\
g_{f Z ; e f f} & =\sqrt{g_{L}^{2}+g_{Y}^{2}}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g^{Z f}\right)
\end{aligned}
$$

Effects of dimension-6 operators

 on gauge coupling strength to fermions- After tree-level renormalization, by construction, photon and gluon couplings the same as in SM

$$
\begin{aligned}
& \mathcal{L} \supset \frac{g_{L} g_{Y}}{\sqrt{g_{L}^{2}+g_{Y}^{2}}} Q_{f} A_{\mu} \bar{f} \gamma_{\mu} f \\
& \quad+g_{s} G_{\mu}^{a} \bar{q} \gamma_{\mu} T^{a} q
\end{aligned}
$$

- Oblique corrections are redefined away, except for correction to W mass
- Only W and Z couplings are affected
- Effects of dimension-6 operators are parametrized by set of vertex corrections

$$
\begin{aligned}
\mathcal{L}_{v f f} & =\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\mathrm{CKM}}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right) \\
& +\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
\end{aligned}
$$

Z and W couplings to fermions

$$
\begin{aligned}
\delta g_{L}^{W \ell} & =c_{H \ell}^{(3)}+f(1 / 2,0)-f(-1 / 2,-1), \\
\delta g_{L}^{Z \nu} & =\frac{1}{2} c_{H \ell}^{(3)}-\frac{1}{2} c_{H \ell}^{(1)}+f(1 / 2,0), \\
\delta g_{L}^{Z e} & =-\frac{1}{2} c_{H \ell}^{(3)}-\frac{1}{2} c_{H \ell}^{(1)}+f(-1 / 2,-1), \\
\delta g_{R}^{Z e} & =-\frac{1}{2} c_{H e}+f(0,-1),
\end{aligned}
$$

- Observation: vertex corrections are not all independent. Corrections to W vertices are determined by corrections to Z vertices

$$
\begin{aligned}
\delta g_{L}^{Z \nu} & =\delta g_{L}^{Z e}+\delta g_{L}^{W \ell} \\
\delta g_{L}^{W q} & =\delta g_{L}^{Z u} V_{\mathrm{CKM}}-V_{\mathrm{CKM}} \delta g_{L}^{Z d}
\end{aligned}
$$

- Vertex corrections, when expressed by Wilson coefficients in Warsaw basis,

$$
\begin{aligned}
\delta g_{L}^{W q} & =\left(c_{H q}^{(3)}+f(1 / 2,2 / 3)-f(-1 / 2,-1 / 3)\right) V_{\mathrm{CKM}} \\
\delta g_{R}^{W q} & =-\frac{1}{2} c_{H u d} \\
\delta g_{L}^{Z u} & =\frac{1}{2} c_{H q}^{(3)}-\frac{1}{2} c_{H q}^{(1)}+f(1 / 2,2 / 3), \\
\delta g_{L}^{Z d} & =-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q}^{(3)} V_{\mathrm{CKM}}-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q}^{(1)} V_{\mathrm{CKM}}+f(-1 / 2,-1 / 3), \\
\delta g_{R}^{Z u} & =-\frac{1}{2} c_{H u}+f(0,2 / 3), \\
\delta g_{R}^{Z d} & =-\frac{1}{2} c_{H d}+f(0,-1 / 3),
\end{aligned}
$$

$$
f\left(T^{3}, Q\right)=-I_{3} Q \frac{g_{L} g_{Y}}{g_{L}^{2}-g_{Y}^{2}} c_{H W B}
$$

$+I_{3}\left(\frac{1}{4}\left[c_{\ell \ell}\right]_{1221}-\frac{1}{2}\left[c_{H \ell}^{(3)}\right]_{11}-\frac{1}{2}\left[c_{H \ell}^{(3)}\right]_{22}-\frac{1}{4} c_{H D}\right)\left(T^{3}+Q \frac{g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}\right)$ somewhat counterintuitively, depend also on some bosonic and 4-fermion operators

Analysis Assumptions

- Working at order $1 / \wedge^{\wedge} 2$ in EFT expansion. Taking into account corrections from $D=6$ operators, and neglecting $\mathrm{D}=8$ and higher operators. (Only taking into account corrections to observables that are linear in $D=6$ Wilson coefficients, that is to say, only interference terms between SM and new physics. Quadratic corrections are formally of order $1 / \wedge \wedge 4$, much as $D=8$ operators that are neglected.)
- Working at tree-level in EFT parameters (SM predictions taken at NLO or NNLO, but only interference of tree-level BSM corrections with tree-level SM amplitude taken into account)
- Allowing all dimension-6 operators to be present simultaneously with arbitrary coefficients (within EFT validity range). Constraints are obtained on all parameters affecting precision observables at tree level, and correlations matrix is computed.
- Dimension-6 operators are allowed with arbitrary flavor structure (my analysis targets only flavor-diagonal operators, but it's independent of the value of flavor-off-diagonal Wilson coefficients)
- Goal: give you full likelihood in $D=6$ space, that can be reused for any specific model predicting any particular patter of $D=6$ operators
- Z coupling to charged leptons constrained at 0.1% level
- W couplings to leptons constrained at 1% level
- Some couplings to quarks (bottom, charm) also constrained at 1% level
- Some couplings very weakly constrained in a model-independent way, in particular Z couplings to light quarks (though some combinations strongly constrained)

Pole constraints - correlations

- Full correlation matrix is also derived
- From that, one can reproduce complete likelihood function in the space of vertex corrections
- Given dictionary from vertex corrections to Warsaw or SILH, results can be easily recast as constraint on Wilson coefficients in those bases (but then there will be flat directions!)
- Similarly, results can be easily recast for particular BSM models in which vertex and mass corrections are functions of (fewer) model parameters

Leaalng corrections

 to SM for E<< Λ
Subleading effects ignored

Pole observables

constraint vertex corrections

$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$O_{e e}$	$\eta\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(e^{c} \sigma_{\mu} \bar{e}^{\text {c }}\right)$	$O_{\ell e}$	$\left(\overline{\bar{\sigma}_{\mu}} \ell\right)\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)$
$O_{u u}$	$\eta\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$	$O_{\ell u}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{d d}$	$\eta\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$	$O_{\ell d}$	$\left(\overline{\bar{\sigma}_{\mu} \ell}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
$O_{e u}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$	$O_{e q}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
s) $O_{e d}$	$\left(e^{c} \sigma_{\mu} \bar{e}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$	$O_{q u}$	$\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)$
$O_{u d}$	$\left(u^{c} \sigma_{\mu} \bar{u}^{c}\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$	$O_{q u}^{\prime}$	$\left(\bar{q} \bar{\sigma}_{\mu} T^{a} q\right)\left(u^{c} \sigma_{\mu} T^{a} \bar{u}^{c}\right)$
$O_{u d}^{\prime}$	$\left(u^{c} \sigma_{\mu} T^{a} \bar{u}^{c}\right)\left(d^{c} \sigma_{\mu} T^{a} \bar{d}^{c}\right)$	$O_{q d}$	$\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(d^{c} \sigma_{\mu} \bar{d}^{c}\right)$
		$O_{q d}^{\prime}$	$\left(\bar{q} \bar{\sigma}_{\mu} T^{a} q\right)\left(d^{c} \sigma_{\mu} T^{a} \bar{d}^{c}\right)$

$(\bar{L} L)(\bar{L} L)$	
$O_{\ell \ell}$	$\eta\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)$
$O_{q q}$	$\eta\left(\bar{q} \bar{\sigma}_{\mu} q\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
$O_{q q}^{\prime}$	$\eta\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)$
$O_{\ell q}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \ell\right)\left(\bar{q} \bar{\sigma}_{\mu} q\right)$
$O_{\ell q}^{\prime}$	$\left(\bar{\ell} \bar{\sigma}_{\mu} \sigma^{i} \ell\right)\left(\bar{q} \bar{\sigma}_{\mu} \sigma^{i} q\right)$

