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SM has been shamelessly successful in describing all collider and low-
energy experiments. Discovery of 125 GeV Higgs boson is last piece of 
puzzle that falls into place. No more free parameters in SM

We know physics beyond SM exists (neutrino masses, dark matter, inflation, 
baryon asymmetry).  There are also some theoretical hints for new physics 
(strong CP problem, flavor hierarchies, gauge coupling unifications, 
naturalness problem)

Models addressing naturalness problem (supersymmetry, composite Higgs, ...) 
make very definite predictions about new particles and interactions that 
should become visible around 1 TeV energy scale. But there isn’t one model 
or class of models that is strongly preferred, and all existing models 
addressing naturalness have certain tensions that cast doubt on whether 
they really describe nature 

We need to keep open mind on many possible forms of new physics that 
may show up in experiment. This requires model independent approach to 
complete other model-dependent searches  

Status report
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Fantastic Beasts and Where To Find Them
CMS

Imaginary  

Λ

x) It looks more and more likely that new degrees of freedom beyond the SM may not 
be directly available at the LHC or even at future colliders

x) However, even if it is not possible to see the head, it may be possible to see the tail...
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Assume that the SM degrees of freedom is all there is at the weak scale. But we 
treat the SM as an EFT, and call it the SM EFT

In the SM EFT, the SM Lagrangian is treated as the lowest order approximation of 
the dynamics. Effects of heavy particles are encoded in new contact interactions of 
the SM fields in the Lagrangian

The SM EFT Lagrangian can be defined as an expansion in the inverse mass scale of 
heavy particles, which coincides with the expansion in operator dimensions  

Under certain (mild) assumptions, the SM EFT framework  allows one to describe 
effects of new physics beyond the SM in a model independent way

SM EFT

+
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SM EFT Approach to BSM
Much as in SM, relativistic QFT with linearly realized SU(3)xSU(2)xU(1) local 
symmetry spontaneously broken by VEV of Higgs doublet field

Mass scale Λ of new particles separated from characteristic energy scale E of 
experiment, Λ >> E, such that experimental observables can be expanded in 
powers of E/Λ

Basic assumptions

SM EFT Lagrangian  expanded in inverse powers of Λ, equivalently in operator dimension D 

X X X
Lepton number or B-L violating, 

hence too small to probed at present  
and near-future colliders

By assumption, 
subleading

to D=6

Generated by integrating out 
heavy particle with mass scale Λ
In large class of BSM models, 

describe leading effects of new physics
on collider observables at E << Λ

Buchmuller,Wyler
 (1986)
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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Warsaw basis for B-conserving D=6 operators
Grządkowski et al.
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This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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Framework general enough to describe leading effects of a large class (though not 
all!) of BSM scenarios

Very easy to recast SM EFT results as constraints on specific BSM models 

Theoretical correlations between signal and background and different signal 
channels taken into account

SM EFT is consistent QFT, so that calculations and predictions can be systematically 
improved (higher-loops, higher order terms in EFT expansion if needed). In 
particular, SM EFT is renormalizable at each order in 1/Λ expansion

Some tools to assess validity of 1/Λ expansion 

Advantages of SM EFT 
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I will discuss experimental 
constraints on dimension-6 operators 

The goal is to obtain a likelihood 
function for all Wilson coefficients of 
dimension-6 operators that includes 
correlations

Ideally, we want to be totally 
agnostic, and allow all independent 
dimension-6 operators to be 
simultaneously present.  Also, results 
are basis-independent only if all 
non-redundant operators are taken 
into account

Different BSM theories correspond 
to different patterns of dimension-6 
operators. Identifying that pattern, 
we can get some idea about the 
shape of the theory that completes 
the SM at high energies   

In the rest of this talk...

Efrati,AA,Soreq
1503.07782

Based on
AA,Riva

1411.0669
AA,Mimouni
1511.07434

AA,Mimouni,
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to appear

See also e.g.

Han,Skiba
 hep-ph/0412166

Pioneered by

de Blas et al
1608.01509

Berthier Trott
1508.05060

Ellis et al
1410.7703

Corbett et al
1505.05516
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Operators to Observables

Two kinds of effects

New interactions
not present in 
SM Lagrangian

Corrections to 
SM couplings

Simple, just plug in 
mass eigenstates 

into D=6 operators 

Several subtleties,
careful treatment

required

e.g.
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Operators to Observables
More non-trivial effects D=6 operators

Change normalization of kinetic 
terms

Affect relations between couplings 
and input observables

Introduce non-standard higher-
derivative kinetic terms

Introduce kinetic mixing 
between photon 
and Z boson

e.g.

e.g.

e.g.
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In SM, the values of SU(2)xU(1) couplings gL, gY, and the Higgs 
vacuum expectation value v are a-priori free parameters. 

To assign numerical values, we need to  express 3 precisely 
measured observables in terms of these parameters.  The 
common choice is GF (extracted from muon decay rate), α(0) 
(extracted from Thomson scattering), and mZ (measured at 
LEP-1).

At tree-level there is a simple relation between these 3 
parameters and 3 observables. Of course, one needs to also 
take into account loop corrections, which introduce dependence 
on top mass, Higgs mass and strong coupling. 

Dimension-6 operators will disturb these relations already at 
tree level. Thus, in SM EFT with dimension-6 operators the 
meaning of gL, gY, v is different, which affects predictions for 
all SM observables. 

SM input parameters
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SM input parameters

below gets slightly more complicated when we take that into account, and the details

of that procedure can be found, for example, in several studies[3, 4]. However, this

is special to the W± bosons (gauge degree of freedom partners of the W 3). In new

physics scenarios (e.g., supersymmetry) there are no additional one-loop contributions

to ΠγZ(0), and it is usually appropriate in analyses of beyond-the-SM contributions

to precision EW observables to ignore it.

3.1 Theoretical predictions for observables at one loop

The computation of the Z and W masses is straightforward. The resulting theoretical

prediction of mZ and mW in terms of the lagrangian parameters and the one-loop

self-energy corrections is

(m̂Z)th =
e2v2

4s2c2
+ ΠZZ(m2

Z) (28)

(m̂W )th =
e2v2

4s2
+ ΠWW (m2

W ) (29)

We next compute the theory prediction for α. It sounds odd to use the words

“theory prediction of α” since we often are sloppy in our wording (or thinking) and

view α as just a coupling. In reality, it is an observable defined in the Thomson limit

of Compton scattering and probes the Coulomb potential at q2 → 0:

+
Aµ Aµ Aµ

which is proportional to

− i
4πα̂

q2

∣

∣

∣

∣

∣

q2→0

=
−ie2

q2

[

1 +
Πγγ(q2)

q2

]

q2→0

(30)

If we define

Π′

γγ(0) ≡ lim
q2→0

Πγγ(q2)

q2
(31)

then we can write the theory prediction for α as

(α̂)th =
e2

4π

(

1 + Π′

γγ(0)
)

(32)

The muon decay observable ĜF is computed from the lifetime of the muon

8

µ−
W−

+

which is proportional to ĜF /
√

2. This amplitude is then used to compute the muon

lifetime

τ−1
µ =

Ĝ2
Fm5

µ

192π3
K(α, me, mµ, mW ) (33)

where the function K is mainly a kinematics function and can be obtained from the

electroweak chapter in the PDG[1]. The theory prediction for ĜF is

(ĜF )th

√
2

=
g2

8m2
W

[

1 + iΠWW (q2)

(

−i

q2 − m2
W

)]

q→0

=
1

2v2

[

1 −
ΠWW (0)

m2
W

]

. (34)

The observable associated with ŝ2
eff is a little trickier than the other ones. For one,

there are many different types of ŝ2
eff observables, depending on the final state fermion.

We will define ŝ2
eff to be the observable associated with the left-right asymmetry of Z

decays to leptons. We assume universality of the leptons. The left-right asymmetry is

defined to be the Z-pole production cross-section asymmetry of leptons produced from

left polarized electron-positron collisions versus those produced from right polarized

collisions,

Al
LR =

σL − σR

σL + σR

≡
c2
L − c2

R

c2
L + c2

R

(35)

where at tree-level the cL and cR couplings are defined by

iγµ(cLPL + cRPR)
f

f̄
Zµ

and

cL =
e

sc
(T 3 − Qs2) and cR = −

−eQs2

sc
(36)

9

ie
s
√

2
γµPL

ie
sc

γµ

[

(T 3
f − Qfs2)PL − Qfs2PR

]

ieQfγµ

f

f̄

f

f̄

µ−

ν̄

Aµ

Zµ

W−
µ

By convention the one-loop corrections to the vector boson self-energies

Vµ V ′
µ

q −→

is of the form

i[ΠV V ′(q2)gµν − ∆V V ′(q2)qµqν ]. (25)

Only the ΠV V ′ piece of the self-energies matters for our analysis since the qµ part

of the second term is dotted into a light-fermion current and is zero by the Dirac

equation, since the corresponding fermion masses is well-approximated to be zero:

qµJ light fermion
µ → f̄γµqµf → f̄mf → 0. (26)

The way the self-energies are defined, they add to the vector boson masses by con-

vention:

m2
V → m2

V + ΠV V (q2 = m2
V ) (27)

Because the photon is massless we know that Πγγ(0) = 0 and ΠγZ(0) = 0, and so

we do not have to compute them. There is one subtlety to keep in mind. ΠγZ(0) is

not zero when the W± bosons is included in the loop. The procedure that we outline
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General deformations of SM EW Lagrangian include oblique and vertex corrections

where the SM prediction is quoted as C

SM
2u = �0.0360, CSM

2d = 0.0265. This can be
naively combined as

�C2u � �C2d = �0.008± 0.045. (2.13)

It seems the error is not terribly bigger than that from PVDIS measurement of 2�C2u �
�C2d... so why did PDG leave this out from their combination?

Combining PDG and SAMPLE, we can now get a constraint on all 4 weak charges
Ciq:

0

BB@

�C1u

�C1d

�C2u

�C2d

1

CCA =

0

BB@

0.0033± 0.0054
�0.0047± 0.0051
�0.041± 0.081
�0.032± 0.11

1

CCA , ⇢ =

0

BB@

�0.98 �0.37 �0.27
0.37 0.27

0.94

1

CCA .

(2.14)

3 Coupling redefinitions

3.1 Electroweak parameters

In the SM the values of the electroweak parameters gL, gY , and v are customarily
extracted from 3 precisely measured observables: GF (which in turn parametrizes the
muon lifetime measurement), ↵(0) and m

2
Z(mZ). In the SM at tree level we have

p
2GF =

1

v

2
, ↵ =

g

2
Lg

2
Y

4⇡(g2L + g

2
Y )

, m

2
Z =

(g2L + g

2
Y )v

2

4
. (3.1)

Beyond the SM, already at tree level these observables may depend on other parameters
of the theory. Moreover, in the SM itself at loop level these observables depend on other
SM parameters and on the regularization scheme. Once this is taken into account, the
relation between the observables and the SM parameters becomes more involved, as we
discuss below.

Let us parametrize the Fourier-transformed kinetic terms of the gauge boson as

⌘µ⌫

✓
⇧WW (p2)W+

µ W

�
µ +

1

2
⇧ZZ(p

2)ZµZµ +
1

2
⇧��(p

2)AµAµ + ⇧Z�(p
2)ZµAµ

◆
+pµp⌫(. . . )

(3.2)
For a canonically normalized gauge field we have ⇧V V = m

2
V �p

2. The form factors may
represent SM loop corrections or BSM tree- or loop-level corrections. Next, we allow
the couplings of the W and Z bosons to fermions to be shifted from the SM value. We
parametrize the interactions between the electroweak gauge bosons and fermions as

L � gL,0gY,0q
g

2
L,0 + g

2
Y,0

Aµ

X

f

Qf (ēI �̄µeI + e

c
I�µē

c
I)

+

"
[gWe

L ]IJp
2

W

+
µ ⌫̄I �̄µeJ +W

+
µ

[gWq
L ]IJp
2

ūI �̄µdJ +
[gWq

R ]IJp
2

W

+
µ u

c
I �̄µd̄

c
J + h.c.

