

Quark-Gluon Plasma: experimental overview -- selected topics --

A. Rossi, INFN Padova

Hadron Physics and Non Perturbative QCD 2017 - Pollenzo (CN)

22-24 May 2017

Phase diagram of ^{A. Beraudo this morning} strongly-interacting (QCD) matter

At high energy density ε (high temperature and/or high density) hadronic matter undergoes a phase transition to the Quark-Gluon Plasma (QGP): a state in which colour confinement is removed

Phase transition: confined state \rightarrow deconfined state

Lattice QCD calculations: Critical temperature at 0 baryon density~ 155 MeV Critical energy density $\varepsilon_c \sim 1 \text{ GeV/fm}^3 \sim 6-7 \varepsilon_{nucleus}$

QGP in laboratory: nucleus-nucleus collisions

 Can we form the QGP in laboratory? Need to compress/heat matter to very high energy densities.

- By colliding two heavy nuclei at ultra-relativistic energies we recreate, for a short time span (about 10⁻²³ s, or a few fm/c) the conditions for deconfinement
- As the system expands and cools down it undergoes a phase transition from QGP to hadron again, like at the beginning of the life of the Universe: we end up with confined matter again
- Chemical freeze out: time at which inelastic interactions cease
 →abundances of particle species (π,K,p,.. yields, not resonance) are fixed
- Kinetic freeze out: all interactions cease → free streaming of particles to detector

Ultra-relativistic heavy-ion accelerators

-- only main collision systems are indicated --

- **BNL-AGS**, early '90s, Au-Au up to $\sqrt{s_{NN}} = 5 \text{ GeV}$
- **CERN-SPS**, from 1994, Pb-Pb up to $\sqrt{s_{NN}} = 17 \text{ GeV}$
- BNL-RHIC, from 2000, Au-Au $\sqrt{s_{NN}} = 8 200 \text{ GeV}$
- **CERN-LHC**, from 2010, Pb-Pb $\sqrt{s_{NN}} = 2.76 5.5 \text{ TeV}$

Heavy-ion experiments at RHIC

+ (completed) PHOBOS, BRAHMS

Heavy-ion experiments at the LHC

Few introductory concepts: centrality, R_{AA}

Nuclear modification factor (R_{AA}) : compare particle production in Pb-Pb with that in pp scaled by a "geometrical" factor (from Glauber model) to account for the larger number of nucleon-nucleon collisions

Geometry of heavy ion collisions

Medium global properties

Energy density

• Particle multiplicity at mid-rapidity \rightarrow transverse energy density

see also R. Preghenella's talk

Kinetic freeze-out temperature

Combined fit to several particle spectra \rightarrow system properties at kinetic freeze-out "Blast-wave" model: thermalized volume elements expanding in a common velocity field (\rightarrow convolution of thermal velocity with expansion velocity)

• Goodness of the global fit \rightarrow hydro-dynamical description holds

Kinetic freeze-out temperature

Combined fit to several particle spectra \rightarrow system properties at kinetic freeze-out "Blast-wave" model: thermalized volume elements expanding in a common velocity field (\rightarrow convolution of thermal velocity with expansion velocity)

- Goodness of the global fit \rightarrow hydro-dynamical description holds
- In central collisions at LHC: T_{kin}~ 90 MeV, transverse expansion velocity ~0.65 c

see also R. Preghenella's talk

Particle ratios

Strong modification of p/π vs. pt from pp to central Pb-Pb collisions ("radial flow peak")

Indication of collective behaviour

- Pressure gradients leads to radial flow
- Same "velocity" boost gives larger momentum to heavier particles
- Alternative/concurrent explanation: hadronisation via quark coalescence → higher momentum for baryons (3 quarks) than mesons (2 quarks): challenged by φ/p ratio

3

p_{_} (GeV/*c*)

2

Thermal model and chemical freeze-

out temperature

Chemical freeze-out temperature estimated from **relative particle abundances** Model assuming statistical hadronization: particle abundances determined by their mass and quantum numbers (spin) at by system properties (T_{ch} , u_{B} ,..)