$(\bar{L} R)(\bar{L} R)$	
$O_{q u q d}$	$\left(u^{c} q^{j}\right) \epsilon_{j k}\left(d^{c} q^{k}\right)$
$O_{q u q d}^{\prime}$	$\left(u^{c} T^{a} q^{j}\right) \epsilon_{j k}\left(d^{c} T^{a} q^{k}\right)$
$O_{\ell \ell q u}$	$\left(e^{c} \ell^{j}\right) \epsilon_{j k}\left(u^{c} q^{k}\right)$
$O_{\ell \text { equ }}^{\prime}$	$\left(e^{c} \bar{\sigma}_{\mu \nu} \ell^{j}\right) \epsilon_{j k}\left(u^{c} \bar{\sigma}^{\mu \nu} q^{k}\right)$
$O_{\ell e d q}$	$\left(\bar{\ell} \bar{e}^{c}\right)\left(d^{c} q\right)$

Tuesday, April 11, 17

Off-pole precision observables

Beyond pole measurements

- So far only vertex corrections are constrained, because pole observables are not sensitive to anything else (once oblique corrections redefined away)
- To probe 4-fermion operators one needs to venture into off-pole observables
- Three main groups: 1) Very low-energy scattering of neutrinos, electrons, etc. on various targets, 2) Off-pole fermion pair production in e+ecolliders, 3) Off-pole fermion pair production in hadron colliders
- I only consider 1) and 2) here, but 3) also important, especially for LLQQ operators

Off-pole probes of 4 -fermion operators

4-fermion couplings extracted from total cross section and FB asymmetry (or full differential distribution) in $e+e-\rightarrow$ FF process in $e+e-$ colliders

$$
\begin{align*}
\delta \sigma_{q} & =\frac{1}{8 \pi s}\left[-e^{2}\left(g_{L}^{2}+g_{Y}^{2}\right) \frac{s}{s-m_{Z}^{2}}\left(\delta A_{F q}+\delta A_{B q}\right)+\left(g_{L}^{2}+g_{Y}^{2}\right)^{2} \frac{s^{2}}{\left(s-m_{Z}^{2}\right)^{2}}\left(\delta B_{F q}+\delta B_{B q}\right)\right] \\
& +\frac{1}{8 \pi v^{2}}\left(g_{L}^{2}+g_{Y}^{2}\right) \frac{s}{s-M_{Z}^{2}}\left(\hat{g}_{L}^{Z e} \hat{g}_{L}^{Z q} c_{L L}+\hat{g}_{L}^{Z e} \hat{g}_{R}^{Z q} c_{L R}+\hat{g}_{R}^{Z e} \hat{g}_{L}^{Z q} c_{R L}+\hat{g}_{R}^{Z e} \hat{g}_{R}^{Z q} c_{R R}\right) \\
& -\frac{1}{8 \pi v^{2}} e^{2} Q_{q}\left(c_{L L}+c_{L R}+c_{R L}+c_{R R}\right), \tag{3.19}\\
\delta \sigma_{q}^{\mathrm{FB}} & =\frac{3}{32 \pi s}\left[-e^{2}\left(g_{L}^{2}+g_{Y}^{2}\right) \frac{s}{s-M_{Z}^{2}}\left(\delta A_{F q}-\delta A_{B q}\right)+\left(g_{L}^{2}+g_{Y}^{2}\right)^{2} \frac{s^{2}}{\left(s-M_{Z}^{2}\right)^{2}}\left(\delta B_{F q}-\delta B_{B q}\right)\right] \\
& +\frac{3}{32 \pi v^{2}}\left(g_{L}^{2}+g_{Y}^{2}\right) \frac{s}{s-M_{Z}^{2}}\left(\hat{g}_{L}^{Z e} \hat{g}_{L}^{Z q} c_{L L}+\hat{g}_{R}^{Z e} \hat{g}_{R}^{Z q} c_{R R}-\hat{g}_{L}^{Z e} \hat{g}_{R}^{Z q} c_{L R}-\hat{g}_{R}^{Z e} \hat{g}_{L}^{Z q} c_{R L}\right) \\
& -\frac{3}{32 \pi v^{2}} e^{2} Q_{q}\left(c_{L L}+c_{R R}-c_{L R}-c_{R L}\right), \tag{3.20}
\end{align*}
$$

Note that relative effect of 4-fermion couplings grows with increasing collision energy Energy can trump accuracy in this case

Low-energy off-pole precision measurements

Class	Observable	Exp. value	Ref. \& Comments	SM value
$\nu_{e} \nu_{e} q q$	$R_{\nu_{e} \bar{\nu}_{e}}$	0.41(14)	CHARM [10]	0.33
$\nu_{\mu} \nu_{\mu} q q$	$\left(g_{L}^{\nu_{\mu}}\right)^{2}$	$0.3005(28)$	$\operatorname{PDG}[7], \rho \approx 1$	0.3034
	$\left(g_{R}^{\nu_{\mu}}\right)^{2}$	0.0329(30)		0.0302
	$\theta_{L}^{v^{\mu}}$	2.500(35)		2.4631
	$\theta_{R}^{\nu_{\mu}}$	$4.56{ }_{-0.27}^{+0.42}$		5.1765
$\begin{aligned} & \text { PV low-E } \\ & \quad \text { eeqq } \end{aligned}$	$g_{A V}^{e u}+2 g_{A V}^{e d}$	0.489(5)	$\operatorname{PDG}[7], \rho \neq 1$	0.4951
	$2 g_{A V}^{e u}-g_{A V}^{e d}$	-0.708(16)		-0.7192
	$2 g_{V A}^{e u}-g_{V A}^{e d}$	-0.144(68)		-0.0949
	$g_{V A}^{e v}-g_{V A}^{e d}$	$\begin{aligned} & -0.042(57) \\ & -0.120(74) \end{aligned}$	SAMPLE [25]	-0.0627
$\begin{gathered} \hline \hline \text { PV low-E } \\ \mu \mu q q \end{gathered}$	$b_{\text {SPS }}(\lambda=0.81)$	$-1.47(42) \cdot 10^{-4}$	BCDMS [26]	$-1.56 \cdot 10^{-4}$
	$b_{\text {SPS }}(\lambda=0.66)$	$-1.74(81) \cdot 10^{-4}$		$-1.57 \cdot 10^{-4}$
$d(s) \rightarrow u \ell \nu$	$\epsilon_{i}^{d_{j} \ell}$	Eq. (3.17)	Ref. [8]	0
$e^{+} e^{-} \rightarrow q \bar{q}$	$\sigma(q \bar{q})$	$f(\sqrt{s})$	LEPEWWG [27], $\rho \neq 1$	$f(\sqrt{s})$
	σ_{c}, σ_{b}		LEPEWWG [34],	
	$A_{F B}^{c c}, A_{F B}^{b b}$		VENUS [29], TOPAZ [30]	
$\nu_{\mu} \nu_{\mu} e e$	$g_{L V}^{\nu \mu e}$	-0.040(15)	PDG [7], $\rho \neq 1$	-0.0396
	$g_{L A}^{\nu \mu e}$	-0.507(14)		-0.5064
$e^{-} e^{-} \rightarrow e^{-} e^{-}$	$g_{A V}^{e e}$	0.0190(27)	PDG [7]	0.0225
$\tau \rightarrow \ell \nu \nu$	$G_{\tau e}^{2} / G_{F}^{2}$	1.0029(46)	PDG [7], PSI [35], $\rho \approx 1$	1
	$G_{\tau \mu}^{2} / G_{F}^{2}$	0.981(18)		1
	Michel η	-0.0021(71)		0
	Michel β^{\prime} / A	-0.0013(36)		0
$e^{+} e^{-} \rightarrow \ell^{+} \ell^{-}$	$\frac{d \sigma(e e)}{d \cos \theta}$	$f(\sqrt{s})$	LEPEWWG [27], $\rho \approx 1$	$f(\sqrt{s})$
	$\sigma_{\mu}, \sigma_{\tau}$		LEPEWWG [34],	
	$A_{F B}^{\mu}, A_{F B}^{\tau}$		VENUS [33]	