#

+ Zµ

X

f=u,d,e,⌫

[gZf
L ]IJ f̄I �̄µfJ + Zµ

X

f=u,d,e

[gZf
R ]IJf

c
I �̄µf̄

c
J . (3.3)
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2u = �0.0360, CSM
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extracted from 3 precisely measured observables: GF (which in turn parametrizes the
muon lifetime measurement), ↵(0) and m

2
Z(mZ). In the SM at tree level we have

p
2GF =

1

v

2
, ↵ =

g

2
Lg

2
Y

4⇡(g2L + g

2
Y )

, m

2
Z =

(g2L + g

2
Y )v

2

4
. (3.1)
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of the theory. Moreover, in the SM itself at loop level these observables depend on other
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discuss below.

Let us parametrize the Fourier-transformed kinetic terms of the gauge boson as

⌘µ⌫

✓
⇧WW (p2)W+

µ W

�
µ +

1

2
⇧ZZ(p

2)ZµZµ +
1

2
⇧��(p

2)AµAµ + ⇧Z�(p
2)ZµAµ

◆
+pµp⌫(. . . )

(3.2)
For a canonically normalized gauge field we have ⇧V V = m

2
V �p

2. The form factors may
represent SM loop corrections or BSM tree- or loop-level corrections. Next, we allow
the couplings of the W and Z bosons to fermions to be shifted from the SM value. We
parametrize the interactions between the electroweak gauge bosons and fermions as

L � gL,0gY,0q
g

2
L,0 + g

2
Y,0

Aµ

X

f

Qf (ēI �̄µeI + e

c
I�µē

c
I)

+

"
[gWe

L ]IJp
2

W

+
µ ⌫̄I �̄µeJ +W

+
µ

[gWq
L ]IJp
2

ūI �̄µdJ +
[gWq

R ]IJp
2

W

+
µ u

c
I �̄µd̄

c
J + h.c.

#

+ Zµ

X

f=u,d,e,⌫

[gZf
L ]IJ f̄I �̄µfJ + Zµ

X

f=u,d,e

[gZf
R ]IJf

c
I �̄µf̄

c
J . (3.3)
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Here, gL,0, gY,0 are the gauge couplings of the SU(2)L ⇥ U(1)Y local symmetry. The
subscript zero is to mark that they are not related to the input observables by the
relations in Eq. (3.1), even at tree level. The SM fermions fJ , f c

J are in the basis where
the mass terms are diagonal, and then the unitary CKM matrix V0 enters through the
quark doublets as qI = (uI , VIJ,0dJ). The gauge coupling strength are parametrized as

[gWe
L ]IJ = gL,0

�
�IJ + [�gWe

L ]IJ
�
,

[gWq
L ]IJ = gL,0

⇣
[V ]IJ,0 + [�gWq

L ]IJ
⌘
,

[gWq
R ]IJ = [�gWq

R ]IJ

[gZf ]IJ =
q

g

2
L,0 + g

2
Y,0

 
T

f
3 �Qf

g

2
Y,0

g

2
L,0 + g

2
Y,0

+ [�gZf ]IJ

!
. (3.4)

In the SM limit all �g vanish, and then Eq. (3.1) is recovered at tree level. Finally, we
also allow for new contributions to observables from 4-fermion operators. I will use the
notation similar to that in the Warsaw basis, expect that the index (1) is dropped.

Now I discuss how the observables GF , ↵(0) and m
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This shows that in the presence of new physics the values of the parameters v0, gL,0, gY,0
have to be modified with respect to the SM. However, it is more convenient to absorb
these corrections by redefining the parameters as

v0 = v(1 + �v), gL,0 = gL(1 + �gL), gY,0 = gY (1 + �gY ), (3.8)
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In the SM limit all �g vanish, and then Eq. (3.1) is recovered at tree level. Finally, we
also allow for new contributions to observables from 4-fermion operators. I will use the
notation similar to that in the Warsaw basis, expect that the index (1) is dropped.
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This shows that in the presence of new physics the values of the parameters v0, gL,0, gY,0
have to be modified with respect to the SM. However, it is more convenient to absorb
these corrections by redefining the parameters as
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Then input observables are modified as

Valid in general for SM EFT or for SM loop corrections
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SM input parameters

Here, gL,0, gY,0 are the gauge couplings of the SU(2)L ⇥ U(1)Y local symmetry. The
subscript zero is to mark that they are not related to the input observables by the
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In the SM limit all �g vanish, and then Eq. (3.1) is recovered at tree level. Finally, we
also allow for new contributions to observables from 4-fermion operators. I will use the
notation similar to that in the Warsaw basis, expect that the index (1) is dropped.

Now I discuss how the observables GF , ↵(0) and m

2
Z(mZ) are related at tree level to

the parameters of such an extension of the SM. We have

2
p
2GF =

g

We
L g

Wµ
L

2⇧WW (0)
� [c``]1221 � 2[c(3)`` ]1122,

↵(0) =
g

2
L,0g

2
Y,0

4⇡(g2L,0 + g

2
Y,0)

�1

⇧0
��(0)

,

m

2
Z(mZ) = ⇧ZZ(m

2
Z). (3.5)

Here [c(3)`` ]IIJJ/v
2 multiplies the 4-fermion operator (¯̀I �̄µ�

i
`I)(¯̀J �̄µ�

i
`J) in the Lagrangian.

Let us now assume that the propagators and couplings are close to the SM ones,

⇧WW =
g

2
L,0v

2
0

4
� p

2 + �⇧WW (p2),

⇧ZZ =
(g2L,0 + g

2
Y,0)v

2
0

4
� p

2 + �⇧ZZ(p
2),

⇧�� = �p

2 + �⇧��(p
2),

g

Wf
L = gL,0(1 + �g

Wf
L ), (3.6)

and expand Eq. (3.5) to the linear order in the deformations:

2
p
2GF ⇡ 2

v

2
0

✓
1� �⇧WW (0)

m

2
W

+ �g

We
L + �g

Wµ
L � 1

2
[c``]1221 � [c(3)`` ]1122

◆
,

↵(0) =
g

2
L,0g

2
Y,0

4⇡(g2L,0 + g

2
Y,0)

�
1 + �⇧0

��(0)
�
,

m

2
Z(mZ) =

(g2L,0 + g

2
Y,0)v

2
0

4
+ �⇧ZZ(m

2
Z). (3.7)

This shows that in the presence of new physics the values of the parameters v0, gL,0, gY,0
have to be modified with respect to the SM. However, it is more convenient to absorb
these corrections by redefining the parameters as
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For small deformations we approximate

We can then absorb new physics corrections 
into redefined parameters gL, gY, v
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In the SM limit all �g vanish, and then Eq. (3.1) is recovered at tree level. Finally, we
also allow for new contributions to observables from 4-fermion operators. I will use the
notation similar to that in the Warsaw basis, expect that the index (1) is dropped.
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This shows that in the presence of new physics the values of the parameters v0, gL,0, gY,0
have to be modified with respect to the SM. However, it is more convenient to absorb
these corrections by redefining the parameters as

v0 = v(1 + �v), gL,0 = gL(1 + �gL), gY,0 = gY (1 + �gY ), (3.8)
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such that v, gL, gY satisfy Eq. (3.1). This is achieved by the following redefinition
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The rationale to do this redefinition is that the observables on the left-hand side in
Eq. (3.1) are measured with a fantastic precision (especially GF and ↵ but also mZ is
known an order of magnitude more precisely than typical electroweak observables). If we
worked with the original parameters, we would have to add them to the fit together with
the new physics parameters. Then GF and ↵ and mZ would impose highly constraints
on v0, gL,0, and gY,0 which would be highly correlated with the constraints on the new
physics parameters. It is more transparent and more practical to do the redefinition
in Eq. (3.8) and Eq. (3.9), assign the SM values to v, gL, and gY , remove GF , ↵, mZ

from the set of observables we fit to, and fit just the new physics parameters to other
observables

We can apply Eq. (3.9) to the SM EFT with dimension-6 operators. For example,

in the Higgs basis formalism one has �⇧�� = �⇧ZZ = [c(3)`` ]1122 = 0, and �⇧WW/m

2
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�g

We
L +�g
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L �[c``]1221/2. Thus the redefinitions are moot because the parameters v0, gL,0,

and gY,0 already (by construction) satisfy Eq. (3.1). Typically however the redefinitions
are non-trivial. For example, in the Warsaw basis one finds
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(3.10)

3.2 CKM angels

The CKM matrix elements VIJ are also the SM free parameters who values need to be
fixed from experiment. As for the electroweak parameters, the new physics corrections
enter the observables that determine the CKM parameters, therefore the latter must take
di↵erent values than in the SM. It is therefore desirable to redefine the CKM parameters
so as to absorb the new physics corrections and bring the interpretation of VIJ closer to
the SM. The rationale for doing so is less compelling than for the electroweak parameters
for 2 reasons. Firstly, for the SM CKM parameters the precision of their determination
is not much better than the constraints on new physics parameters, so there is less

8

Redefined gL, gY, v  are 
connected the same way 
to the input observables 

as in the SM 
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Tree-level renormalization in SM EFT

fix the parameters of the rescaling in Eq. (2.20) at O(⇤�2):
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The condition #5 fixes the free parameters of Eq. (2.21)
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⇣
4gLcHWB + gY (cHD + 2[c(3)H`]22 + 2[c(3)H`]22 � [c``]1221)

⌘
,

xZW = �
p
g2L + g2Y

4(g2L � g2Y )

⇣
4gY cHWB + gL(cHD + 2[c(3)H`]22 + 2[c(3)H`]22 � [c``]1221)

⌘
,

xW = � gL
4(g2L � g2Y )

⇣
4gY cHWB + gL(cHD + 2[c(3)H`]22 + 2[c(3)H`]22 � [c``]1221)

⌘
.

(2.28)

The condition #6 is automatic in the Warsaw basis, although this is not the case in

some other bases, e.g. in the SILH basis. Once the conditions #1-#6 are imposed,

the link between the Lagrangian parameters and physical observables becomes much

more transparent.
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Chapter II.3 of HDR 

From this moment on
scale Λ absorbed into 
Wilson coefficients

!

such that 
Wilson coefficients

should be considered
of order 1/Λ^2

Rescaling of fields and couplings at order 1/Λ^2

dimensional operators reside (almost) exclusively in the interaction terms of the SM

mass eigenstates. This can be achieved by using the freedom to redefine the fields

and couplings of the theory. I will apply the following redefinitions:7

Ga
µ ! (1 + �G)Ga

µ, Aµ ! Aµ(1 + �AA) + �AZZµ, Zµ ! Zµ(1 + �ZZ), W±
µ ! W±

µ (1 + �W ) ,

gs ! gs (1 + �gs) , gL ! gL (1 + �gL) , gY ! gY (1 + �gY ) , v ! v (1 + �v) ,

h! (1 + �h1)h+ �h2h2 + �h3h3, �! � (1 + ��) . (2.20)

The parameters �i are O(⇤�2). Since O(⇤�4) terms in the Lagrangian are ignored,

these redefinitions need to be applied only to the SM Lagrangian. Furthermore, I

will use the equations of motion Eq. (2.10) to reshu✏e certain O(⇤�2) interaction

terms in the mass eigenstate Lagrangian. To this end, I add to the Lagrangian terms

vanishing by the equations of motion.