ALI-PREL-94600

Anisotropic (Elliptic) flow

Reaction

- Non-central collisions are azimuthally asymmetric
- → The transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena
- Large mean free path
 - plane
 particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path (\leftarrow low viscosity)
 - larger density gradient → larger pressure gradient → larger momentum
 - extreme: ideal liquid (zero mean free path, hydrodynamic limit)

Effects addressed by measuring the azimuthal distribution of the particles

$$\frac{dN}{p_T dp_T dy d\phi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T dy} \left(1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + ...\right)$$

$$v_2 = \text{Elliptic flow}$$

Anisotropic (Elliptic) flow

Elliptic flow (v₂) significantly>0

- Evidence of system collective motion
- "Early signal": develops in partonic phase
- Well described by hydrodinimical models
- Expected trends vs. particle mass
- ightarrow Thermalized partonic system
- → (via more detailed comparisons with models) Data suggest very low viscosity (← small mean free path)

System behaves as ~perfect liquid (the RHIC "paradigm")

JHEP 1609 (2016) 164

Constraining further viscosity: higher harmonics

Initial geometry is not an ideal almond shape

 ○ Fluctuations of initial energy/pressure distributions lead to "irregular" shapes (→ need more harmonics to describe them) that fluctuate event-by-event

Simulation of energy density evolution

Viscosity determines the "conversion efficiency" of the initial shape into final momentum azimuthal distribution

Higher harmonics add sensitivity to the value of shear viscosity

Constraining further viscosity: higher harmonics

Higher-harmonic coefficients significantly non-zero → discriminate and constraint models

Constraining further viscosity: example with a model J. E. Bernhard et al. Phys. Rev. C 94, 024907 (2016)

9 parameters: 3 initial state, 4 for QGP response, 2 model parameters

High-energy probes → microscopic processes (local interactions) in the medium

More in R. Arnaldi's talk

STC.

 $T/T_c 1/\langle r \rangle [fm^{-1}]$

Y(15)

χ_b(1P)

J/w(15) Y'(25)

Quarkonium suppression & regeneration

Hot QGP→ quarkonia suppression due to Debye-like screening of QCD QQ potential ("melting" of bound QQ states) → "historical" signature of deconfinement (T. Matsui and H. Satz, PLB 178 (1986) 416)

→ Sequential suppression of quarkonium states, stronger for less bounded states (S. Digal, P. Petreczky, H. Satz, PRD 64 (2001) 0940150)

Surprisingly similar J/ψ suppression at RHIC and SPS energies → Could quarkonia states be (re)generated via recombination (coalescence) of deconfined quarks?(P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196)

Quarkonium suppression & regeneration

 $T/T_{c} 1/(r) [fm^{-1}]$

Y(15)

χ_b(1P)

sT/

J/w(15) Y(25)

Hot QGP→ quarkonia suppression due to Debye-like screening of QCD QQ potential ("melting" of bound QQ states) → "historical" signature of deconfinement (T. Matsui and H. Satz, PLB 178 (1986) 416)

→ Sequential suppression of quarkonium states, stronger for less bounded states (S. Digal, P. Petreczky, H. Satz, PRD 64 (2001) 0940150)

Surprisingly similar J/ψ suppression at RHIC and SPS energies → Could quarkonia states be (re)generated via recombination (coalescence) of deconfined quarks?(P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196)

J/ψ suppression: LHC vs. RHIC

More in R. Arnaldi's talk

- J/ ψ suppression stronger in central events than peripheral
- Smaller suppression at LHC than RHIC
- Analysis vs. transverse momentum: suppression stronger at higher momentum. In agreement with models expecting about 50% contribution of J/ ψ from recombination at low p_{T} .

"Twice a signature of QGP"

J/ψ elliptic flow

Positive J/ ψ elliptic flow Expected for J/ ψ from recombination Remains high at high pt \rightarrow not expected from models

Bottomonium suppression

→Trend expected from "sequential suppression"

QGP tomography with high-energy partons

- Early production in hard-scattering processes with high Q^2
- Production cross sections calculable with pQCD
- Strongly interacting with the medium

Calibrated probes" of the medium

Study parton interaction with the medium

 energy loss via radiative ("gluon Bremsstrahlung") collisional processes

~ Study QCD "Bethe-Block" curve for partons in the QGP

Connection of "local" interactions with global medium properties → Microscopic description of the medium

e.g. in BDMPS-Z formalism*

$$\left<\Delta E\right>^{\mathrm{rad}} \propto \alpha_s C_R \hat{q} L^2$$

 $\hat{a} \left< k_{\mathrm{T}}^2 \right> \left< \mu^2 \right> a_{\mathrm{T}}$

$$\hat{q} = \frac{\langle 1 \rangle}{\lambda} = \langle k_{\rm T}^2 \rangle \rho \sigma$$

Transport coefficient(s)

*Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 29 Zakharov, JTEPL 63 (1996) 952.