Off-pole probes of 4 -fermion operators

- Neutrino scattering on lepton or nucleon targets

$$
\begin{aligned}
& \delta g_{V}=\delta g_{L}^{Z e}+\delta g_{R}^{Z e}+\frac{3 g_{V}^{2}-g_{L}^{2}}{g_{L}^{2}+g_{Y}^{L}}\left(\delta g_{L}^{Z^{\mu}}+\delta g_{L}^{W^{\mu} \mu}\right)-\frac{\left[c_{e}\right]_{122}+\left[c_{e}\right]_{2211}}{2}, \\
& \delta g_{A}=\delta g_{L}^{Z e}-\delta g_{R}^{Z e}-\left(\delta g_{L}^{Z_{L}}+\delta g_{L}^{W^{\mu}}\right)-\frac{[c e]_{1122}-\left[c_{e \ell}\right]_{2211}}{2} .
\end{aligned}
$$

- Parity violating electron scattering on muons

$$
\delta s_{\theta}^{2}=2\left(g_{R, S M}^{Z e} \delta g_{R}^{Z e}-g_{L, S M}^{Z e} \delta g_{L}^{Z e}\right)-\frac{1}{4}\left(\left[c_{e e}\right]_{1111}-\left[c_{\ell \ell}\right]_{1111}\right)
$$

- Atomic parity violation
- Parity violating electron scattering on nucleons

$$
\begin{aligned}
& g_{A V}^{e_{i V} d}=\frac{1}{2}-\frac{2}{3} s_{\theta}^{2}-\left(\delta g_{L}^{Z d}+\delta g_{R}^{Z d}\right)-\frac{3-4 s_{d}^{2}}{3}\left(\delta g_{L}^{Z e s}-\delta g_{R}^{Z Z_{e j}}\right)+\frac{1}{2}\left[-c_{q}^{1}-c_{q}-c_{d d}+c_{c q}+c_{c d}\right]_{J J 11} \text {, } \\
& g_{V A}^{e_{V}^{\prime u}}=-\frac{1}{2}+2 s_{\theta}^{2}-\left(1-4 s_{q}^{2}\right)\left(\delta g_{L}^{Z u}-\delta g_{R}^{Z u}\right)+\left(\delta g_{L}^{Z e s}+\delta g_{R}^{Z e_{e}}\right)+\frac{1}{2}\left[c_{q}^{\prime}-c_{q}+c_{l_{u}}-c_{e q}+c_{e q}\right]_{J J 11},
\end{aligned}
$$

- Muon and tau decay rates and differential distributions Gonzalez-Alonso, Camalich 1605.07114
- Decays of pions, kaons, hyperons

$$
\begin{aligned}
A_{e} & \equiv \frac{G_{\tau e}^{2}}{G_{F}^{2}}=1+2 \delta g_{L}^{W \tau}+2 \delta g_{L}^{W e}-4 \delta m-\left[c_{\ell \ell}\right]_{1331} \\
A_{\mu} & \equiv \frac{G_{\tau \mu}^{2}}{G_{F}^{2}}=1+2 \delta g_{L}^{W \tau}+2 \delta g_{L}^{W \mu}-4 \delta m-\left[c_{\ell \ell}\right]_{2332} \\
\eta & =\frac{\operatorname{Re}\left[c_{\ell \ell}\right]_{1221}}{2}, \quad \beta^{\prime} / A=-\frac{\operatorname{Im}\left[c_{\ell e}\right]_{1221}}{4}
\end{aligned}
$$

Off-Pole constraints on 4-fermion operators

One flavor ($I=1 \ldots 3$)	Two flavors ($I<J=1 \ldots 3$)
$\left[O_{\ell \ell}\right]_{I I I I}=\frac{1}{2}\left(\ell_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(\ell_{I} \bar{\sigma}_{\mu} \ell_{I}\right)$	$\left[O_{\ell \ell}\right]_{I I J J}=\left(\ell_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(\ell_{J} \bar{\sigma}_{\mu} \ell_{J}\right)$
	$\left[O_{\ell \ell}\right]_{I J J I}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J}\right)\left(\bar{\ell}_{J} \bar{\sigma}_{\mu} \ell_{I}\right)$
$\left[O_{\ell e}\right]_{I I I I}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)$	$\left[O_{\ell e}\right]_{I I J J}=\left(\bar{\chi}_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(e_{J}^{c} \sigma_{\mu} \bar{e}_{J}^{c}\right)$
	$\left[O_{\ell e}\right]_{J J I I}=\left(\bar{\chi}_{J} \bar{\sigma}_{\mu} \ell_{J}\right)\left(e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)$
	$\left[O_{\ell e}\right]_{I J J I}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J}\right)\left(e_{J}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)$
$\left[O_{e e}\right]_{I I I I}=\frac{1}{2}\left(e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)\left(e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)$	$\left[O_{e e}\right]_{I I J J}=\left(e_{I}^{c} \sigma_{\mu} \bar{e}_{I}^{c}\right)\left(e_{J}^{c} \sigma_{\mu} \bar{e}_{J}^{c}\right)$

Chirality conserving ($I, J=1,2,3)$
$\left[O_{\ell q}\right]_{I I J J}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(\bar{q}_{J} \bar{\sigma}_{\mu} q_{J}\right)$
$\left[O_{\ell q}^{(3)}\right]_{I I J J}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \sigma^{i} \ell_{I}\right)\left(\bar{q}_{J} \bar{\sigma}_{\mu} \sigma^{i} q_{J}\right)$
$\left[O_{\ell u}\right]_{I I J J}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(u_{J}^{c} \bar{\sigma}_{\mu} \bar{u}_{J}^{c}\right)$
$\left[O_{\ell d}\right]_{I I J J}=\left(\bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{I}\right)\left(d_{J}^{c} \bar{\sigma}_{\mu} \bar{d}_{J}^{c}\right)$
$\left[O_{e q}\right]_{I I J J}=\left(e_{I}^{e} \bar{\sigma}_{\mu} \bar{e}_{I}^{c}\right)\left(\bar{q}_{J} \bar{\sigma}_{\mu} q_{J}\right)$
$\left.\left[O_{e u}\right]_{I I J J}=\left(e_{I}^{c} \bar{\sigma}_{\mu} \bar{e}_{I}^{c}\right)^{\prime}\right)\left(u_{J}^{c} \bar{\sigma}_{\mu} \bar{u}_{J}^{c}\right)$
$\left[O_{e d}\right]_{I I J J}=\left(e_{I}^{c} \bar{\sigma}_{\mu} \bar{e}_{I}^{c}\right)\left(d_{J}^{c} \bar{\sigma}_{\mu} \bar{d}_{J}^{c}\right)$

$\left[O_{\ell \text { equ }}\right]_{I I J J}=\left(\overline{(\bar{J}}_{I}^{j} \bar{e}_{I}^{c}\right) \epsilon_{j k}\left(\bar{q}_{J}^{k} \bar{u}_{J}^{c}\right)$ $\left[O_{\ell \text { equ }}^{(3)}\right]_{I I J J}=\left(\bar{\ell}_{I}^{j} \sigma_{\mu \nu} \bar{e}_{I}^{c}\right) \epsilon_{j k}\left(\bar{q}_{J}^{k} \sigma_{\mu \mu} \bar{u}_{J}^{c}\right)$
$\left[O_{\ell e d q}\right]_{I I J J}=\left(\bar{\ell}_{I}^{j} \bar{e}_{I}^{c}\right)\left(d_{G}^{c} q_{J}^{j}\right)$

- Targeting 40 linear combinations QQLL and LLLL 4-fermion operators
- All relevant observables depend also on leptonic vertex corrections, so combination with previous pole constraints is necessary