Leom =

✓
2h

v
+

h2

v2

◆
xZBZµ

✓
@⌫B⌫µ +

igY
2

H† !DµH + gY j
Y
µ

◆

+xZWZµ

✓
D⌫W

3
⌫µ +

i

2
gLH

†�3 !DµH + gLj
3
µ

◆

+
2X

i=1

xWW i
µ

✓
D⌫W

i
⌫µ +

i

2
gLH

†�i !DµH + gLj
i
µ

◆#
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Finally, I will perform integration by parts of various terms in the Lagrangian. It

should be stressed that these operations do not change the physical content of the

theory. They merely allow one to bring the theory to a more convenient form to

perform practical calculations. I fix the free parameters in Eq. (2.20) and Eq. (2.21)

by demanding that the mass eigenstate Lagrangian has the following features:

7As explained below Eq. (2.17), the contributions of the D=6 Yukawa operators to the fermion
mass terms are already taken into account in the choice of the fermion mass eigenstate basis.
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Conceptually, similar to renormalization of couplings and fields 
to absorb effects of  loop corrections in SM 
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make all kinetic terms standard and canonically normalized

ensure same tree level relations between SM parameters gs, gL, gY, v 
and input observables mZ, GF, α, αs 

impose certain convenient convention choices (e.g. lack of derivative Higgs 
boson self-interactions)

terms in the mass eigenstate Lagrangian. To this end, I add to the Lagrangian terms

vanishing by the equations of motion.
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Finally, I will perform integration by parts of various terms in the Lagrangian. It

should be stressed that these operations do not change the physical content of the

theory. They merely allow one to bring the theory to a more convenient form to

perform practical calculations. I fix the free parameters in Eq. (2.20) and Eq. (2.21)

by demanding that the mass eigenstate Lagrangian has the following features:

#1 The kinetic terms are diagonal and canonically normalized:
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f̄ �̄µ@µf + i
X

f2u,d,e

f c�µ@µf̄
c �

X

f2u,d,e

(mfff
c + h.c.) . (2.22)

The only departure from the SM kinetic terms is the relative correction to the

W boson mass, denoted as �m.

#2 Tree-level relations between the input observables ↵, mZ , ⌧µ and the SM pa-

rameters gL, gY , v in the Lagrangian are given by

↵ =
g2Lg

2
Y

4⇡(g2L + g2Y )
, mZ =

p
g2L + g2Y v

2
, ⌧µ =

384⇡3v4

m5
µ

. (2.23)
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Using freedom to redefine fields and couplings, at order 1/Λ^2 one can:

Tree-level renormalization

#1 The kinetic terms are diagonal and canonically normalized:

Lkinetic = �1

2
W+

µ⌫W
�
µ⌫ �

1

4
Zµ⌫Zµ⌫ � 1

4
Aµ⌫Aµ⌫ � 1

4
Ga

µ⌫G
a
µ⌫

+
g2Lv

2

4
(1 + �m)2 W+

µ W�
µ +

(g2L + g2Y )v
2

8
ZµZµ +

1

2
@µh@µh� �v2h2

+ i
X

f2q,`

f̄ �̄µ@µf + i
X

f2u,d,e

f c�µ@µf̄
c �

X

f2u,d,e

(mfff
c + h.c.) . (2.22)

The only departure from the SM kinetic terms is the relative correction to the

W boson mass, denoted as �m.

#2 Tree-level relations between the input observables ↵, mZ , ⌧µ and the SM pa-

rameters gL, gY , v in the Lagrangian are given by

↵ =
g2Lg

2
Y

4⇡(g2L + g2Y )
, mZ =

p
g2L + g2Y v

2
, ⌧µ =

384⇡3v4

m5
µ

. (2.23)

#3 All self-interaction terms of the Higgs boson do not contain derivatives:

Lh,self = ��v (1 + ��3)h
3 � �

4
(1 + ��4)h

4 � ��5
�

v
h5 � ��6

�

v2
h6, (2.24)

and the 2- or higher-derivative self-interactions (such as e.g. h(@µh)2) are absent.

#4 Non-derivative interactions of the SM gauge bosons and fermions take the form:

Lvff = eAµ

X

f2u,d,e

Qf

�
f̄ �̄µf + f c�µf̄

c
�
+ gsG

a
µ

X

f2u,d

�
f̄ �̄µT

af + f c�µT
af̄ c

�
,

+
gLp
2

⇣
W+

µ ⌫̄�̄µ(I+ �gW `
L )e+W+

µ ū�̄µ(VCKM + �gWq
L )d+W+

µ uc�µ�g
Wq
R d̄c + h.c.

⌘

+
q
g2L + g2YZµ

"
X

f2u,d,e,⌫

f̄ �̄µ(T
3
f � s2✓Qf + �gZf

L )f +
X

f2u,d,e

f c�µ(�s2✓Qf + �gZf
R )f̄ c

#
,

(2.25)
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⊂

Once tree-level renormalization is performed, 
effects of dimension-6 operators are visible more intuitively
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Corrections to SM Z and W 
boson couplings to fermions 
(so-called vertex corrections) 

Corrections to SM Higgs 
couplings to matter and new 
tensor structures of these 
interactions

Corrections to triple and 
quartic gauge couplings and 
new tensor structures of 
these interactions  

Contact 4-fermion 
interactions

... and much more 

Observable effects of D=6 operators

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4

Important: correlations 
between different 

parameters describing 
deviations from SM
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Constraints from 
pole precision
observables 
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Z-pole observables 
Observable Experimental value Ref. SM prediction Definition

�Z [GeV] 2.4952± 0.0023 [21] 2.4950
P

f �(Z ! ff̄)

�had [nb] 41.541± 0.037 [21] 41.484 12⇡
m2

Z

�(Z!e+e�)�(Z!qq̄)
�2
Z

Re 20.804± 0.050 [21] 20.743
P

q �(Z!qq̄)

�(Z!e+e�)

Rµ 20.785± 0.033 [21] 20.743
P

q �(Z!qq̄)

�(Z!µ+µ�)

R⌧ 20.764± 0.045 [21] 20.743
P

q �(Z!qq̄)

�(Z!⌧+⌧�)

A0,e
FB 0.0145± 0.0025 [21] 0.0163 3

4
A2

e

A0,µ
FB 0.0169± 0.0013 [21] 0.0163 3

4
AeAµ

A0,⌧
FB 0.0188± 0.0017 [21] 0.0163 3

4
AeA⌧

Rb 0.21629± 0.00066 [21] 0.21578 �(Z!bb̄)P
q �(Z!qq̄)

Rc 0.1721± 0.0030 [21] 0.17226 �(Z!cc̄)P
q �(Z!qq̄)

AFB
b 0.0992± 0.0016 [21] 0.1032 3

4
AeAb

AFB
c 0.0707± 0.0035 [21] 0.0738 3

4
AeAc

Ae 0.1516± 0.0021 [21] 0.1472
�(Z!e+Le�L )��(Z!e+Re�R)

�(Z!e+e�)

Aµ 0.142± 0.015 [21] 0.1472
�(Z!µ+

Lµ�
L )��(Z!e+µ µ�

R)

�(Z!µ+µ�)

A⌧ 0.136± 0.015 [21] 0.1472
�(Z!⌧+L ⌧�L )��(Z!⌧+R ⌧�R )

�(Z!⌧+⌧�)

Ab 0.923± 0.020 [21] 0.935 �(Z!bLb̄L)��(Z!bRb̄R)

�(Z!bb̄)

Ac 0.670± 0.027 [21] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [22] 0.935 �(Z!sLs̄L)��(Z!sRs̄R)
�(Z!ss̄)

Ruc 0.166± 0.009 [23] 0.1724 �(Z!uū)+�(Z!cc̄)
2
P

q �(Z!qq̄)

µttZ 0.81± 0.24 [24,25] 1.00
(gZt

L )2+(gZt
R )2

(gZu
L,SM)2+(gZu

R,SM)2

Table 1: Z boson pole observables. The experimental errors of the observables between the
double lines are correlated, which is taken into account in the fit. The results for Ae,µ,⌧ listed above
come from the combination of leptonic polarization and left-right asymmetry measurements at the
SLD; we also include the results A⌧ = 0.1439± 0.0043, Ae = 0.1498± 0.0049 from tau polarization
measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from
GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings
to light quarks in D0 [26].

6
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W-pole observables 

Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [27] 80.364 gLv
2

(1 + �m)

�W [GeV] 2.085± 0.042 [23] 2.091
P

f �(W ! ff 0)

Br(W ! e⌫) 0.1071± 0.0016 [28] 0.1083 �(W!e⌫)P
f �(W!ff 0)

Br(W ! µ⌫) 0.1063± 0.0015 [28] 0.1083 �(W!µ⌫)P
f �(W!ff 0)

Br(W ! ⌧⌫) 0.1138± 0.0021 [28] 0.1083 �(W!⌧⌫)P
f �(W!ff 0)

RWc 0.49± 0.04 [23] 0.50 �(W!cs)
�(W!ud)+�(W!cs)

R� 0.998± 0.041 [29] 1.000 gWq3
L /gWq3

L,SM

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are
correlated. For the theoretical predictions of mW and �W , we use the best fit SM values from
GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

where ��2
ij = [�Oi⇢ij,exp�Oj]�1 is calculated from the known experimental errors �Oi and their

correlations ⇢ij,exp (whenever they are quoted). Minimizing �2 with respect to �g we obtain the
following central values and 1 � errors:

[�gWe
L ]ii =

0

@
�1.01± 0.64
�1.37± 0.59
1.95± 0.79

1

A·10�2, [�gZe
L ]ii =

0

@
�0.22± 0.28
0.1± 1.2
0.18± 0.58

1

A·10�3, [�gZe
R ]ii =

0

@
�0.33± 0.27
0.0± 1.4
0.42± 0.62

1

A·10�3,

(3.4)

[�gZu
L ]ii =

0

@
�0.8± 3.1
�0.17± 0.31
�0.3± 3.8

1

A · 10�2, [�gZu
R ]ii =

0

@
1.3± 5.1

�0.37± 0.52
8± 14

1

A · 10�2, (3.5)

[�gZd
L ]ii =

0

@
�1.0± 4.4
0.9± 2.8
0.33± 0.17

1

A · 10�2, [�gZd
R ]ii =

0

@
2± 16

3.4± 4.9
2.30± 0.87

1

A · 10�2. (3.6)

The 21⇥ 21 correlation matrix ⇢ is shown in Fig 1.
Using these central values �g0, uncertainties �g� and the correlation matrix ⇢ one can re-

construct the dependence of the global �2 function on the vertex corrections: �2 =
P

ij[�g �
�g0]i�

�2
ij [�g � �g0]j, where ��2

ij = [[�g�]i⇢ij[�g�]j]�1. In concrete extensions of the SM, the vertex
corrections will be functions of a (typically smaller) number of the model parameters. In this case
the global �2 function can be minimized with respect to the new parameters, and thus limits on
this particular model can be obtained.