QGP tomography with high-energy partons

QGP tomography with high-energy partons

Strong suppression of intermediate/ high $p_{\rm T}$ particles in central Pb-Pb collisions

Absent in p-Pb collisions (no QGP expected)

- \rightarrow final-state effect
- → Evidence of in-medium partonic energy loss

Open charm and beauty

 R_{AA} (J/ ψ from B) > R_{AA} (D) in central collisions

Indication of $\tilde{R}_{AA}(B) > R_{AA}(D)$

The different suppression and the centrality dependence as expected from **models with quark-mass dependent energy loss**

 $(\Delta E_{\rm g} > \Delta E_{\rm lq} \ge \Delta E_{\rm c} > \Delta E_{\rm b})$

Expected from dead cone effect:

Open charm and beauty

 \rightarrow Possible thermalisation?

Jet quenching

Jets are "extended" objects \rightarrow provide complementary information to single particle observables

Address spatial distribution and kinetic properties of radiated energy

Out-of-cone radiation → jet suppression

- Kinetic properties
- Spatial distribution of jet constituents
- Particle specie composition

Many studies performed \rightarrow E. Bruna's talk

Jet quenching with γ -jet

y-Jet

 $\boldsymbol{\gamma}$ provides calibration of jet energy before quenching

- medium effects via $\mathbf{x}_{J\gamma} = \mathbf{p}_{T,jet}/\mathbf{p}_{T,\gamma}$ and $\Delta \phi$ decorrelation Central 0-10% PbPb compare to pp
 - $< x_{J_{\gamma}} >$ shifted towards lower value
 - ➔ Strong energy loss for associated jet.
 - $\Delta \phi$ distribution consistent with pp data
 - → Little modification of the jet direction.

QGP in small systems?

More in P. Bartalini's talk Long range correlations and flow in p-Pb

Large v_2 (elliptic flow) values!

Mass ordering and "crossing" similar to Pb-Pb, where data are reproduced by hydrodynimical models

More in P. Bartalini's talk

Strangeness enhancement

- Increase of strange particle yield with collision centrality
- Stronger effect for particles with larger strangeness content
- Historical QGP "smoking gun" (Rafelski, Müller, PRL48(1982)1066), associated with chiral symmetry restoration and removal of canonical suppression

Now observed also in pp collisions at high multiplicity

 \rightarrow New research direction

... only a snapshot of the main results presented, see also talks by R. Arnaldy, P. Bartalini, E. Bruna, R. Preghenella, S. Bufalino

After 30 years of studies QGP formation in heavy-ion collisions quite established

The experimental goal is now to measure precisely its properties and achieve a comprehensive microscopic description of the medium

- Event-by-event studies and fluctuations
- Push precision for particle chemistry (baryon/mesons, resonances,...) •
- Hard-probes: still much room for improving precision and for more • differential measurements \rightarrow still a lot to learn!

Recent years: indication of collective QGP-like effects in small collision systems with particle multiplicity a possible "collant"/common scale \rightarrow Really QGP in pp/p-A collisions?

- \rightarrow Possibility to study onset of these phenomena?
- \rightarrow New research direction

A lot of work for ongoing and future/upgraded experiments!

CMS

Extra

Anisotropic (Elliptic) Flow

• Non-central collisions are azimuthally asymmetric

System size: HBT interferometry Hanbury-Brown and Twiss

System size: HBT interferometry Hanbury-Brown and Twiss

"Bose-Einstein" enhancement in the momentum correlation of identical bosons emitted close in phase ——> Probe "homogeneity emission region" and decoupling time

System size: HBT interferometry Hanbury-Brown and Twiss

"Bose-Einstein" enhancement in the momentum correlation of identical bosons emitted close in phase —— Probe "homogeneity emission region" and decoupling time

source emitting particles Phys. Lett. B 696 (2011) 328 R_{out} (fm) (ta Phys. Lett. B 696 (2011) 328 R_{out} (fm) E895 2 7 3 3 3 8 4 3 GeV B_{side} NA49 8.7, 12.5, 17.3 GeV 6 ^{′0}000000 SOURCE ALICE Pb-Pb 2.76 TeV (tm STAR 62.4, 200 GeV o STAR Au-Au 200 GeV ☆ b) PHOBOS 62.4, 200 GeV В side 8 0L ALICE 2760 GeV ᅇ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $\langle k_{\tau} \rangle$ (GeV/c) $\langle k_{\perp} \rangle$ (GeV/c) two identical pions, $\pi^+\pi^+$, $\pi^-\pi^$ $p^{\mu}_{(1)}$ R_{long} (fm) Hout/Hout R_{long} (fm) ····· KRAKOW 1.2 – – HKM $\pi_{(1)}$ AZHYDRC $p^{\mu}_{(2)}$ – HRM ^{′0}00 0 $x^{\mu}_{(1)}$ 0.8 KRAKOW HKM $\pi_{(2)}$ 2 0.6 **AZHYDRO** HRM $x^{\mu}_{(2)}$ í٥ 2 4 6 8 10 12 14 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $\langle dN_{_{Ch}}\!/\!d\eta\,\rangle^{_{1/3}}$ ALI−PUB−1 (k_a) (GeV/c)