AA, Gonzalez-Alonso, Mimouni
to appear

Off-Pole constraints on 4 -fermion operators

$(e e)(q q)$

	$\left[c_{\ell q}^{(3)}\right]_{1111}$	$\left[c_{\ell q}\right]_{1111}$	$\left[c_{\ell u}\right]_{1111}$	$\left[c_{\ell d}\right]_{1111}$	$\left[c_{e q}\right]_{1111}$	$\left[c_{e u}\right]_{1111}$	$\left[c_{e d}\right]_{1111}$
LEP-2	3.5 ± 2.2	-42 ± 28	-21 ± 14	42 ± 28	-18 ± 11	-9.0 ± 5.7	18 ± 11
APV	27 ± 19	1.6 ± 1.1	3.4 ± 2.3	3.0 ± 2.0	-1.6 ± 1.1	-3.4 ± 2.3	-3.0 ± 2.0
QWEAK	7.0 ± 12	-2.3 ± 4.0	-3.5 ± 6.0	-7 ± 12	2.3 ± 4.0	3.5 ± 6.0	7 ± 12
PVDIS	-8 ± 12	24 ± 35	38 ± 48	-77 ± 96	-77 ± 96	-12 ± 17	24 ± 35
SAMPLE	-8 ± 45	x	-17 ± 90	17 ± 90	x	-17 ± 90	17 ± 90
CHARM	-80 ± 180	700 ± 1800	370 ± 880	-700 ± 1800	x	x	x
LEF	0.38 ± 0.28	x	x	x	x	x	x

$$
(\mu \mu)(q q)
$$

	$\left[c_{\ell q}^{(3)}\right]_{2211}$	$\left[c_{\ell q}\right]_{2211}$	$\left[c_{\ell u}\right]_{2211}$	$\left[c_{\ell d}\right]_{2211}$	$\left[c_{e q}\right]_{2211}$	$\left[c_{e u}\right]_{2211}$	$\left[c_{e d}\right]_{2211}$
PDG ν_{μ}	20 ± 15	4 ± 21	18 ± 19	-20 ± 37	x	x	x
SPS	0 ± 1000	0 ± 3000	0 ± 1500	0 ± 3000	40 ± 390	-20 ± 190	40 ± 390
LEF	-0.4 ± 1.2	x	x	x	x	x	x

$$
\left(\begin{array}{l}
{\left[c_{\text {eqqu }}\right]_{1111}} \\
{\left[c_{\text {edd }}\right]_{1111}} \\
{\left[c_{\text {eqeq }}^{3}\right]} \\
{\left[c_{\text {eqq }} 1111\right.} \\
{[]_{2211}} \\
{\left[c_{\text {edq }}\right]_{2211}}
\end{array}\right)=\left(\begin{array}{c}
(-1.3 \pm 4.9) \cdot 10^{-7} \\
(1.3 \pm 4.9) \cdot 10^{-7} \\
(-0.2 \pm 1.6) \cdot 10^{-3} \\
(0.3 \pm 1.0) \cdot 10^{-4} \\
(-0.3 \pm 1.0) \cdot 10^{-4}
\end{array}\right)
$$

Off-Pole constraints on 4-lepton observables

	$\left(\begin{array}{r}-1.00 \pm 0.64 \\ -1.36 \pm 0.59 \\ 1.95 \pm 0.79 \\ -0.023 \pm 0.028 \\ 0.01 \pm 0.12 \\ 0.018 \pm 0.059 \\ -0.033 \pm 0.027 \\ 0.00 \pm 0.14 \\ 0.042 \pm 0.062 \\ -0.8 \pm 3.1 \\ -0.15 \pm 0.36 \\ -0.3 \pm 3.8 \\ 1.4 \pm 5.1 \\ -0.35 \pm 0.53 \\ -0.9 \pm 4.4 \\ 0.9 \pm 2.8 \\ 0.33 \pm 0.17 \\ 3 \pm 16 \\ 3.4 \pm 4.9 \\ 2.30 \pm 0.88 \\ -1.3 \pm 1.7 \\ 1.01 \pm 0.38 \\ -0.22 \pm 0.22 \\ 0.20 \pm 0.38 \\ -4.8 \pm 1.6 \\ 1.5 \pm 2.1 \\ 1.5 \pm 2.2 \\ -1.4 \pm 2.2 \\ 3.4 \pm 2.6 \\ 1.5 \pm 1.3 \\ 0 \pm 11 \\ -2.3 \pm 7.2 \\ 1.7 \pm 7.2 \\ -1 \pm 12 \\ 3.0 \pm 2.3\end{array}\right)$	$\times 10^{-2}$		Pre $\begin{array}{r}\text { r }\end{array}$ $=\left(\begin{array}{c}-2.2 \pm 3.2 \\ 110 \pm 180 \\ -5 \pm 11 \\ -5 \pm 23 \\ -1 \pm 12 \\ -4 \pm 21 \\ -61 \pm 32 \\ 2.4 \pm 8.0 \\ -310 \pm 130 \\ -21 \pm 28 \\ -87 \pm 46 \\ 270 \pm 140 \\ -8.6 \pm 8.0 \\ -1.4 \pm 10 \\ -3.2 \pm 5.1 \\ 18 \pm 20 \\ -1.2 \pm 3.9 \\ 1.3 \pm 7.6 \\ 15 \pm 12 \\ 25 \pm 34 \\ 4 \pm 41 \\ -0.14 \pm 0.13 \\ -0.14 \pm 0.13 \\ -0.02 \pm 0.16 \\ -0.05 \pm 0.29\end{array}\right)$	$\times 10^{-2}$.

- Full correlation matrix also calculated

- Little change for vertex corrections, since pole observables are more precise
- Typical constraints for 4-lepton operators are at 1% level

LHC vs low-energy

$(e e)(q q)$							
	$\left[c_{\ell q}^{(3)}\right]_{1111}$	$\left[c_{\ell q}\right]_{1111}$	$\left[c_{e u}\right]_{1111}$	$\left[c_{\ell d}\right]_{1111}$	$\left[c_{e q}\right]_{1111}$	$\left[c_{e u}\right]_{1111}$	$\left[c_{e d}\right]_{1111}$
LE	0.45 ± 0.28	1.6 ± 1.0	2.8 ± 2.1	3.6 ± 2.0	-1.8 ± 1.1	-4.0 ± 2.0	-2.7 ± 2.0
ATLAS ($\sqrt{s} \leq 1.5 \mathrm{TeV}$)	$-0.65_{-0.67}^{+0.60}$	$2.3{ }_{-2.2}^{+1.9}$	$2.6_{-2.6}^{+2.3}$	$-1.4_{-2.8}^{+2.9}$	$1.3_{-1.9}^{+1.7}$	$1.5_{-1.4}^{+2.4}$	$-2.7_{-2.8}^{+3.2}$
ATLAS $(\sqrt{s} \leq 1 \mathrm{TeV})$	$-0.78_{-0.89}^{+0.81}$	3.2 ± 3.4	3.8 ± 4.1	-1.9 ± 4.2	1.9 ± 2.8	$1.7_{-1.8}^{+9.1}$	-3.8 ± 4.7
$(\mu \mu)(q q)$							
	$\left[c_{\ell q}^{(3)}\right]_{2211}$	$\left[c_{\ell q}\right]_{2211}$	$\left[c_{\ell u}\right]_{2211}$	$\left[c_{\ell d}\right]_{2211}$	$\left[c_{e q}\right]_{2211}$	$\left[c_{e u}\right]_{2211}$	$\left[c_{e d}\right]_{2211}$
LE	-0.2 ± 1.2	4 ± 21	18 ± 19	-20 ± 37	40 ± 390	-20 ± 190	40 ± 390
ATLAS ($\sqrt{s} \leq 1.5 \mathrm{TeV}$)	$-1.35_{-0.63}^{+0.56}$	1.8 ± 1.1	2.0 ± 1.3	-1.0 ± 1.6	1.02 ± 0.99	$2.8{ }_{-1.3}^{+1.7}$	-2.0 ± 1.8
ATLAS ($\sqrt{s} \leq 1 \mathrm{TeV}$)	$-0.72_{-0.83}^{+0.76}$	3.2 ± 3.4	3.8 ± 4.1	-1.9 ± 4.2	1.9 ± 2.7	$1.6_{-1.7}^{+2.4}$	-3.8 ± 4.7