From Eq. (3.4), corrections to the Z boson couplings to charged leptons are constrained at the
level of O(10�3). We stress that these stringent constraints are completely model independent, in
particular they are independent on whether or not flavor universality is assumed. On the other
hand, W couplings to leptons are somewhat less tightly constrained - at the level of O(10�2)
- than in the flavor universal case. Due to the relation in Eq. (2.4), the Z boson couplings to
neutrinos are constrained with the same precision. For the Z boson couplings to quarks the
situation is more complicated. Some of these couplings, specifically the ones to charm and bottom,

7
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Including leading order new physics corrections 
amount to replacing W/Z couplings to fermions by 
effective couplings, which encode the effect of 
vertex and oblique corrections

For observables with Z/W bosons on-shell, 
interference between SM amplitudes and 4-fermion 
operators is suppressed by Γ/m and can be neglected 

In my conventions,  mass eigenstate Lagrangian does 
not have oblique corrections (except for W mass 
correction) thus δg directly constrained 

On-shell Z decays: nuts and bolts

Lowest order:

w/ new physics:

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4
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After tree-level renormalization, by construction, 
photon and gluon couplings the same as in SM

Oblique corrections are redefined away, except for 
correction to W mass

Only W and Z couplings  are affected 

Effects of dimension-6 operators are parametrized by set of vertex corrections

Effects of dimension-6 operators 
on gauge coupling strength to fermions
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Z and W couplings to fermions 

Observation: vertex 
corrections are not all 
independent. Corrections to W 
vertices are determined by 
corrections to Z vertices

operators in the Warsaw basis:

�m = � g2Y
4(g2L � g2Y )


4gL
gY

cHWB +
g2L
g2Y

cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

�
, (2.30)

��3 = �1

�
cH + 3cH⇤ � 3

4
cHD +

1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22,

��4 = �6

�
cH +

50

3
cH⇤ � 25

6
cHD +

1

2
[c``]1221 � [c(3)H`]11 � [c(3)H`]22,

��5 = � 3

4�
cH + 2cH⇤ � 1

2
cHD,

��6 = � 1

8�
cH +

1

3
cH⇤ � 1

12
cHD, (2.31)

�gW `
L = c(3)H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c(3)H` �

1

2
c(1)H` + f(1/2, 0),

�gZe
L = �1

2
c(3)H` �

1

2
c(1)H` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (2.32)

�gWq
L =

⇣
c(3)Hq + f(1/2, 2/3)� f(�1/2,�1/3)

⌘
VCKM,

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c(3)Hq �

1

2
c(1)Hq + f(1/2, 2/3),

�gZd
L = �1

2
V †
CKMc

(3)
HqVCKM � 1

2
V †
CKMc

(1)
HqVCKM + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3), (2.33)

22

where

f(T 3, Q) = �I3Q
gLgY

g2L � g2Y
cHWB (2.34)

+ I3

✓
1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22 �

1

4
cHD

◆✓
T 3 +Q

g2Y
g2L � g2Y

◆
,

and I3 is the 3⇥ 3 identity matrix in the generation space.

For my precision analyses in the following chapters I will also need the terms in

the second line of Eq. (2.29). The Higgs couplings to matter are parametrized as:

Lh,matter =
h

v


(1 + �cw)

g2Lv
2

2
W+

µ W�
µ + (1 + �cz)

(g2L + g2Y )v
2

4
ZµZµ

�
X

f2u,d,e

X

IJ

p
mfImfJ

h⇣
�IJ + [�yf ]IJe

i�f
IJ

⌘
fIf

c
J + h.c.

i

+cww
g2L
2
W+

µ⌫W
�
µ⌫ + c̃ww

g2L
2
W+

µ⌫W̃
�
µ⌫ + cw⇤g

2
L

�
W�

µ @⌫W
+
µ⌫ + h.c.

�

+cgg
g2s
4
Ga

µ⌫G
a
µ⌫ + c��

e2

4
Aµ⌫Aµ⌫ + cz�

e
p

g2L + g2Y
2

Zµ⌫Aµ⌫ + czz
g2L + g2Y

4
Zµ⌫Zµ⌫

+cz⇤g
2
LZµ@⌫Zµ⌫ + c�⇤gLgYZµ@⌫Aµ⌫

+c̃gg
g2s
4
Ga

µ⌫G̃
a
µ⌫ + c̃��

e2

4
Aµ⌫Ãµ⌫ + c̃z�

e
p

g2L + g2Y
2

Zµ⌫Ãµ⌫ + c̃zz
g2L + g2Y

4
Zµ⌫Z̃µ⌫

#
,

(2.35)

where all the couplings are real, and �yf and �f are general 3⇥3 matrices. The triple

gauge couplings of electroweak gauge bosons are parametrized as

Ltgc = ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
A⌫ + igLc✓ (1 + �g1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+
µ W�

⌫ + igLc✓ (1 + �z)Zµ⌫ W
+
µ W�

⌫

+ ie(1 + ̃�)Ãµ⌫ W
+
µ W�

⌫ + igLc✓ (1 + ̃z)Zµ⌫ W
+
µ W�

⌫

+ i
��

m2
W

eW+
µ⌫W

�
⌫⇢A⇢µ + i

�z

m2
W

gLc✓W
+
µ⌫W

�
⌫⇢Z⇢µ + i

�̃�

m2
W

eW+
µ⌫W

�
⌫⇢Ã⇢µ + i

�̃z

m2
W

gLc✓W
+
µ⌫W

�
⌫⇢Z̃⇢µ

+ g3s
�g

v2
fabcGa

µ⌫G
b
⌫⇢G

c
⇢µ + g3s

�̃g

v2
fabcGa

µ⌫G
b
⌫⇢G̃

c
⇢µ, (2.36)
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Vertex corrections, when 
expressed by Wilson 
coefficients in Warsaw basis,  
somewhat counterintuitively, 
depend also on some bosonic 
and 4-fermion operators
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Analysis Assumptions
Working at order 1/Λ^2 in EFT expansion. Taking into account corrections from D=6 
operators, and neglecting D=8 and higher operators. (Only taking into account 
corrections to observables that are linear in D=6 Wilson coefficients, that is to say, only 
interference terms between SM and new physics. Quadratic corrections are formally of 
order 1/Λ^4, much as D=8 operators that are neglected.)

Working at tree-level in EFT parameters (SM predictions taken at NLO or NNLO, but 
only interference of tree-level BSM corrections with tree-level SM amplitude taken into 
account)

Allowing all dimension-6 operators to be present simultaneously with arbitrary 
coefficients (within EFT validity range). Constraints are obtained on all parameters 
affecting precision observables at tree level, and  correlations matrix is computed.

Dimension-6 operators are allowed with arbitrary flavor structure (my analysis targets 
only flavor-diagonal operators, but it’s independent of the value of flavor-off-diagonal 
Wilson coefficients)

Goal: give you full likelihood in D=6 space, that can be reused for any specific model 
predicting any particular patter of D=6 operators 
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Z coupling to charged leptons 
constrained at 0.1% level

W couplings to leptons constrained 
at 1% level

Some couplings to quarks (bottom, 
charm) also constrained at 1% level 

Some couplings very weakly 
constrained in a model-independent 
way, in particular Z couplings to 
light quarks (though some 
combinations strongly constrained) 

Pole constraints - Results
All diagonal vertex corrections except for δgWqR and δgZtR 

 simultaneously constrained in a completely  model-independent way

Efrati,AA,Soreq
1503.07872

The correlation matrix and the diagonal form are available but I won’t type it here. One
can note that these numbers are very similar to the ones obtained previously in the less-
parameter fits. This means that the assumptions made in the latter about vanishing of
certain 4-fermion operators is justified a-posteriori, as the ones assumed to vanish turn
out to be strongly constrained in the larger fit. The only tangible e↵ect of the larger fit
is that [c`eqd]2211 got disentangled from [c(3)`q ]2211, whereas in the LEFFE likelihood only
a combination of these two was constrained.

7.5 Pole Observables reloaded

Small changes wrt to Efrati et al due to entropy in the notebook (untraceable changes
of couplings etc).

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[c``]1221
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W ⌧
L

�g

Ze
L

�g

Zµ
L

�g

Z⌧
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L
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Zc
L

�g

Zt
L

�g

Zu
R

�g

Zc
R

�g

Zd
L
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Zs
L

�g

Zb
L

�g

Zd
R

�g

Zs
R
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Zb
R

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�4.8± 1.6
�1.01± 0.64
�1.36± 0.59
1.83± 0.79

�0.023± 0.028
0.01± 0.12
0.018± 0.059
�0.033± 0.027
0.00± 0.14
0.042± 0.062
�0.8± 3.1
�0.15± 0.36
�0.3± 3.8
1.3± 5.1

�0.35± 0.53
�1.0± 4.4
0.9± 2.8
0.33± 0.17

3± 16
3.4± 4.9
2.31± 0.88

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⇥ 10�2 (7.13)
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Full correlation matrix is also derived

From that, one can reproduce complete  
likelihood function in the space of vertex 
corrections 

Given dictionary from vertex corrections 
to Warsaw or SILH, results can be easily 
recast as constraint on Wilson coefficients 
in those bases (but then there will be 
flat directions!)

Similarly, results can be easily recast for 
particular BSM models in which vertex 
and mass corrections are functions of 
(fewer) model parameters

Pole constraints - correlations

1σ 
Errors

Correlation
Matrix

Central
Values

with the correlation matrix ⇢ =
0

BBBBBBBBBBBBBBBBBBBBBB@

1. 0.7 0.6 �0.9 �0.2 �0.1 0. 0.1 �0.1 �0.1 0. 0. 0. 0. 0. 0. 0. 0. �0.1 �0.1 0.
0.7 1. �0.1 �0.6 �0.1 0. 0. 0.1 �0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.6 �0.1 1. �0.6 �0.1 0. 0. 0.1 �0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. �0.1 0. 0.
�0.9 �0.6 �0.6 1. �0.1 0. 0. 0.1 �0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
�0.2 �0.1 �0.1 �0.1 1. �0.1 �0.1 0.1 0. 0. 0. 0.1 0. 0. 0.1 0. 0. �0.4 0. 0. �0.3
�0.1 0. 0. 0. �0.1 1. 0.1 0. 0.9 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0.
0. 0. 0. 0. �0.1 0.1 1. 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0.
0.1 0.1 0.1 0.1 0.1 0. 0. 1. �0.1 0. 0. 0.1 0. 0. 0.1 0. 0. �0.3 0. 0. �0.4
�0.1 �0.1 �0.1 �0.1 0. 0.9 0. �0.1 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
�0.1 0. 0. 0. 0. 0. 0.4 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. �0.1 0. 0.7 0.1 0.8 �0.1 0. 0.8 �0.1 0.
0. 0. 0. 0. 0.1 0. 0. 0.1 0. 0. �0.1 1. 0. 0. 0.3 0. 0.1 �0.1 0. 0. �0.1
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.7 0. 0. 1. 0. 0.7 �0.2 0. 0.9 �0.2 0.
0. 0. 0. 0. 0.1 0. 0. 0.1 0. 0. 0.1 0.3 0. 0. 1. 0. 0. �0.2 0.1 0. �0.1
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.8 0. 0. 0.7 0. 1. �0.6 0. 0.7 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. �0.1 0.1 0. �0.2 0. �0.6 1. 0. 0. 0. 0.
0. 0. 0. 0. �0.4 0.1 0.1 �0.3 0. 0. 0. �0.1 0. 0. �0.2 0. 0. 1. 0. 0. 0.9

�0.1 0. �0.1 0. 0. 0. 0. 0. 0. 0. 0.8 0. 0. 0.9 0.1 0.7 0. 0. 1. �0.3 0.
�0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. �0.1 0. 0. �0.2 0. 0. 0. 0. �0.3 1. 0.
0. 0. 0. 0. �0.3 0. 0. �0.4 0. 0. 0. �0.1 0. 0. �0.1 0. 0. 0.9 0. 0. 1.