 $\langle k_{-} \rangle$ (GeV/c)

Started to extract information from data

From analysis of inclusive charged particle spectra at RHIC and LHC and considering many models

Nucl.Phys. A931 (2014) 404-409 $\hat{q} = 1.2 \pm 0.3 \text{ GeV}^2/\text{fm} \text{ (central Au-Au } \sqrt{s_{\text{NN}}} = 200 \text{ GeV} \text{)}$ $\hat{q} = 1.9 \pm 0.7 \text{ GeV}^2/\text{fm} \text{ (central Pb-Pb } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \text{)}$

from J. Liao, QM2017

QGP tomography with heavy quarks

Hard

Production

- Early production in hard-scattering processes with high Q^2_{\checkmark}
- Production cross sections calculable with pQCD
- Strongly interacting with the medium

Study parton interaction with the medium

- energy loss via radiative ("gluon Bremsstrahlung") collisional processes
 - > path length and medium density
 - > color charge (Casimir factor)
 - y quark mass (e.g. from dead-cone effect)
 - medium modification to HF hadron formation
 - hadronization via quark coalescence
 - participation in collective motion ightarrow flow

ω=(1-x)E

Medium

D

> at all p_{T} for charm and beauty

 $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{h}$

(large masses >> Λ_{OCD})

Quarkonium in the QGP

More in R. Arnaldi's talk

Recall: quant-antiquark QCD potential

$$V(r) = -\frac{\alpha}{m} + kr$$

The QGP consists of deconfined colour charges → screening effect

V(r)

λ_D: screening radius

the binding of a $q\overline{q}$ pair is subject to the effects of colour screening:

• the "confinement" contribution disappears

• the coulombian term of the potential is screened by the high color density

Quark-Gluon Plasma (QGP): the first "matter" in the primordial Universe

quark-gluon plasma

formation of protons/neutrons

formation of atomic nuclei

The phase transition from quarks to hadrons occurred in the cooling Universe 10-20 μs after the Big Bang

Temperature from Photon spectrum

- Photons in heavy-ion collisions
 - Photons from QCD hard scattering: power law spectrum dominant at high $\ensuremath{p_{\text{T}}}$
 - Thermal photons, emitted by the hot system (analogy with black body radiation): exponential spectrum – dominant at low p_T
 - From inverse slope:

$$T_{eff} = 304 \pm 41 \text{ MeV}$$

~ 2 $T_c (T_c \sim 160 \text{ MeV})$
~ 1.25 x $T_{eff}(\text{RHIC})$

Beauty nuclear modification factor

Beam-energy scan at RHIC

Lattice QCD: Phase Transition

Lattice QCD is neither a calculation not a simulation: "realization" of QCD over a discretized space. It allows to compute thermodynamical properties of a system even in a non-perturbative regime of QCD

 \mathcal{E}

- Zero baryon density, 2(u, d) or 3 (u, d, s) quark flavours
- ϵ changes rapidly around T_c
- \rightarrow signal change in number of degrees of freedom
- Most recent calculations:

$$T_c \sim 155 \text{ MeV}$$
 :

F. Karsch. Lattice QCD at High Temperature and Density. Lecture Notes of Physics, vol. 583, 2002. arXiv:hep-lat/0106019.

Lattice QCD: Phase Transition

Lattice QCD is neither a calculation not a simulation: "realization" of QCD over a discretized space. It allows to compute thermodynamical properties of a system even in a non-perturbative regime of QCD

F. Karsch. Lattice QCD at High Temperature and Density. Lecture Notes of Physics, vol. 583, 2002. arXiv:hep-lat/0106019.

Constraining further viscosity: example with a model

J. E. Bernhard et al. Phys. Rev. C 94, 024907 (2016)

Restoration of bare quark masses

- Confined quarks acquire an additional mass (~ 350 MeV) dynamically, through the confining effect of strong interactions
- Deconfinement is expected to be accompanied by a restoration of the masses to the "bare" values they have in the Lagrangian
 - m(u,d): ~ 350 MeV → a few MeV
 - m(s): ~ 500 MeV → ~ 150 MeV
- (This effect is usually referred to as "Partial Restoration of Chiral Symmetry". Chiral Symmetry: fermions and antifermions have opposite helicity. The symmetry is exact only for massless particles, therefore its restoration here is only partial)

X.Zhu et al., PLB 647 (2007) 366