C| CV

	$\left[c_{\text {equ }}\right]_{1111}$	$\left[c_{\text {eedq }}\right]_{1111}$	$\left[c_{\ell \text { equ }}^{(3)}\right]_{1111}$	$\left[c_{\text {equ }}\right]_{2211}$	$\left[c_{\text {edq }}\right]_{2211}$	$\left[c_{\ell_{\text {equ }}}^{(3)}\right]_{2211}$
LE	-0.00013 ± 0.00049	0.00013 ± 0.00049	-0.2 ± 1.6	0.03 ± 0.10	-0.03 ± 0.10	x
ATLAS $(\sqrt{s} \leq 1.5 \mathrm{TeV})$	0 ± 1.7	0 ± 2.3	0 ± 0.8	0 ± 0.98	0 ± 1.3	0 ± 0.45
ATLAS $(\sqrt{s} \leq 1 \mathrm{TeV})$	0 ± 2.6	0 ± 3.3	0 ± 1.2	0 ± 2.5	0 ± 3.2	0 ± 1.2

$\mathcal{L}_{\text {SM EFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda_{L}} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda_{L}^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+.$.
 Leading corrections

to $S M$ for $E \ll \Lambda$

Subleading effects ignored

Bosonic CP-even

O_{H}	$\left(H^{\dagger} H\right)^{3}$
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$
$O_{H W}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indic s are $O_{e u}$ denoted by I, J. For complex operators ($O_{H u d}$ and all Yukawa and dipole ope ators) $O_{e d}$ the corresponding complex conjugate operator is implicitly included.

$$
\begin{gathered}
H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a} \\
H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i} \\
H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu} \\
H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu} \\
\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k} \\
f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}
\end{gathered}
$$

Pole observables
constraint vertex corrections
Off-pole observables probe 4-fermion operators

Pole constraints - universal theories

Oblique corrections: $\delta \mathcal{M}\left(V_{1, \mu} \rightarrow V_{2, \nu}\right)=\eta_{\mu \mu}\left(\delta \Pi_{V_{1}, V_{2}}^{(0)}+\delta \Pi_{V_{1}, V_{2}}^{(2)} p^{2}+\delta \Pi_{V_{1}, v_{2}}^{(4)} p^{4}+\ldots\right)+p_{\mu \mu \nu}(\ldots)$

$$
\begin{aligned}
\alpha S & =-4 \frac{g_{L} g_{Y}}{g_{L}^{2}+g_{Y}^{2}} \delta \Pi_{3 B}^{(2)} \\
\alpha T & =\frac{\delta \Pi_{11}^{(0)}-\delta \Pi_{33}^{(0)}}{m_{W}^{2}} \\
\alpha U & =\frac{4 g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}\left(\delta \Pi_{11}^{(2)}-\delta \Pi_{33}^{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha V & =m_{W}^{2}\left(\delta \Pi_{11}^{(4)}-\delta \Pi_{33}^{(4)}\right) \\
\alpha W & =-m_{W}^{2} \delta \Pi_{33}^{(4)} \\
\alpha X & =-m_{W}^{2} \delta \Pi_{3 B}^{(4)} \\
\alpha Y & =-m_{W}^{2} \delta \Pi_{B B}^{(4)}
\end{aligned}
$$

Peskin Takeuchi
pre-arxiv
Barbieri et al
hep-ph/0405040
Wells Zhang 1510.08462

Equivalent to restricted form of flavor-diagonal vertex corrections, 4-fermion operators and W-mass corrections:

$$
\begin{aligned}
{\left[\delta g^{Z f}\right]_{i j} } & =\delta_{i j} \alpha\left\{T_{f}^{3} \frac{T-W-\frac{g_{Y}^{2}}{g_{L}^{2}} Y}{2}+Q_{f} \frac{2 g_{Y}^{2} T-\left(g_{L}^{2}+g_{Y}^{2}\right) S+2 g_{Y}^{2} W+\frac{2 g_{Y}^{2}\left(2 g_{L}^{2}-g_{Y}^{2}\right)}{g_{L}^{2}} Y}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\right\} \\
\delta m & =\frac{\alpha}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[2 g_{L}^{2} T-\left(g_{L}^{2}+g_{Y}^{2}\right) S+2 g_{Y}^{2} W+2 g_{Y}^{2} Y\right]
\end{aligned}
$$

$$
\left[c c_{\ell \ell}\right]_{I I J J}=\alpha\left[W-\frac{g_{Y}^{2}}{g_{L}^{2}} Y\right] \quad\left[c_{\ell \ell}\right]_{I J J I}=-2 \alpha W, \quad I<J
$$

$$
\left[c_{\ell \ell}\right]_{I I I I}=-\alpha\left[W+\frac{g_{Y}^{2}}{g_{L}^{2}} Y\right]
$$

$$
\left[c_{e \in}\right]_{I I J J}=-\frac{2 g_{Y}^{2}}{g_{L}^{2}} \alpha Y \quad\left[c_{e e}\right]_{I I J J}=-\frac{4 g_{Y}^{2}}{g_{L}^{2}} \alpha Y
$$

LHC Higgs constraints

\section*{$\mathcal{L}_{\text {SM EFT }}=\mathcal{L}_{\text {SM }}+\frac{1}{\Lambda_{L}} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda_{L}^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+.$.

\section*{Leading corrections

Leading corrections to $S M$ for $E \ll \Lambda$

LHC Higgs and TGC data extend the net to bosonic and Yukawa operators

Table 2.3: Two-fermion $D=6$ operators in the Warsaw basis. The flavor indic ss are $O_{e u}$ denoted by I, J. For complex operators ($O_{H u d}$ and all Yukawa and dipole ope tors) $O_{e d}$ the corresponding complex conjugate operator is implicitly included.

$O_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{H \widetilde{W} B}$	$H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu}$
$O_{\widetilde{W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{\widetilde{G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Subleading effects ignored

Pole observables constraint vertex corrections

Off-pole observables probe 4-fermion operators

[^0]
Effects of dimension-6 operators

on Higgs coupling strength to matier

- Shift the SM Higgs couplings to matter
- Introduce new 2-derivative couplings to gauge bosons that are not present in the SM at tree level
- Introduce CP violating couplings to fermions and gauge bosons
- In SM EFT with dimension-6 operators one finds correlations relations between different Higgs couplings to gauge bosons

$$
\begin{aligned}
\mathcal{L}_{\mathrm{hvv}} & =\frac{h}{v}\left[2\left(1+\delta c_{w}\right) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\left(1+\delta c_{z}\right) m_{Z}^{2} Z_{\mu} Z_{\mu}\right. \\
& +c_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}+\tilde{c}_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} \tilde{W}_{\mu \nu}^{-}+c_{w \square g_{L}^{2}}^{2}\left(W_{\mu}^{-} \partial_{\nu} W_{\mu \nu}^{+}+\text {h.c. }\right) \\
& +c_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+c_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} A_{\mu \nu}+c_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} A_{\mu \nu}+c_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} Z_{\mu \nu} \\
& +c_{z \square g_{L}^{2}}^{2} Z_{\mu} \partial_{\nu} Z_{\mu \nu}+c_{\gamma \square g_{L} g_{Y} Z_{\mu} \partial_{\nu} A_{\mu \nu}} \\
& \left.+\tilde{c}_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}+\tilde{c}_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} \tilde{Z}_{\mu \nu}\right]
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{hff}}=-\sum_{f=u, d, e} m_{f} f^{c}\left(I+\delta y_{f} e^{i \phi_{f}}\right) f+\text { h.c. }
$$