1

CCCCCCCCCCCCCCCCCCCCCCA

7.6 Hyperglobal fit

�g and all 4-fermion at once.
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

SM EFT with dimension-6 operators

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the

16

X X
Subleading effects ignored

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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Leading corrections
to SM for E<<Λ

Pole observables
constraint vertex corrections
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Off-pole precision
observables
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So far only vertex corrections are constrained, because pole observables 
are not sensitive to anything else (once oblique corrections redefined away)

To probe 4-fermion operators one needs to venture into off-pole 
observables

Three main groups: 1) Very low-energy scattering of neutrinos, electrons, 
etc. on various targets, 2) Off-pole fermion pair production in e+e- 
colliders, 3) Off-pole fermion pair production in hadron colliders 

I only consider 1) and 2) here, but 3) also important, especially for LLQQ 
operators

Beyond pole measurements
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Off-pole probes of 4-fermion operators

experiments discussed above, they also probe operators with heavy quarks (currently charm and
bottom, and in the future also top). Typically, the experiments quote the total measured cross-

section for �q ⌘ �(e+e� ! qq̄) and the asymmetry Aq
FB =

�FB
q

�q
, where �FB

q is the di↵erence between
the cross-sections with the electron going forward and backward in the center-of-mass frame. In
the presence of dimension-6 operators, at O(⇤�2) these cross-section are modified as follows

��q =
1

8⇡s


�e2(g2L + g2Y )

s

s�m2

Z

(�AFq + �ABq) + (g2L + g2Y )
2

s2

(s�m2

Z)
2

(�BFq + �BBq)

�

+
1

8⇡v2
(g2L + g2Y )

s

s�M2

Z

⇣
ĝZe
L ĝZq

L cLL + ĝZe
L ĝZq

R cLR + ĝZe
R ĝZq

L cRL + ĝZe
R ĝZq

R cRR

⌘

� 1

8⇡v2
e2Qq (cLL + cLR + cRL + cRR) , (3.19)

��FB

q =
3

32⇡s


�e2(g2L + g2Y )

s

s�M2

Z

(�AFq � �ABq) + (g2L + g2Y )
2

s2

(s�M2

Z)
2

(�BFq � �BBq)

�

+
3

32⇡v2
(g2L + g2Y )

s

s�M2

Z

⇣
ĝZe
L ĝZq

L cLL + ĝZe
R ĝZq

R cRR � ĝZe
L ĝZq

R cLR � ĝZe
R ĝZq

L cRL

⌘

� 3

32⇡v2
e2Qq (cLL + cRR � cLR � cRL) , (3.20)

where
p
s is the center-of-mass energy of the e+e� collision, ĝZf ⌘ T 3

f � s2✓Qf (i.e., the SM values),
and

�AFq = Qq

⇣
�gZe

L ĝZq
L + �gZe

R ĝZq
R + ĝZe

L �gZq
L + ĝZe

R �gZq
R

⌘
, (3.21)

�ABq = Qq

⇣
�gZe

L ĝZq
R + �gZe

R ĝZq
L + ĝZe

L �gZq
R + ĝZe

R �gZq
L

⌘
,

�BFq = ĝZe
L

⇣
ĝZq
L

⌘
2

�gZe
L + ĝZe

R

⇣
ĝZq
R

⌘
2

�gZe
R +

�
ĝZe
L

�
2

ĝZq
L �gZq

L +
�
ĝZe
R

�
2

ĝZq
R �gZq

R ,

�BBq = ĝZe
L

⇣
ĝZq
R

⌘
2

�gZe
L + ĝZe

R

⇣
ĝZq
L

⌘
2

�gZe
R +

�
ĝZe
R

�
2

ĝZq
L �gZq

L +
�
ĝZe
L

�
2

ĝZq
R �gZq

R .

For the up-type quark production, q = uJ , the four-fermion Wilson coe�cients cXY in Eq. (3.19)
and Eq. (3.20) are given by

cLL = [c`q]11JJ � [c(3)`q ]11JJ , cLR = [c`u]11JJ , cRL = [ceq]11JJ , cRR = [ceu]11JJ , (3.22)

while for the down-type quark production, q = dJ ,

cLL = [c`q]11JJ + [c(3)`q ]11JJ , cLR = [c`d]11JJ , cRL = [ceq]11JJ , cRR = [ced]11JJ . (3.23)

The operators O`equ, O
(3)

`equ and O`eqd do not enter at O(⇤�2) because they do not interfere with
the SM amplitudes do to the di↵erent helicity structure.

The LEP-2 experiment studied e+e� collisions at energies above the Z-pole, ranging from
p
s =

130 Gev to
p
s = 209 GeV. Available data includes the total cross-section �(qq̄) ⌘ P

q=u,d,s,c,b �q

[27], as well as the total cross-section and forward-backward asymmetry for the charm and for the

10

4-fermion couplings extracted from total cross section and FB asymmetry (or full 
differential distribution) in e+e- → FF process in e+e- colliders  

Note that relative effect of 4-fermion couplings  grows with increasing collision energy
Energy can trump accuracy in this case
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Class Observable Exp. value Ref. & Comments SM value

⌫e⌫eqq R⌫e⌫̄e 0.41(14) CHARM [10] 0.33

⌫µ⌫µqq

(g⌫µL )2 0.3005(28)

PDG [7], ⇢ ⇡ 1

0.3034
(g⌫µR )2 0.0329(30) 0.0302
✓
⌫µ
L 2.500(35) 2.4631
✓
⌫µ
R 4.56+0.42

�0.27 5.1765

PV low-E
eeqq

geuAV + 2gedAV 0.489(5)
PDG [7], ⇢ 6= 1

0.4951
2geuAV � gedAV �0.708(16) �0.7192
2geuV A � gedV A �0.144(68) �0.0949

geuV A � gedV A
�0.042(57)

SAMPLE [25] �0.0627�0.120(74)

PV low-E
µµqq

b
SPS

(� = 0.81) �1.47(42) · 10�4

BCDMS [26]
�1.56 · 10�4

b
SPS

(� = 0.66) �1.74(81) · 10�4 �1.57 · 10�4

d(s) ! u`⌫ ✏
dj`
i Eq. (3.17) Ref. [8] 0

e+e� ! qq̄
�(qq̄) LEPEWWG [27], ⇢ 6= 1
�c, �b f(

p
s) LEPEWWG [34],

VENUS [29], TOPAZ [30]
f(
p
s)

Acc
FB, A

bb
FB

⌫µ⌫µee
g
⌫µe
LV �0.040(15)

PDG [7], ⇢ 6= 1
�0.0396

g
⌫µe
LA �0.507(14) �0.5064

e�e� ! e�e� geeAV 0.0190(27) PDG [7] 0.0225

⌧ ! `⌫⌫

G2

⌧e/G
2

F 1.0029(46)

PDG [7], PSI [35], ⇢ ⇡ 1

1
G2

⌧µ/G
2

F 0.981(18) 1
Michel ⌘ �0.0021(71) 0

Michel �0/A �0.0013(36) 0

e+e� ! `+`�

d�(ee)
d cos ✓ LEPEWWG [27], ⇢ ⇡ 1
�µ, �⌧ f(

p
s) LEPEWWG [34],

VENUS [33]
f(
p
s)

Aµ
FB, A

⌧
FB

Table 4: Summary of experimental input (sensitive to LLQQ and LLLL contact interactions) used
in our fit. The correlations that are taken into account in our fit are specified. Each observable in
e+e� ! ff̄ is measured at various c.o.m. energies, which we denote in the table by f(

p
s). The

specific numerical values can be found in the corresponding original references. We also use the
set of pole observables described in [31] in order to independently constrain the vertex corrections
�g.
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Neutrino scattering on lepton or 
nucleon targets

Parity violating electron 
scattering on muons

Atomic parity violation

Parity violating electron 
scattering on nucleons

Muon and tau decay rates and 
differential distributions

Decays of pions, kaons, hyperons

Off-pole probes of 4-fermion operators

At the linear level, the vector and axial couplings are e↵ectively modified as

�gV = �gZe
L + �gZe

R +
3g2Y � g2L
g2L + g2Y

⇣

�gZµ
L + �gWµ

L

⌘

� [c``]1122 + [c`e]2211
2

,

�gA = �gZe
L � �gZe

R �
⇣

�gZµ
L + �gWµ

L

⌘

� [c``]1122 � [c`e]2211
2

. (11)

Notice that the dependence on the four-lepton operators is di↵erent than for the LEP-2 observables
discussed in the previous subsection. Therefore, low-energy neutrino scattering provides us with
complementary information that will allow us to constrain additional directions in the space of
D=6 Wilson coe�cients.

Experimental results on low-energy scattering of electron neutrinos [42] and anti-neutrinos
[43] on electrons are also available. These probe the 4-electron operators [O``]1111 and [O`e]1111.
However, the current experimental accuracy is worse than for muon neutrinos scattering, and
including this additional input would not a↵ect the global fit in an appreciable way.

3.5 Parity violating electron scattering

The SLAC E158 experiment made a precise measurement of parity-violating asymmetry in Møller
scattering e�e� ! e�e� [44]. The asymmetry is defined as APV = (�R � �L)/(�R + �L) where
�L(R) is the cross-section for incident left- (right-) handed electrons. The E158 experiment used a
polarized electron beam of energy E ⇡ 50 GeV against an electron target at rest which corresponds
to a center-of-mass energy of

p
s ⇡ p

2meE ⇡ 0.2 GeV, far below the Z pole. The results are
presented as a measurement of the weak mixing angle at low energies:

s2✓(Q
2 = 0.026GeV2) = 0.2397± 0.0013, (12)

where the SM predicts s2✓(Q
2 = 0.026GeV2) = 0.2381± 0.0006 [45].

APV in Møller scattering is sensitive to the four-electron operators [Oee]1111 and [O``]1111
([O`e]1111 cancels out in �R � �L). At the linear order in the EFT parameters and leading or-
der in s/m2

Z , the e↵ect of these operators and the vertex corrections can be e↵ectively represented
as a shift of the measured weak mixing angle:

�s2✓ = 2(gZe
R,SM�gZe

R � gZe
L,SM�gZe

L )� 1

4
([cee]1111 � [c``]1111) (13)

Although Møller scattering probes the same 4-electron operators as LEP-2, c.f. Eq. (9), its impor-
tance rests in the sensitivity to the combination that is accidentally very weakly constrained by
unpolarized electron scattering in LEP-2.

3.6 Tau and muon decays

The leptonic tau decays ⌧� ! e�⌫⌧ ⌫̄e, ⌧� ! µ�⌫⌧ ⌫̄µ, and the conjugates provide additional
information on 4-lepton operators involving ⌧ . In particular, the provide the only constraint we
are aware of on lepton-flavor conserving 4-lepton operators with muons and taus. The decays can
be described by the following e↵ective Lagrangian:

L = �4G⌧fp
2
(⌫̄⌧ �̄⇢⌧)(f̄ �̄⇢⌫f ) + h.c., (14)
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where f = e, µ. At the linear level, the relative strength of the Fermi constant measured in the
tau decays normalized to that measured in the muon decay is a↵ected by the vertex corrections
and four-lepton operators as

Ae ⌘ G2
⌧e

G2
F

= 1 + 2�gW ⌧
L + 2�gWe

L � 4�m� [c``]1331,

Aµ ⌘ G2
⌧µ

G2
F

= 1 + 2�gW ⌧
L + 2�gWµ

L � 4�m� [c``]2332, (15)

where the W mass corrections �m can be expressed by other EFT parameters, c.f. Eq. (7). The
experimental values quoted by the PDG are [46]

Ae = 1.0029± 0.0046,

Aµ = 0.981± 0.018, (16)

and the SM prediction is Af = 1.
For the muon decay, µ� ! e�⌫µ⌫̄e and the conjugate, the total rate defines the SM input

parameter v and by itself it does not probe new physics. However, additional information can be
extracted from di↵erential distributions in (polarized) muon decay. Customarily, these measure-
ments are presented in the language of Michel parameters [47]. From the EFT perspective the
most interesting are the so-called ⌘ and �0/A parameters, because they are the only ones that may
receive contributions at O(1/⇤2) [48, 49]:

⌘ =
Re[c`e]1221

2
, �0/A = �Im[c`e]1221

4
. (17)

These parameters have been measured in an experiment in the PSI [50]:

⌘ = �0.0021± 0.0071, �0/A = �0.0013± 0.0036. (18)

Analogous limits from tau decays are much weaker.

