

http://web.nano.cnr.it/SoulMan

Disegnare la luce: la fotonica con i nanomateriali.

Alessandro Tredicucci Dipartimento di Fisica "Enrico Fermi" Università di Pisa

Che cos'è la luce?

Onda elettromagnetica

Particella: i fotoni Il numero di fotoni ci dice quanto è intensa la radiazione

Photon engineering

Paradigma dell'ottica moderna: "disegnare" il modo in cui la radiazione interagisce con la materia

Idea: strutture sub-wavelength microcavità, cristalli fotonici, metamateriali

Controllo in "quattro" dimensioni

Esaltare l'interazione

Cristalli Fotonici

dielectric spheres, diamond latti

Cristalli fotonici naturali

Applicazioni

Ottica guidata

Cavità laser

La rifrazione

La velocità della luce cambia nel materiale (indice di rifrazione): cambia la lunghezza d'onda

La rifrazione

La velocità della luce cambia nel materiale (indice di rifrazione): cambia la lunghezza d'onda

Metamateriali (progetto n)

Rifrazione negativa

Metamaterial with negative refractive index

Light is refracted sharply when it enters a material with negative refractive index Microcoil

Refraction of light by a conventional material

Illustration by Nariyuki Yoshihara

Mantello dell'invisibilità

Lenti?

 Particolare forma delle lenti fa convergere o divergere i raggi luminosi

 Quanto sottili possono essere? Basta una superficie?

Microcavities

need mechanism to trap light for long time

metallic cavities:

good for microwave,

dissipative for infrared

[llnl.gov]

 VCSEL

 [fotonik.dtu.dk]

 origin Aperture

 origin Aperture

 origin Aperture

 origin Aperture

 Substrate

 photonic bandgaps

 (complete or partial)

(complete or partia + index-guiding)

[Xu & Lipson (2005)]

ring/disc/sphere resonators: a waveguide bent in circle, bending loss ~ exp(-radius)

[Akahane, Nature 425, 944 (2003)]

(planar Si slab)

Weak coupling

High efficiency LEDs Thresholdless lasers

Solid state physics:

excitons (bulk, QWs or QDs in semiconductor microcavities)

qubits (cooper pair quantum-box in microwave resonators)

Polariton BEC

Polaritons are bosons (almost)
Non equilibrium
Low effective mass
Coherent light

Polariton lasers

Final state stimulation:

polariton scattering on phonon bath is proportional to 1 + occupation number of final polariton state

Shaking the quantum vacuum

Giuseppe Ruoso - Les Houches - June 9, 2005

Getting photon pairs by modulating the quantum vacuum of a cavity system The search for the dynamical Casimir effect

Non-adiabatic switching of ultrastrong coupling

 $T_{\rm L} = 300 \ {\rm K}$

- Initially: bare cavity
- Control pulse induces ultrafast reflectivity changes of order 1
- No gradual bifurcation (compare to power tuning)
- Discontinuous, non-adiabatic switching from bare cavity to ultrastrongly coupled cavity polariton modes

G. Günter et al., Nature **458**, 178 (2009)

Perspectives

MIR-BOSE

- release of correlated photon pairs out of the quantum vacuum?
- similar to dynamical Casimir effect and Unruh-Hawking radiation of black holes

Ultrafast and scalable room-temperature
 optical switching and mode-locked QCLs

LED = emissione spontanea

Braunstein: anni 50 prime misure dell'emissione spontanea in GaAs e altre leghe.

- Biard e Pittman: primi dispositivi elettroluminecenti in GaAs e brevetto (Texas Instruments) 1961
- Holonyak: 1962 primi LED visibili (General Electrics)

Laser = emissione stimolata + cavità

Guadagno > perdite = autoscillazione

Schawlow & Townes Gould Maiman 1960 Hughes Laboratories

- Guadagno necessita inversione di popolazione per superare assorbimento
- Cavità serve per fornire feedback

Laser a semiconduttore

Basov

Hall (1962) at General Electrics and other teams (IBM, MIT) Alferov (heterostructures)

- Laser a semiconduttore
 - Iniezione elettronica
 - Monolitici
 - Miniaturizzabili
 - Integrabili

Laser Diode Wire Bond Contact Red Laser Light Scattered Light 0.2 mm Heat Sink

Telecomunicazioni CD-ROM & players Codici a barre Armi intelligenti

Crescita epitassiale: MOCVD (anche MBE)

Molecular Beam Epitaxy (MBE)

Cross-section of a few stages of QC-laser crystal crystal growth one atomic layer at a time

- Many (~ 500), few-atoms thick layers of alloy materials (Al, Ga, As, In);
- atomic control of layer thickness, 1 nanometer (nm) = 4 atomic layers
- atomically flat layer interfaces

Dimensionalità

NATIONAL ENTERPRISE FOR NANOSCIENCE AND NANOTECHNOLOGY

Evoluzione dei laser a semiconduttore

Graphene

I billion euro EC project

GRAPHENE FLAGSHIP

Grafene: esotico e comune

2004 Andre Geim e Konstantin Novoselov isolano e osservano il grafene

2010 Nobel per la Fisica "... for groundbreaking experiments regarding the twodimensional material graphene"

Grafene: conduttore e semiconduttore

Elettronica "grafenica"

- più veloce
- meno dissipativa
- o più miniaturizzata

di quella tradizionale basata sul silicio...

... ma soprattutto con caratteristiche uniche...

Grafene ed energia

resistenza e flessibilità —— elettronica veloce integrabilità e miniaturizzazione

leggerezza trasparenza

Nella produzione di energia: fotovoltaico

dispositivi flessibili (indossabili) economici efficienti

Nell'immagazzinamento di energia:

Super batterie e super condensatori ad alta efficienza, trasportabili veloci ed economici vasta superficie
 accessibile per
 unità di massa

Graphene plasmonics?

Exceptional plasmonic material

Low propagation losses

High field localization

National Enterprise for nanoScience and nanoTechnology

Why graphene?

Excellent semiconductor / conductor

Ultra high mobilities

Gate tunable carrier density can be switched from holes to electrons

National Enterprise for nanoScience and nanoTechnology

THz photocurrent nanoscopy for mapping plasmons in THz photodetector

Near-field photocurrent nanoscopy developed at nanoGUNE and ICFO allows for mapping THz graphene plasmons in (split) gated devices.

Near-field photocurrent image shows fringes revealing the excitation of plasmons.

The fringe spacing as a function of incident frequency matches the simulated dispersion of THz graphene plasmons.

THz Imaging

400 x 700 Pixel Imaging