Bosonic CP-even			Bosonic CP-odd	
O_{H}	$\left(H^{\dagger} H\right)^{3}$			
$O_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$			
$O_{H D}$	$\left\|H^{\dagger} D_{\mu} H\right\|^{2}$			
$O_{H G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{H W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$		$O_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{H B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{H W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$		$O_{H \widetilde{W} B}$	$H^{\dagger} \sigma^{i} H \widetilde{W}_{\mu \nu}^{i} B_{\mu \nu}$
O_{W}	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
O_{G}	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

Table 2.2: Bosonic $D=6$ operators in the Warsaw basis.
$\delta c_{w}=\delta c_{z}+4 \delta m$

$$
c_{w w}=c_{z z}+2 s_{\theta}^{2} c_{z \gamma}+s_{\theta}^{4} c_{\gamma \gamma}
$$

$$
\tilde{c}_{w w}=\tilde{c}_{z z}+2 s_{\theta}^{2} \tilde{c}_{z \gamma}+s_{\theta}^{4} \tilde{c}_{\gamma \gamma}
$$

$$
c_{w \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[g_{L}^{2} c_{z \square}+g_{Y}^{2} c_{z z}-e^{2} s_{\theta}^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) s_{\theta}^{2} c_{z \gamma}\right]
$$

$$
c_{\gamma \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[2 g_{L}^{2} c_{z \square}+\left(g_{L}^{2}+g_{Y}^{2}\right) c_{z z}-e^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) c_{z \gamma}\right]
$$

$$
\tilde{c}_{g g}=\frac{4}{g_{s}^{2}} c_{H \tilde{G}},
$$

$$
\tilde{c}_{\gamma \gamma}=4\left(\frac{1}{g_{L}^{2}} c_{H \tilde{W}}+\frac{1}{g_{Y}^{2}} c_{H \tilde{B}}-\frac{1}{g_{L} g_{Y}} c_{H \tilde{W} B}\right),
$$

$$
\tilde{c}_{z z}=4 \frac{4 \frac{g_{L}^{2} c_{H \tilde{W}}+g_{Y}^{2} c_{H \tilde{B}}+g_{L} g_{Y} c_{H \tilde{W} B}}{\left(g_{L}^{2}+g_{Y}^{2}\right)^{2}},}{}
$$

$$
\tilde{c}_{z \gamma}=\frac{4 c_{H \tilde{W}}-4 c_{H \tilde{\tilde{L}}}-2 \frac{g_{\partial}^{2}-g_{\tilde{Y}}^{2}}{g_{L}} c_{H \tilde{W} B}}{g_{L}^{2}+g_{Y}^{2}},
$$

$$
\begin{aligned}
c_{z \square} & =\frac{1}{2 g_{L}^{2}}\left(c_{H D}+2\left[c_{H \ell}^{(3)}\right]_{11}+2\left[c_{H \ell}^{(3)}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
c_{\gamma \square} & =\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left(2 \frac{g_{L}^{2}+g_{Y}^{2}}{g_{L} g_{Y}} c_{H W B}+c_{H D}+2\left[c_{H \ell}^{(3)}\right]_{11}+2\left[c_{H \ell}^{(3)}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
c_{w \square} & =\frac{1}{2\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(4 \frac{g_{Y}}{g_{L}} c_{H W B}+c_{H D}+2\left[c_{H \ell}^{(3)}\right]_{11}+2\left[c_{H \ell}^{(3)}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right),
\end{aligned}
$$

$$
\begin{align*}
& \delta c_{w}=c_{H \square}-\frac{5 g_{L}^{2}-g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)} c_{H D}-\frac{4 g_{L} g_{Y}}{g_{L}^{2}-g_{Y}^{2}} c_{H W B}+\frac{3 g_{L}^{2}+g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(\left[c_{\ell \ell}\right]_{1221}-2\left[c_{H \ell}^{(3)}\right]_{11}-2\left[c_{H \ell}^{(3)}\right]_{22}\right) \\
& \delta c_{z}=c_{H \square}-\frac{1}{4} c_{H D}+\frac{3}{4}\left(\left[c_{e \ell}\right]_{1221}-2\left[c_{H}^{(3)}\right]_{11}-2\left[c_{H \ell}^{(3)}\right]_{22}\right), \\
& {\left[\delta y_{f}\right]_{I J} e^{i \phi_{I J}^{f}}=-\frac{v}{\sqrt{2 m_{f_{I}} m_{f_{J}}}}\left[c_{f H}^{\dagger}\right]_{I J}+\delta_{I J}\left(c_{H \square}-\frac{1}{4} c_{H D}+\frac{1}{4}\left[c_{\ell \ell}\right]_{1221}-\frac{1}{2}\left[c_{H \ell}^{(3)}\right]_{11}-\frac{1}{2}\left[c_{H \ell}^{(3)}\right]_{22}\right),} \tag{2.39}\\
& c_{g g}=\frac{4}{g_{s}^{2}} c_{H G}, \\
& c_{w w}=\frac{4}{g_{L}^{2}} c_{H W}, \\
& c_{\gamma \gamma}=4\left(\frac{1}{g_{L}^{2}} c_{H W}+\frac{1}{g_{Y}^{2}} c_{H B}-\frac{1}{g_{L} g_{Y}} c_{H W B}\right), \\
& c_{z z}=4 \frac{g_{L}^{2} c_{H W}+g_{Y}^{2} c_{H B}+g_{L} g_{Y} c_{H W B}}{\left(g_{L}^{2}+g_{Y}^{2}\right)^{2}}, \\
& c_{z \gamma}=\frac{4 c_{H W}-4 c_{H B}-2 \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L} g_{X}} c_{H W B}}{g_{L}^{2}+g_{Y}^{2}},
\end{align*}
$$

- In SM EFT Higher-point Higgs vertices with gauge bosons and fermions are correlated with gauge boson couplings to fermions
- Thus, they are related to precisely measured observables at LEP and low-energy experiments
$\mathcal{L}_{\mathrm{EFT}} \supset \sqrt{g_{L}^{2}+g_{Y}^{2}\left[\left(1+\delta g_{L}^{Z e}\right) Z_{\mu} \bar{e}_{L} \gamma_{\mu} e_{L}+\left(1+\delta g_{R}^{Z e}\right) Z_{\mu} \bar{e}_{R} \gamma_{\mu} e_{R}+\ldots\right]}$

$$
+\frac{1}{v}\left[\left(d_{A e} A_{\mu \nu} \bar{e}_{L} \sigma_{\mu \nu} \ell_{R}+\text { h.c. }\right)+\left(d_{Z e} Z_{\mu \nu} \bar{e}_{L} \sigma_{\mu \nu} e_{R}+\text { h.c. }\right)+\ldots\right]
$$

$$
\begin{aligned}
& \mathcal{L}_{h, \mathrm{EFT}} \supset \frac{h}{v} \sqrt{g_{L}^{2}+g_{Y}^{2}}\left[\delta g_{L}^{Z e} Z_{\mu} \bar{e}_{L} \gamma_{\mu} e_{L}+\delta g_{R}^{Z e} Z_{\mu} \bar{e}_{R} \gamma_{\mu} e_{R}+\ldots\right] \\
&+\frac{h}{v^{2}}\left[\left(d_{A e} A_{\mu \nu} \bar{e}_{L} \sigma_{\mu \nu} e_{R}+\text { h.c. }\right)+\left(d_{Z e} Z_{\mu \nu} \bar{e}_{L} \sigma_{\mu \nu} e_{R}+\text { h.c. }\right)+\ldots\right]
\end{aligned}
$$

All in all, vertex- and dipole-type interactions of Higgs with 2 fermions and 1 gauge field can be neglected in the LHC context, given constraints from other precision experiments (and assuming MFV)

Effects of dimension -6 operators on triple gauge couplings (TGCS)

In SM, cubic (and quartic) gauge interactions completely fixed, once gauge couplings known In SM EFT with D=6 operators, new "anomalous" contributions to TGCs arise