4 General Fit

We now do a global fit to all the data discussed above so as to simultaneously constrain D=6
operators in the EFT Lagrangian that give rise to leptonic vertex corrections and 4-lepton in-
teractions. Previously, constraints on 4-lepton (and other 4-fermion) operators were obtained in
Refs. [2,3] and recently updated in Ref. [28], assuming the Wilson coe�cients are the same for all
3 fermion generations. The novel aspect of our analysis is that we allow for a completely general
flavor structure of the D=6 operators.

We combine the following experimental inputs discussed in Section 3:

• Z boson production and decay in LEP-1 and leptonic W decays in LEP-2,

• W mass measurement,

• Two-lepton production in LEP-2,

9
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the parameters geiqXY are related to the SM EFT parameters as

geJuAV = �1

2
+

4

3
s2✓ �

�
�gZu

L + �gZu
R

�
+

3� 8s2✓
3

�
�gZeJ

L � �gZeJ
R

�
+

1

2

⇥
c0lq � clq � clu + ceq + ceu

⇤
JJ11

,

geJdAV =
1

2
� 2

3
s2✓ �

�
�gZd

L + �gZd
R

�� 3� 4s2✓
3

�
�gZeJ

L � �gZeJ
R

�
+

1

2

⇥�c0lq � clq � cld + ceq + ced
⇤
JJ11

,

geJuV A = �1

2
+ 2s2✓ �

�
1� 4s2✓

� �
�gZu

L � �gZu
R

�
+
�
�gZeJ

L + �gZeJ
R

�
+

1

2

⇥
c0lq � clq + clu � ceq + ceu

⇤
JJ11

,

geJdV A =
1

2
� 2s2✓ �

�
1� 4s2✓

� �
�gZd

L � �gZd
R

�� �
�gZeJ

L + �gZeJ
R

�
+

1

2

⇥�c0lq � clq + cld � ceq + ced
⇤
JJ11

,

geJuAA =
1

2
+ �gZu

L � �gZu
R � �gZeJ

L + �gZeJ
R +

1

2

⇥�c0lq + clq � clu � ceq + ceu
⇤
JJ11

,

geJdAA = �1

2
+ �gZd

L � �gZd
R + �gZeJ

L � �gZeJ
R +

1

2

⇥
c0lq + clq � cld � ceq + ced

⇤
JJ11

. (2.13)

We do not display the expressions for geiqV V here because they will not be needed in the following.
The SM values are [7]:

geu,SMAV = �0.1887, ged,SMAV = 0.3419, geu,SMV A = �0.0351, ged,SMV A = 0.0247, (2.14)

and geu,SMAA = �ged,SMAA = 1/2.

3 Low-energy experiments

3.1 Neutrino scattering

Neutrino scattering experiments measure the ratio of neutral- and charged-current neutrino or
anti-neutrino scattering cross sections on nuclei:

R⌫i =
�(⌫iN ! ⌫X)

�(⌫iN ! `�i X)
, R⌫̄i =

�(⌫̄iN ! ⌫̄X)

�(⌫̄iN ! `+i X)
. (3.1)

One can show that for isoscalar nucleus targets (equal number of protons and neutrons) one has
the so-called Llewellyn-Smith relations:

R⌫i =
(g⌫iL )

2 + r(g⌫iR )
2

V 2

ud

R⌫̄i =
(g⌫iL )

2 + r�1(g⌫iR )
2

V 2

ud

, (3.2)

where r is the ratio of ⌫ to ⌫̄ charged-current cross-sections on N which can be measured sepa-
rately, and the e↵ective couplings g⌫iL/R are defined in Eq. (2.10). As explained after Eq. (2.10),
these expressions ignore the possible contribution of right-handed and of helicity-violating charged
currents because it enters only at the quadratic order in D=6 EFT parameters, that is at O(⇤�4).
In some experiments the beam is a mixture of neutrinos and anti-neutrinos, and the following ratio
is measured

R⌫i⌫̄i =
�(⌫iN ! ⌫X) + �(⌫̄iN ! ⌫̄X)

�(⌫iN ! `�i X) + �(⌫̄iN ! `+i X)
=

(g⌫iL )
2 + (g⌫iR )

2

V 2

ud

. (3.3)
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Targeting 40 linear combinations QQLL and LLLL 4-fermion operators

All relevant observables depend also on leptonic vertex corrections, so 
combination with previous pole constraints is necessary

Off-Pole constraints on 4-fermion operators

AA,Mimouni
1511.07434

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4
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to appear

Chirality conserving (I, J = 1, 2, 3) Chirality violating (I, J = 1, 2, 3)

[O`q]IIJJ = (¯̀I �̄µ`I)(q̄J �̄µqJ) [O`equ]IIJJ = (¯̀jI ē
c
I)✏jk(q̄

k
J ū

c
J)

[O(3)

`q ]IIJJ = (¯̀I �̄µ�
i`I)(q̄J �̄µ�

iqJ) [O(3)

`equ]IIJJ = (¯̀jI�µ⌫ ē
c
I)✏jk(q̄

k
J�µ⌫ ū

c
J)

[O`u]IIJJ = (¯̀I �̄µ`I)(uc
J �̄µū

c
J) [O`edq]IIJJ = (¯̀jI ē

c
I)(d

c
Jq

j
J)

[O`d]IIJJ = (¯̀I �̄µ`I)(dcJ �̄µd̄
c
J)

[Oeq]IIJJ = (ecI �̄µē
c
I)(q̄J �̄µqJ)

[Oeu]IIJJ = (ecI �̄µē
c
I)(u

c
J �̄µū

c
J)

[Oed]IIJJ = (ecI �̄µē
c
I)(d

c
J �̄µd̄

c
J)

Table 1: Flavor conserving 2-lepton-2-quark operators in the SM EFT Lagrangian of Eq. (2.1).

One flavor (I = 1, 2, 3) Two flavors (I < J = 1, 2, 3)

[O``]IIII =
1

2

(¯̀I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)
[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)

[O`e]IIII = (¯̀I �̄µ`I)(ecI�µē
c
I) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µē

c
J)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µē
c
I)

[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µē
c
I)

[Oee]IIII =
1

2

(ecI�µē
c
I)(e

c
I�µē

c
I) [Oee]IIJJ = (ecI�µē

c
I)(e

c
J�µē

c
J)

Table 2: Flavor conserving 4-lepton operators in the SM EFT Lagrangian of Eq. (2.1).
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Off-Pole constraints on 4-fermion operators
(ee)(qq)

[c(3)`q ]1111 [c`q]1111 [c`u]1111 [c`d]1111 [ceq]1111 [ceu]1111 [ced]1111
LEP-2 3.5± 2.2 �42± 28 �21± 14 42± 28 �18± 11 �9.0± 5.7 18± 11
APV 27± 19 1.6± 1.1 3.4± 2.3 3.0± 2.0 �1.6± 1.1 �3.4± 2.3 �3.0± 2.0

QWEAK 7.0± 12 �2.3± 4.0 �3.5± 6.0 �7± 12 2.3± 4.0 3.5± 6.0 7± 12
PVDIS �8± 12 24± 35 38± 48 �77± 96 �77± 96 �12± 17 24± 35

SAMPLE �8± 45 x �17± 90 17± 90 x �17± 90 17± 90
CHARM �80± 180 700± 1800 370± 880 �700± 1800 x x x
LEF 0.38± 0.28 x x x x x x

(µµ)(qq)

[c(3)`q ]2211 [c`q]2211 [c`u]2211 [c`d]2211 [ceq]2211 [ceu]2211 [ced]2211
PDG ⌫µ 20± 15 4± 21 18± 19 �20± 37 x x x
SPS 0± 1000 0± 3000 0± 1500 0± 3000 40± 390 �20± 190 40± 390
LEF �0.4± 1.2 x x x x x x

Table 5: 68% C.L. constraints (in units of 10�3) on helicity-conserving (ee)(qq) and (µµ)(qq)
operators from di↵erent precision experiments. The bounds are derived assuming only one 4-
fermion operator is present at a time, and that the vertex corrections and 4-lepton operators
are absent. For the operators with electrons we display the constraints from the LEP-2 (�qq +
heavy flavor), atomic parity violation (APV) [60], QWEAK [61], PVDIS [63], SAMPLE [64], and
CHARM [49] experiments. For the operators with muons we use the PDG combination of muon-
neutrino low-energy couplings [44], and the SPS muon scattering experiment [65]. One operator
with electrons and one with muons is constrained by the combination of low-energy flavor (LEF)
observables [39]. The best constraint in each case is highlighted in blue, while ‘x’ signals that the
operator is not probed at tree level by that experiment or combination.
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involving the right-handed muons is very poor. However, this is not a pressing problem, given
these directions are very well probed by the LHC.

The LEP-2 constraints on the operators involving the 2nd generation or bottom quarks are
similar as those shown in Table 5. We also give 1-by-1 constraints on the chirality-violating LLQQ
operators from the low-energy flavor observables:

0

BBBB@

[c`equ]1111
[c`edq]1111
[c(3)`equ]1111
[c`equ]2211
[c`edq]2211

1

CCCCA
=

0

BBBB@

(�1.3± 4.9) · 10�7

(1.3± 4.9) · 10�7

(�0.2± 1.6) · 10�3

(0.3± 1.0) · 10�4

(�0.3± 1.0) · 10�4

1

CCCCA
. (4.6)

This exceptional sensitivity arises because these operators violate the approximate symmetries of
the SM, leading potentially to a large enhancement of several decays of low-mass hadrons.13 In
particular, new physics generating the pseudo-scalar (ee)(qq) operator is probed up to ⇤/g⇤ ⇠100
TeV. For consistency with the rest of this work, these individual limits are obtained using V = 1
at order ⇤�2. Working instead with the full non-diagonal CKM matrix the limits are slightly
modified, but more importantly one can set strong 1-by-1 limits in a long list of other operators,
including one diagonal one: [c(3)`equ]2211.

Finally, for the sake of completeness we show the 1-by-1 bound on the W coupling to right-
handed 1st-generation quarks

�gWq1
R = (�3.9± 2.9) · 10�4, (4.7)

which is completely dominated by its contribution to the CKM-unitarity test of Eq. (2.6).

4.4 All out

We now combine all the experimental observables summarized in Table 4. These provide simul-
taneous constraints on 60 combinations of Wilson coe�cients of dimension-6 operators in the SM
EFT Lagrangian (21 vertex corrections �g, 25 LLQQ and 14 LLLL 4-fermion operators) and on

13More specifically they violate the approximate flavor symmetry of the SM U(3)` ⇥ U(1)e that suppresses the
decay ⇡ ! `⌫` by a factor m2

`/⇤
2
QCD. Thus, their bounds benefit from this large ⇤QCD/m` chiral enhancement.

This does not apply however to the tensor operator c(3)`equ, whose contribution to this specific decay is zero by simple
Lorentz invariance considerations.
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Off-Pole constraints on 4-lepton observables

Full correlation 
matrix also 
calculated

Little change for 
vertex corrections, 
since pole 
observables are more 
precise

Typical constraints 
for 4-lepton 
operators are at 1% 
level

the Ṽud SM parameter. Marginalizing over Ṽud we find the following constraints
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[ĉeq]1111
[ĉ`u]1111
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(4.8)
The correlation matrix is given in Eq. (??). The complete Gaussian likelihood for the Wilson
coe�cients of dimension-6 operators can be reproduced from Eq. (4.8) and the correlation matrix.12

This likelihood is relevant to constrain the masses and coupling of any model beyond the SM whose
leading e↵ects at or below the weak scale can be approximated by tree-level contributions of vertex
corrections and LLQQ and LLLL operators in the SM EFT.

