

Measurement of the \bar{p} production cross-section in pHe collisions with the LHCb experiment at CERN

Lucio Anderlini on behalf of the LHCb Collaboration

Sezione di Firenze

LHCb: fixed-target geometry installed at a collider

The LHC *pp* collisions are the most intense *b*-quark source on Earth.

LHCb is the LHC experiment originally designed for heavy flavour physics.

Today considered a "general purpose detector" in the forward region.

To enhance acceptance for heavy hadrons (with *b* and *c* quarks), LHCb has a "forward" geometry customary at fixed-target experiments.

JINST 3 (2008) S08005

LHCb: fixed-target geometry installed at a collider

Best luminosity measurement with *beam-gas* collisions

The uncertainty on the integrated luminosity affects **all** production measurements in *pp* collisions: **precision on the lumi measurement is important!**

The SMOG (System for Measuring the Overlap With Gas) system was introduced in LHCb as a complement to Van der Meer scans.

The collisions of protons with noble gases injected in the *beam-pipe* allows 3D reconstruction of the beams.

Uncertainty combining the two methods: 1.12% Best luminosity measurement achieved at a "*bunched*" collider.

Physics with SMOG

SMOG collisions became interesting also for nuclear physics:

- intermediate energy between SPS and LHC $\sqrt{s} = [69, 115]$ GeV
- Variety of gases injectable in the beam pipe

Exploits *bunch crossings* with a filled bunch in beam 1 (towards LHCb) and an empty bunch in beam 2: *beam-empty* collisions.

LHCb-CONF-2017-001

LHCb-CONF-2017-001

System	Duration	VSNN	Protons on target
pHe	7h	110 GeV	2×10 ²¹
pNe	12h	110 GeV	1×10^{21}
pAr	17h	110 GeV	4×10 ²²
pAr	11h	69 GeV	2×10 ²⁰
PbAr	100h	69 GeV	2×10 ²⁰
<i>p</i> He	18h	110 GeV	3×10 ²¹
pHe	87h	87 GeV	4×10 ²²
pNe pAr pAr PbAr pHe pHe	17h 11h 100h 18h 87h	110 GeV 110 GeV 69 GeV 69 GeV 110 GeV 87 GeV	$ \begin{array}{r} 1 \times 10 \\ 4 \times 10^{22} \\ 2 \times 10^{20} \\ 2 \times 10^{20} \\ \hline 3 \times 10^{21} \\ 4 \times 10^{22} \end{array} $

Lucio Anderlini (INFN Firenze)

Antiprotons from cosmos

A measurement of the antiproton component of cosmic rays was recently achieved by AMS-02 [PRL 117, 091103 (2016)].

It confirms the earlier observations from PAMELA [Nature 458 (2009) 607-609].

BSM models describing the annihilation of dark-matter predict an increase in the flux of antiprotons at high energy [link].

The uncertainties are dominated by component of antiprotons produced in the collisions of primaries (protons) with **interstellar matter** (H and He).

Antiproton production cross-section in *p*He collision was never measured.

The available prediction are based on *p*-H and *p*-C collisions at lower energies.

NPQCD17 - Pollenzo

7

5 hour datataking with Helium in the beam-pipe

Lucio Anderlini (INFN Firenze)

Antiproton identification with Cherenkov radiation

Lucio Anderlini (INFN Firenze)

Likelihood for the three mass hypotheses (π , K and p) is computed from the Cherenkov photons produced in the two RICH detectors.

All the other likelihoods are referred to the pion hypothesis and expressed as log: differential log likelihoods.

Measuring $\sigma(p \text{ He} \rightarrow \overline{p} X)$ with LHCb al CERN

May 22nd

9

Antiproton identification with Cherenkov radiation

Negative tracks are statistically compared to template distributions of background-subtracted samples of **pions**, **kaons** and **antiprotons** collected in **pp** and **pHe** collisions and **simulation**.

LHCb-PUB-2016-005

Total number of antiprotons

Residual Vacuum Background

Dedicated "no-gas" data-taking to study the collisions of the proton beam with the residual vacuum within the beam-pipe.

The residual gas is dominated by hydrogen: *lower average track multiplicity.*

The small contribution from proton-hydrogen collisions

0.66 <u>+</u> 0.06 %

is subtracted.

Luminosity and normalization

To avoid uncertainties from gas density, use a normalization channel: elastic pe scattering

Luminosity and normalization

To avoid uncertainties from gas density, use a normalization channel: elastic pe scattering

Background to the normalization channel

Gamma conversions in the detector material and soft pion pairs produced in diffractive *pp* collisions can mimic the elastic scattering if the negative leg is lost.

However, both processes are charge-symmetric: observed single-positive-track events are used to subtract the background.

Excellent agreement with the **simulation** is achieved.

The luminosity,

 $\mathcal{L} = 0.443 \pm 0.011 \pm 0.027\,\text{nb}^{-1}$

corresponds to 2.4 10⁻⁷ mbar, is in good agreement with SMOG design.

Budget of the uncertainties on σ (p He $\rightarrow \overline{p}$ X)

Total uncertainty, bin by bin (%)

LHCb-CONF-2017-002

Results

Prompt antiproton production cross-section.

Total inelastic cross-section

 $\sigma_{inel}^{\text{LHCb}} = (140 \pm 10) \text{ mb}$

slightly exceeding the EPOS prediction:

118 mb

The ratio is 1.19 ± 0.08

LHCb-CONF-2017-002

- EPOS LHC
 - EPOS 1.99
- QGSJETII-04
- HIJING 1.38

EPOS LHC underestimates antiproton production by about 30%.

Better agreement with EPOS 1.99 and HIJING.

19

Outlook

On the antiproton production

- analyse the LHC data at 4 TeV (already taken)
- determine the production of antiprotons from hyperons (measuring at least Λ⁰ production) stimata al (2.6 ± 0.6) % in the current analysis.

More to come from the LHCb-as-a-fixed-target-experiment experiment

- particle/anti-particle ratio
- charm, charmonia

• .

Conclusion

The **SMOG** system for the luminosity measurement opened to new opportunities for studying **proton-gas collision physics** at the LHC energy

LHCb can study the *p*He collisions emulating the collisions of primary cosmic rays with **interstellar medium**.

The measurement of the antiproton production cross-section in *pHe* collisions is an unexpected contribution from LHCb to the **cosmic ray physics**.

We are grateful to **O. Adriani**, **L. Bonechi**, **F. Donato**, and **A. Tricomi** for having proposed and discussed with us this measurement!

The new information on the secondary production of antiprotons will **reduce significantly the uncertainties on the predictions for the p/p ratio** in cosmic rays.