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tgc}} & =i e\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}+\left(1+\delta \kappa_{\gamma}\right) A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{\gamma} \tilde{A}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g_{L} c_{\theta}\left[\left(1+\delta g_{1, z}\right)\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\left(1+\delta \kappa_{z}\right) Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{z} \tilde{Z}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i \frac{e}{m_{W}^{2}} \lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+i \frac{g_{L} c_{\theta}}{m_{W}^{2}} \lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}+i \frac{e}{m_{W}^{2}} \tilde{\lambda}_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{A}_{\rho \mu}+i \frac{g_{L} c_{\theta}}{m_{W}^{2}} \tilde{\lambda}_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{Z}_{\rho \mu}
\end{aligned}
$$

Relations between anomalous TGCs and Wilson coefficients in Warsaw basis

$$
\begin{aligned}
\delta g_{1, z} & =-\frac{g_{L}^{2}+g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(4 \frac{g_{Y}}{g_{L}} c_{H W B}+c_{H D}+2\left[c_{H \ell}^{(3)}\right]_{11}+2\left[c_{H \ell}^{(3)}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
\delta \kappa_{\gamma} & =\frac{g_{L}}{g_{Y}} c_{H W B}, \\
\delta \kappa_{z} & =-\frac{g_{L}^{2}+g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(8 \frac{g_{L} g_{Y}}{g_{L}^{2}+g_{Y}^{2}} c_{H W B}+c_{H D}+2\left[c_{H \ell}^{(3)}\right]_{11}+2\left[c_{H \ell}^{(3)}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
\lambda_{z}=\lambda_{\gamma} & =-\frac{3}{2} g_{L} c_{W}, \\
\tilde{\kappa}_{\gamma} & =\frac{g_{L}}{g_{Y}} c_{H \tilde{W} B}, \quad \tilde{\kappa}_{z}=-\frac{g_{Y}}{g_{L}} c_{H \tilde{W} B}, \\
\tilde{\lambda}_{z}=\tilde{\lambda}_{\gamma} & =-\frac{3}{2} g_{L} c_{\tilde{W}} .
\end{aligned}
$$

TGC

Linearly realized $S U(3) \times S U(2) \times U(1)$ local symmetry in Lagrangian with operators up to $D=6$ implies that aTGC and Higgs couplings to EW gauge bosons are related:

$$
\begin{aligned}
\delta g_{1, z} & =\frac{1}{2\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[c_{\gamma \gamma} e^{2} g_{Y}^{2}+c_{z \gamma}\left(g_{L}^{2}-g_{Y}^{2}\right) g^{\prime 2}-c_{z z}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{Y}^{2}-c_{z \square}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{L}^{2}\right] \\
\delta \kappa_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(c_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+c_{z \gamma} g_{L}^{2}-g_{Y}^{2}\right. \\
g_{L}^{2}+g_{Y}^{2} & \left.c_{z z}\right), \\
\tilde{\kappa}_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(\tilde{c}_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+\tilde{c}_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-\tilde{c}_{z z}\right),
\end{aligned}
$$

- Therefore constraints on $\delta g 1 z$ and $\delta k y$ imply constraints on Higgs couplings to electroweak gauge bosons, and vice-versa
- In fact, TGCs probe directions in EFT parameter space that are weakly constrained by Higgs searches. Therefore, important to combine Higgs and TGC data!
- That is possible provided both aTGCs and Higgs couplings are constrained in a general consistent, multi-dimensional fit, and the correlation matrix is given!

$\mathrm{D}=6$ EFT parameters probed by LHC Higgs searches

- Combinations of EFT parameters constrained by precision tests much better than at $O(10 \%)$ are not relevant at the LHC, given current precision
- Assuming MFV, one can identify 16 combinations of EFT parameters that are weakly or not at all constrained by precision tests, and which affect LHC Higgs observables at leading order. These correspond to 16 Higgs basis parameters in previous slide.
- Higgs signal strength observables at $O\left(1 / \wedge^{\wedge} 2\right)$ are only sensitive to $C P-e v e n$ parameters (CP-odd ones enter only quadratically and are ignored - one needs to study differential distributions to access those at $O\left(1 / \wedge^{\wedge} 2\right)$).
- Currently not much experimental sensitivity to modifications of Higgs cubic

Di Vita et al 1704.01953

- Thus, assuming MFV couplings to fermions, only 9 EFT parameters affect Higgs signal strength measured at LHC

Channel	Production	Run-1	ATLAS Run-2	CMS Run-2
$\gamma \gamma$	ggh	$1.10_{-0.22}^{+0.23}$	$0.62_{-0.29}^{+0.30}[106]$	$0.77_{-0.23}^{+0.25}[107]$
	VBF	$1.3_{-0.5}^{+0.5}$	$2.25_{-0.75}^{+0.75}$ [106]	$1.61{ }_{-0.80}^{+0.90}[107]$
	Wh	$0.5_{-12}^{+1.3}$	-	-
	Zh	$0.5_{-2.5}^{+3.0}$	-	-
	Vh	-	$0.30_{-1.12}^{+1.21}$ [106]	-
	$t \bar{t} h$	$2.2{ }_{-1.3}^{+1.6}$	$-0.22_{-0.99}^{+1.26}[106]$	$1.9_{-1.2}^{+1.5}[107]$
$Z \gamma$	incl.	$1.4_{-3.2}^{+3.3}$	-	-
$Z Z^{*}$	ggh	$1.13_{-0.31}^{+0.34}$	$1.34_{-0.33}^{+0.39}$ [106]	$0.966_{-0.33}^{+0.40}[108]$
	VBF	$0.1_{-0.6}^{+1.1}$	$3.8{ }_{-2.2}^{+2.8}$ [106]	$0.67{ }^{+1.61}$ [108]
	cats.	-	-	$1.05_{-0.17}^{+0.19}[?]$
$W W^{*}$	ggh	$0.84_{-0.17}^{+0.17}$	-	
	VBF	$1.2{ }_{-0.4}^{+0.4}$	$1.7_{-0.9}^{+1.1}$ [109]	-
	Wh	$1.6_{-1.0}^{+1.2}$	$3.2_{-4.2}^{+4.4}[109]$	-
	Zh	$5.9_{-2.2}^{+2.6}$	-	-
	$t \bar{t} h$	$5.0_{-1.7}^{+1.8}$	-	-
	incl.	-	-	0.3 ± 0.5 [110]
$\tau^{+} \tau^{-}$	$g g h$	$1.0_{-0.6}^{+0.6}$	-	-
	VBF	$1.3{ }_{-0.4}^{+0.4}$	-	-
	Wh	$-1.4_{-1.4}^{+1.4}$	-	-
	Zh	$2.2_{-1.8}^{+2.2}$	-	
	$t \bar{t} h$	$-1.9_{-3.3}^{+3.7}$	-	$0.72_{-0.53}^{+0.62}[?]$
$b \bar{b}$	VBF	-	$-3.9_{-2.9}^{+2.8}[111]$	$-3.7_{-2.5}^{+2.4}[112]$
	Wh	$1.0_{-0.5}^{+0.5}$	-	-
	Zh	$0.4_{-0.4}^{+0.4}$	-	-
	Vh	-	$0.21_{-0.50}^{+0.51}$ [113]	-
	$t \bar{t} h$	$1.15_{-0.94}^{+0.99}$	$2.1_{-0.9}^{+1.0}$ [114]	$-0.19_{-0.81}^{+0.80}[115]$
$\mu^{+} \mu^{-}$	incl.	$0.1_{-2.5}^{+2.5}$	$\left.<-0.1_{-1.5}^{+1.5}\right]$]	
multi- ℓ	cats.	-	$2.5_{-1.1}^{+1.3}[117]$	(1.5 ${ }_{-0.5}^{+0.5}[?]$

Run-2 results scavenged from
various conf-notes

Not using any input from differential distributions here

CMS Preliminary
$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$ $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 l$ $m_{H}=125.09 \mathrm{GeV}$