12The likelihood is also available as a supplemental material attached to this paper or on request from the authors.
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LHC vs low-energy

(ee)(qq)
[c(3)`q ]1111 [c`q]1111 [c`u]1111 [c`d]1111 [ceq]1111 [ceu]1111 [ced]1111

LE 0.45± 0.28 1.6± 1.0 2.8± 2.1 3.6± 2.0 �1.8± 1.1 �4.0± 2.0 �2.7± 2.0
ATLAS (

p
s  1.5 TeV) �0.65+0.60

�0.67 2.3+1.9
�2.2 2.6+2.3

�2.6 �1.4+2.9
�2.8 1.3+1.7

�1.9 1.5+2.4
�1.4 �2.7+3.2

�2.8

ATLAS (
p
s  1 TeV) �0.78+0.81

�0.89 3.2± 3.4 3.8± 4.1 �1.9± 4.2 1.9± 2.8 1.7+9.1
�1.8 �3.8± 4.7

(µµ)(qq)
[c(3)`q ]2211 [c`q]2211 [c`u]2211 [c`d]2211 [ceq]2211 [ceu]2211 [ced]2211

LE �0.2± 1.2 4± 21 18± 19 �20± 37 40± 390 �20± 190 40± 390
ATLAS (

p
s  1.5 TeV) �1.35+0.56

�0.63 1.8± 1.1 2.0± 1.3 �1.0± 1.6 1.02± 0.99 2.8+1.7
�1.3 �2.0± 1.8

ATLAS (
p
s  1 TeV) �0.72+0.76

�0.83 3.2± 3.4 3.8± 4.1 �1.9± 4.2 1.9± 2.7 1.6+2.4
�1.7 �3.8± 4.7

CV
[c`equ]1111 [c`edq]1111 [c(3)`equ]1111 [c`equ]2211 [c`edq]2211 [c(3)`equ]2211

LE �0.00013± 0.00049 0.00013± 0.00049 �0.2± 1.6 0.03± 0.10 �0.03± 0.10 x
ATLAS (

p
s  1.5 TeV) 0± 1.7 0± 2.3 0± 0.8 0± 0.98 0± 1.3 0± 0.45

ATLAS (
p
s  1 TeV) 0± 2.6 0± 3.3 0± 1.2 0± 2.5 0± 3.2 0± 1.2

Table 6: Comparison of low-energy and LHC constraints (in units of 10�3) on chirality-conserving
(ee)(qq) and (µµ)(qq) and chirality-violating (CV) operators. The 68% CL bounds are derived
assuming only one 4-fermion operator is present at a time, and that the vertex corrections and
[c``]1221 are absent. The low-energy constraints combine all experimental input summarized in
Table 4. The ATLAS constraints use the m`+`� 2 [1-1.5] TeV bin of the measurement of the
di↵erential e+e� and µ+µ� cross sections at the 8 TeV LHC [77]. ‘x’ signals that the operator is
not probed at tree level by that (combination of) experiment(s).
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

SM EFT with dimension-6 operators

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the

16

X X
Subleading effects ignored

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as
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and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using
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O0
qu (q̄�̄µT aq)(uc�µT aūc)
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[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a

14

Leading corrections
to SM for E<<Λ

Pole observables
constraint vertex corrections

Off-pole observables probe
4-fermion operators

LHC Higgs and 
TGC data extend 

the net to 
bosonic and 

Yukawa 
operators 
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Shift the SM Higgs couplings to 
matter

Introduce new 2-derivative 
couplings to gauge bosons that 
are not present in the SM at 
tree level

Introduce CP violating couplings 
to fermions and gauge bosons

In SM EFT with dimension-6 
operators one finds correlations 
relations between different 
Higgs couplings to gauge bosons

Effects of dimension-6 operators 
on Higgs coupling strength to matter
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Map from Warsaw basis 

where again all the couplings are real. In order to define a complete basis of D=6

operators in the next section I will need the dipole type couplings:

Ldipole = �1 + h/v

4v

"
gs

X

f2u,d

p
mfImfJ

v
f c
I�µ⌫T

a[dGf ]IJfJG
a
µ⌫

+e
X

f2u,d,e

p
mfImfJ

v
f c
I�µ⌫ [dAf ]IJfJAµ⌫

+
q
g2L + g2Y

X

f2u,d,e

p
mfImfJ

v
f c
I�µ⌫ [dZf ]IJfJZµ⌫

+
p
2gL

p
muImuJ

v
uc
I�µ⌫ [dWu]IJdJW

+
µ⌫ +

p
2gL

p
mdImdJ

v
dcI�µ⌫ [dWd]IJuJW

�
µ⌫

+
p
2gL

p
meImeJ

v
ecI�µ⌫ [dWe]IJ⌫JW

�
µ⌫ + h.c.

�
, (2.37)

where �µ⌫ = i
2 (�µ�̄⌫ � �⌫ �̄µ), and dGf , dAf , dZf , and dWf are general complex 3⇥ 3

matrices.

The couplings, in Eq. (2.35), Eq. (2.36), and Eq. (2.37) are related to the Wilson

coe�cients in the Warsaw basis by:

�cw = cH⇤ � 5g2L � g2Y
4(g2L � g2Y )

cHD � 4gLgY
g2L � g2Y

cHWB +
3g2L + g2Y
4(g2L � g2Y )

⇣
[c``]1221 � 2[c(3)H`]11 � 2[c(3)H`]22

⌘
,

�cz = cH⇤ � 1

4
cHD +

3

4

⇣
[c``]1221 � 2[c(3)H`]11 � 2[c(3)H`]22

⌘
, (2.38)

[�yf ]IJe
i�f

IJ = � vp
2mfImfJ

[c†fH ]IJ+�IJ

✓
cH⇤ � 1

4
cHD +

1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22

◆
,

(2.39)

24

cgg =
4

g2s
cHG,

cww =
4

g2L
cHW ,

c�� = 4

✓
1

g2L
cHW +

1

g2Y
cHB � 1

gLgY
cHWB

◆
,

czz = 4
g2LcHW + g2Y cHB + gLgY cHWB

(g2L + g2Y )
2

,

cz� =
4cHW � 4cHB � 2

g2L�g2Y
gLgY

cHWB

g2L + g2Y
, (2.40)

c̃gg =
4

g2s
cHG̃,

c̃�� = 4

✓
1

g2L
cHW̃ +

1

g2Y
cHB̃ � 1

gLgY
cHW̃B

◆
,

c̃zz = 4
g2LcHW̃ + g2Y cHB̃ + gLgY cHW̃B

(g2L + g2Y )
2

,

c̃z� =
4cHW̃ � 4cHB̃ � 2

g2L�g2Y
gLgY

cHW̃B

g2L + g2Y
, (2.41)

cz⇤ =
1

2g2L

⇣
cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

⌘
,

c�⇤ =
1

g2L � g2Y

✓
2
g2L + g2Y
gLgY

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

cw⇤ =
1

2(g2L � g2Y )

✓
4
gY
gL

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
, (2.42)

25

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

relative correction to W mass

 Higgs couplings to pairs of SM fields
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In SM EFT Higher-point Higgs vertices with gauge bosons and fermions are 
correlated with gauge boson couplings to fermions  

Thus, they are related to precisely measured observables at LEP and low-energy 
experiments

Correlations between higher order Higgs couplings and vertex corrections

LHCHXSWG
1610.07922

All in all, vertex- and dipole-type interactions of Higgs with 2 fermions and 1 
gauge field can be neglected in the LHC context, given constraints from other 

precision experiments (and assuming MFV)
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In SM EFT with D=6 operators, new “anomalous”contributions to TGCs arise

Effects of dimension-6 operators 
on triple gauge couplings (TGCs)

In SM, cubic (and quartic) gauge interactions completely fixed, once gauge couplings known

�g1,z = � g2L + g2Y
4(g2L � g2Y )

✓
4
gY
gL

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

�� =
gL
gY

cHWB,

�z = � g2L + g2Y
4(g2L � g2Y )

✓
8

gLgY
g2L + g2Y

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

�z = �� = �3

2
gLcW ,

̃� =
gL
gY

cHW̃B, ̃z = �gY
gL

cHW̃B,

�̃z = �̃� = �3

2
gLcW̃ .

�g =
cG
g3s

, �̃g =
cG̃
g3s

. (2.43)

[dGf ]IJ = �2
p
2

vp
mfImfJ

[c†fG]IJ ,

dAf = �2
p
2

vp
mfImfJ

⇣
⌘f [c

†
fW ]IJ + [c†fB]IJ

⌘
,

dZf = � 2
p
2

g2L + g2Y

vp
mfImfJ

⇣
g2L⌘f [c

†
fW ]IJ � g2Y [c

†
fB]IJ

⌘
,

dWf = �2
p
2

vp
mfImfJ

[c†fW ]IJ , (2.44)

where ⌘u = +1, ⌘d,e = �1.

Finally, I will also need 4-fermion couplings. I write them here in the abbreviated

form

L4f =
X

[cff 0 ]IJKL[Off 0 ]IJKL, (2.45)

where the sum goes over all the 4-fermion operators in Table 2.4 and over flavor in-

dices. I will skip the trivial exercise of re-writing these operators in terms of fermionic

mass eigenstates. What is less trivial is which combinations of flavor indices should

be included in the sum, so as to satisfy the baryon and lepton number conservation

and avoid redundant operators related by Fierz transformations. As an example, in

Table 2.5 I write down explicitly all 4-lepton operators together with their flavor in-

27

Relations between anomalous TGCs and Wilson coefficients in Warsaw basis
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Therefore constraints on δg1z and δκγ imply constraints on  Higgs couplings to 
electroweak gauge bosons, and vice-versa   

In fact, TGCs probe directions in EFT parameter space that are weakly constrained by 
Higgs searches. Therefore, important to combine Higgs and TGC data! 

That is possible provided both aTGCs and Higgs couplings are constrained in a general  
consistent, multi-dimensional fit, and the correlation matrix is given! 

TGC - Higgs Synergy

Linearly realized SU(3)xSU(2)xU(1) local symmetry in Lagrangian with operators up 
to D=6 implies that aTGC and Higgs couplings to EW gauge bosons are related:

HiggsTGC
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Combinations of EFT parameters constrained by precision tests much better 
than at O(10%) are not relevant at the LHC, given current precision

Assuming MFV, one can identify 16 combinations of EFT parameters that are 
weakly or not at all constrained by precision tests, and which affect LHC 
Higgs observables at leading order. These correspond to 16 Higgs basis 
parameters in previous slide. 

Higgs signal strength observables at  O(1/Λ^2) are only sensitive to CP-even 
parameters (CP-odd ones enter only quadratically and are ignored - one 
needs to study differential distributions to access those at O(1/Λ^2) ). 

Currently not much experimental sensitivity to modifications of Higgs cubic 
self-interactions, thus parameter δλ3  cannot be reasonably constrained

Thus, assuming MFV couplings to fermions, only 9 EFT parameters affect 
Higgs signal strength measured at LHC

D=6 EFT parameters probed by LHC Higgs searches

Di Vita et al
1704.01953
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LHC Higgs signal strength so far
Not using any input 
from differential 
distributions here

Run-1 results
from ATLAS+CMS

1606.02266
Run-2 results

scavenged from
various conf-notes

Channel Production Run-1 ATLAS Run-2 CMS Run-2

�� ggh 1.10+0.23
�0.22 0.62+0.30

�0.29 [106] 0.77+0.25
�0.23 [107]

VBF 1.3+0.5
�0.5 2.25+0.75

�0.75 [106] 1.61+0.90
�0.80 [107]

Wh 0.5+1.3
�1.2 - -

Zh 0.5+3.0
�2.5 - -

V h - 0.30+1.21
�1.12 [106] -

tt̄h 2.2+1.6
�1.3 �0.22+1.26

�0.99 [106] 1.9+1.5
�1.2 [107]

Z� incl. 1.4+3.3
�3.2 - -

ZZ⇤ ggh 1.13+0.34
�0.31 1.34+0.39

�0.33 [106] 0.96+0.40
�0.33 [108]

VBF 0.1+1.1
�0.6 3.8+2.8

�2.2 [106] 0.67+1.61
�0.67 [108]

cats. - - 1.05+0.19
�0.17 [?]