- Best fit
....... SM Expectation

$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$
CMS Preliminary
C

ATLAS Run 2

$$
\begin{aligned}
& \text { bb } \quad \mathbf{2 . 1} \begin{array}{c}
+1.0 \\
-0.9
\end{array} \quad \mathbf{- 0 . 2} \begin{array}{ccc}
+\mathbf{+ 0 . 8} & \begin{array}{c}
\text { PASHIG } \\
16-038
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \ell \\
& 4 \ell \quad 0.0^{*} \begin{array}{ccc}
+1.2^{*} & \begin{array}{c}
\text { PASHIG } \\
\hline 15-041 \\
\left(35.0^{-1}\right.
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

CMS Run 2

$+0.7$
$\begin{array}{ll}1.8 & +0.7\end{array}$
ATLAS-CONF-2016-068
(*) $-2 \Delta \operatorname{lnL}=1$ interval with $\mu \geq 0$ constraint

Run1 comb.
JHEP 08(2016) 045

$$
2.3_{-1.0}^{+1.2}
$$

AA's naive combination $\mu_{\text {tth }}=1.26 \pm 0.26$

Corrections to Higgs production from dimension-6 operators

$$
\frac{\sigma_{g g h}}{\sigma_{g g h}^{\mathrm{SM}}} \simeq 1+237 c_{g g}+2.06 \delta y_{u}-0.06 \delta y_{d}
$$

$$
\begin{aligned}
\frac{\sigma_{V B F}}{\sigma_{V B F}^{\mathrm{SM}}} \simeq & 1+1.49 \delta c_{w}+0.51 \delta c_{z}-\left(\begin{array}{c}
1.08 \\
1.11 \\
1.23
\end{array}\right) c_{w \square}-0.10 c_{w w}-\left(\begin{array}{l}
0.35 \\
0.35 \\
0.40
\end{array}\right) c_{z \square} \\
& -0.04 c_{z z}-0.10 c_{\gamma \square}-0.02 c_{z \gamma} \\
\rightarrow & 1+2 \delta c_{z}-2.25 c_{z \square}-0.83 c_{z z}+0.30 c_{z \gamma}+0.12 c_{\gamma \gamma}
\end{aligned}
$$

gluon fusion

$$
\begin{aligned}
\frac{\sigma_{W h}}{\sigma_{W h}^{\mathrm{SM}}} & \simeq 1+2 \delta c_{w}+\left(\begin{array}{c}
6.39 \\
6.51 \\
6.96
\end{array}\right) c_{w \square}+\left(\begin{array}{c}
1.49 \\
1.49 \\
1.50
\end{array}\right) c_{w w} \\
& \rightarrow 1+2 \delta c_{z}+\left(\begin{array}{c}
9.26 \\
9.43 \\
10.08
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
4.35 \\
4.41 \\
4.63
\end{array}\right) c_{z z}-\left(\begin{array}{c}
0.81 \\
0.84 \\
0.93
\end{array}\right) c_{z \gamma}-\left(\begin{array}{l}
0.43 \\
0.44 \\
0.48
\end{array}\right) c_{\gamma \gamma} \\
\frac{\sigma_{Z h}}{\sigma_{Z h}^{\mathrm{SM}}} & \simeq 1+2 \delta c_{z}+\left(\begin{array}{l}
5.30 \\
5.40 \\
5.72
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
1.79 \\
1.80 \\
1.82
\end{array}\right) c_{z z}+\left(\begin{array}{c}
0.80 \\
0.82 \\
0.87
\end{array}\right) c_{\gamma \square}+\left(\begin{array}{l}
0.22 \\
0.22 \\
0.22
\end{array}\right) c_{z \gamma} \\
& \rightarrow 1+2 \delta c_{z}+\left(\begin{array}{c}
7.61 \\
7.77 \\
8.24
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
3.31 \\
3.35 \\
3.47
\end{array}\right) c_{z z}-\left(\begin{array}{c}
0.58 \\
0.60 \\
0.65
\end{array}\right) c_{z \gamma}+\left(\begin{array}{l}
0.27 \\
0.28 \\
0.30
\end{array}\right) c_{\gamma \gamma}
\end{aligned}
$$

Corrections to Higgs decays from dimension- 6 operators

Decays to 2 fermions

$$
\frac{\Gamma_{c c}}{\Gamma_{c c}^{S M}} \simeq 1+2 \delta y_{u}, \quad \frac{\Gamma_{b b}}{\Gamma_{b b}^{S M}} \simeq 1+2 \delta y_{d}, \quad \frac{\Gamma_{\tau \tau}}{\Gamma_{\tau \tau}^{S M}} \simeq 1+2 \delta y_{e},
$$

Decays to 4 fermions

$$
\begin{aligned}
\frac{\Gamma_{2 \ell 2 \nu}}{\Gamma_{2 \ell 2 \nu}^{S M}} & \simeq 1+2 \delta c_{w}+0.46 c_{w \square}-0.15 c_{w w} \\
& \rightarrow 1+2 \delta c_{z}+0.67 c_{z \square}+0.05 c_{z z}-0.17 c_{z \gamma}-0.05 c_{\gamma \gamma} .
\end{aligned}
$$

$$
\begin{align*}
\frac{\bar{\Gamma}_{4 \ell}}{\bar{\Gamma}_{4 \ell}^{S M}} & \simeq 1+2 \delta c_{z}+\binom{0.41}{0.39} c_{z \square}-\binom{0.15}{0.14} c_{z z}+\binom{0.07}{0.05} c_{z \gamma}-\binom{0.02}{0.02} c_{\gamma \square}+\binom{<0.01}{0.03} c_{\gamma \gamma} \\
& \rightarrow 1+2 \delta c_{z}+\binom{0.35}{0.32} c_{z \square}-\binom{0.19}{0.19} c_{z z}+\binom{0.09}{0.08} c_{z \gamma}+\binom{0.01}{0.02} c_{\gamma \gamma} . \tag{4.13}
\end{align*}
$$

$$
\begin{array}{ll}
\hat{c}_{\gamma \gamma} & \approx c_{\gamma \gamma}-0.11 \delta c_{z}+0.02 \delta y_{u},
\end{array} \quad c_{\gamma \gamma}^{\mathrm{SM}} \simeq-8.3 \times 10^{-2}, ~ 子 c_{z \gamma}-0.06 \delta c_{z}+0.003 \delta y_{u}, \quad c_{z \gamma}^{\mathrm{SM}} \simeq-5.9 \times 10^{-2},
$$

Combined constraints from LHC Higgs and electroweak precision constraints

$\left(\begin{array}{c}\delta c_{z} \\ c_{z z} \\ c_{z \square} \\ c_{\gamma \gamma} \\ c_{z \gamma} \\ c_{g g} \\ \delta y_{u} \\ \delta y_{d} \\ \delta y_{e} \\ \lambda_{z}\end{array}\right)=\left(\begin{array}{c}-0.07 \pm 0.09 \\ 0.11 \pm 0.29 \\ -0.06 \pm 0.13 \\ 0.0024 \pm 0.0071 \\ -0.019 \pm 0.060 \\ -0.0017 \pm 0.0009 \\ -0.02 \pm 0.13 \\ -0.40 \pm 0.19 \\ -0.18 \pm 0.14 \\ -0.058 \pm 0.043\end{array}\right)$

Correlation matrix available

- Overall SM is very good (too good?) fit, no evidence or even hint of $D=6$ operators
- Some tension in global fit due to deficit in the bb decay, but mostly gone after Moriond
- Decrease in bb needs to be compensated by negative contributions to Higgs-gluon couplings, to avoid overshooting YY, WW, and ZZ channels
- Constraints on Higgs couplings and vertex corrections to be constantly updated (more results are coming)
- Model-independent tree-level constraints on remaining dimension -6 operators
- Interfacing likelihoods to Rosetta

- Additional constraints from Higgs differential distributions (once better statistics available)
- Electroweak precision constraints including 1-loop corrections from dimension-6 operators
- Experimental identification of deviations from SM and of interpreting them in language of dimension-6 operators in SM EFT. Using this, pinpointing scale and form of new physics, so as to create a beacon for next generation experiments

[^0]: Tuesday, April 11, 17