WW ⇤ ggh 0.84+0.17
�0.17 - -

VBF 1.2+0.4
�0.4 1.7+1.1

�0.9 [109] -
Wh 1.6+1.2

�1.0 3.2+4.4
�4.2 [109] -

Zh 5.9+2.6
�2.2 - -

tt̄h 5.0+1.8
�1.7 - -

incl. - - 0.3± 0.5 [110]

⌧+⌧� ggh 1.0+0.6
�0.6 - -

VBF 1.3+0.4
�0.4 - -

Wh �1.4+1.4
�1.4 - -

Zh 2.2+2.2
�1.8 - -

tt̄h �1.9+3.7
�3.3 - 0.72+0.62

�0.53 [?]

bb̄ VBF - �3.9+2.8
�2.9 [111] �3.7+2.4

�2.5 [112]
Wh 1.0+0.5

�0.5 - -
Zh 0.4+0.4

�0.4 - -
V h - 0.21+0.51

�0.50 [113] -
tt̄h 1.15+0.99

�0.94 2.1+1.0
�0.9 [114] �0.19+0.80

�0.81 [115]

µ+µ� incl. 0.1+2.5
�2.5 �0.1+1.5

�1.5 [?] -

multi-` cats. - 2.5+1.3
�1.1 [117] 1.5+0.5

�0.5 [?]

Table 4.1: The Higgs signal strength in various channels measured at the LHC.

the h ! �� decay process where a part of the one-loop EFT corrections is included.

Unless noted otherwise, the expressions refer to the inclusive production and decay

rates.

Consider the Higgs boson produced at the LHC via the process X, and subse-

quently decaying to the final state Y . The LHC collaborations typically quote the

64
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multilepton results 

•  Both results compatible with SM within about 1σ. 
•  Signi"cance wrt μ(ttH) = 0 hypothesis: 

–  ATLAS:  2.2 σ (expected for SM ttH: 1.0 σ ) 
–  CMS:  3.3 σ (expected for SM ttH: 2.5 σ ) 

Moriond EWK, 2017 G. Petrucciani (CERN) 21 
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Moriond EWK, 2017 G. Petrucciani (CERN) 22 

ATLAS Run 2 CMS Run 2 

bb 2.1 +1.0 −0.2 +0.8 
−0.9 −0.8 

multilep 2.5 +1.3 1.5 +0.5 
−1.1 −0.5 

γγ −0.3 +1.2 1.9 +1.5 
−1.0 −1.2 

4ℓ 0.0 +1.2* 
−0.0* 

comb. 1.8 
+0.7 
−0.7 

Run1 comb. 2.3 +1.2 
−1.0 JHEP 08(2016) 045 

PAS HIG 
16-038 

PAS HIG 
17-004 

(35.9 fb−1) 

PAS HIG 
16-020 

PAS HIG 
16-041 

(35.9 fb−1) 

* 

(*)  −2ΔlnL = 1 interval  
with μ ≥ 0 constraint  ATLAS-CONF-2016-068 

tth status

Slide from G. Petrucciani’s talk in Moriond’17

AA’s naive combination
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg

∣∣∣∣
2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Corrections to Higgs decays from dimension-6 operators
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The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:
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Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):
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where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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while ĉgg and cSMgg are defined in Eq. (4.3). Note that contributions to Γγγ and Γzγ arising
due to corrections to the SM Higgs couplings to the W bosons and fermions are not included
in Eq. (4.11), unlike in Eq. (4.3). The reason is that, for these processes, corrections from
D = 6 operators are included at the tree level only. If these particular one-loop corrections
were included, one should also consistently include all one-loop corrections to this process
arising at the D = 6 level, some of which are divergent and require renormalization. The net
result would be to redefine ĉγγ = cren.γγ − 0.11δcw + 0.02δyu + . . . , and ĉzγ = cren.zγ − 0.06δcw +
0.003δyt + . . . . Here ”ren.” stands for “renormalized” and the dots stand for a dependence
on other Lagrangian parameters (cww, cw!, and corrections to triple gauge couplings). A
full next-to-leading order computation of these processes have not been yet attempted in the
literature.

• h → 4f . The decay process h → 2"2ν (where " here stands for charged leptons) proceeds via
intermediate W bosons. The relative width is given by

Γ2"2ν

ΓSM
2"2ν

# 1 + 2δcw + 0.46cw! − 0.15cww

→ 1 + 2δcz + 0.67cz! + 0.05czz − 0.17czγ − 0.05cγγ. (4.12)

In the SM, the decay process h → 4" proceeds at the tree-level via intermediate Z bosons. In
the presence D = 6 operators, intermediate photon contributions may also arise at the tree
level. If that is the case, the decay width diverges due to the photon pole. Below I quote
the relative width Γ̄(h → 4") regulated by imposing the cut m"" > 12 GeV on the invariant
mass of same-flavor lepton pairs:

Γ̄4"

Γ̄SM
4"

# 1 + 2δcz +

(
0.41
0.39

)
cz! −

(
0.15
0.14

)
czz +

(
0.07
0.05

)
czγ −

(
0.02
0.02

)
cγ! +

(
< 0.01
0.03

)
cγγ

→ 1 + 2δcz +

(
0.35
0.32

)
cz! −

(
0.19
0.19

)
czz +

(
0.09
0.08

)
czγ +

(
0.01
0.02

)
cγγ . (4.13)

The numbers in the columns correspond to the 2e2µ and 4e/µ final states, respectively.
The difference between these two is numerically irrelevant in the total width, but may be
important for differential distributions, especially regarding the cγγ dependence [91]. The
dependence on the m"" cut is weak; very similar numbers are obtained if m"" > 4 GeV is
imposed instead.

Given the partial widths, the branching fractions can be computed as BrY = ΓY /Γ(h → all),
where the total decay width is given by

Γ(h → all)

Γ(h → all)
#

Γbb

ΓSM
bb

BrSMbb +
Γcc

ΓSM
cc

BrSMcc +
Γττ

ΓSM
ττ

BrSMττ +
ΓWW ∗

ΓSM
WW ∗

BrSMWW ∗ +
ΓZZ∗

ΓSM
ZZ∗

BrSMZZ∗ +
Γgg

ΓSM
gg

BrSMgg . (4.14)

Note that, in line with the basic assumption of no new light particles, there is no additional
contributions to the Higgs width other than from the SM decay channels. In particular, the
invisible Higgs width is absent in this EFT framework (except for the small SM contribution
arising via h → ZZ∗ → 4ν).
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h h

Decays to 2 fermions

Decays to 4 fermions

Decays to 2 gauge bosons

 2e2μ
4e(  ) 

via the corrections to the Yukawa couplings in Eq. (2.35) :

�cc

�SM
cc

' 1 + 2�yu,
�bb

�SM
bb

' 1 + 2�yd,
�⌧⌧

�SM
⌧⌧

' 1 + 2�ye, (4.14)

where I abbreviate �(h ! Y ) ⌘ �Y .

• h ! VV. In the SM, the Higgs boson decays into on-shell gauge bosons: gluon

pairs gg, photon pairs ��, and Z� occur only at the one-loop level. In the

presence of D = 6 operators these decays are corrected already at the tree

level by the 2-derivative contact interactions of the Higgs boson with two vector

bosons in Eq. (2.35). The relative decay widths are given by

�V V

�SM
V V

'
����1 +

ĉvv
cSMvv

����
2

, vv 2 {gg, ��, z�}, (4.15)

where

ĉ�� ⇡ c�� � 0.11�cz + 0.02�yu, cSM�� ' �8.3⇥ 10�2,

ĉz� ⇡ cz� � 0.06�cz + 0.003�yu, cSMz� ' �5.9⇥ 10�2, (4.16)

while ĉgg and cSMgg are defined in Eq. (4.8). Note that the expressions for the

decay widths include both tree-level D=6 contributions proportional to cvv, as

well as one-loop D=6 contributions proportional to �cv and �yf . The latter are

finite, as they amount to a simple rescaling of the SM W boson and fermion

couplings to the Higgs. At the same order in the EFT expansion, there exist

other contributions proportional to cvv and cv⇤, which are infinite [127,128] and

require renormalization.6 An EFT fit to Higgs observables consistently includ-

6 It would be formally more consistent to omit the 1-loop suppressed D=6 contributions to ĉ��
proportional to �cz and �yf , given that other contributions at the same order are not taken into
account. However, in the current form it is much easier to connect my results to the (wide) class of
BSM models where �cz and �yf are generated in the e↵ective theory at the tree level, while cvv and
cv⇤ are not.
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Global constraints on Higgs coupling in SM EFT
Combined constraints from LHC Higgs and electroweak precision constraints

Overall SM is  very good (too good?) fit, no evidence or even hint of D=6 operators

Some tension in global fit due to deficit in the bb decay, but mostly gone after Moriond

Decrease in bb needs to be compensated by negative contributions to Higgs-gluon 
couplings, to avoid overshooting γγ, WW, and ZZ channels

Correlation 
matrix

available

parameters beyond those in Eq. (4.4). Generically, their contribution should be

suppressed by another factor of v2/⇤2 compared to the D=6 ones, and therefore

they should be subleading if ⇤ � v. However, since the experimental precision

of the LHC Higgs measurements is currently moderate, O(10%) at best, they

only probe D = 6 operators with ⇤ . few hundred GeV. For such a low ⇤

it is not a priori obvious that the D=8 operators are subleading. One way to

estimate their e↵ect is to include in the analysis corrections to Higgs and WW

observables that are quadratic in the Wilson coe�cients of D=6 operators, as

they are also of O(⇤�4). If the constraints are severely a↵ected by including

the quadratic contributions, that would signal a potential sensitivity to D=8

operators 8. In fact, the TGC constraints from LEP-2 or the Higgs constraints

from the LHC Run1 alone are completely changed after including the quadratic

terms [31, 33]. However, I find that the combined data are only moderately

sensitive. If all O(⇤�4) and higher-order e↵ects of D=6 operators are kept in

the EFT expressions for Higgs and TGC observables, then I get the following

constraints: 0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�cz

czz

cz⇤

c��

cz�

cgg

�yu

�yd

�ye

�z

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�0.07± 0.09

0.11± 0.29

�0.06± 0.13

0.0024± 0.0071

�0.019± 0.060

�0.0017± 0.0009

�0.02± 0.13

�0.40± 0.19

�0.18± 0.14

�0.058± 0.043

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.22)

8Keeping the quadratic terms while neglecting D=8 operators can be justified for certain classes
of UV completions of the EFT [72,88].
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Constraints on Higgs couplings and vertex corrections 
to be constantly updated  (more results are coming)

Model-independent tree-level constraints on 
remaining dimension-6 operators

Interfacing likelihoods to Rosetta

Additional constraints from Higgs differential 
distributions (once better statistics available)

Electroweak precision constraints including 1-loop 
corrections from dimension-6 operators 

Experimental identification of deviations from SM and 
of interpreting them in language of  dimension-6 
operators in SM EFT.  Using this, pinpointing scale and 
form of new physics,  so as to create a beacon for 
next generation experiments 

Future directions
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