

Baryons and pentaquarks

Roberta Cardinale

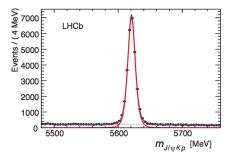
University of Genova and INFN Genova

NPQCD 2017 Pollenzo (CN), 22-24 Maggio 2017

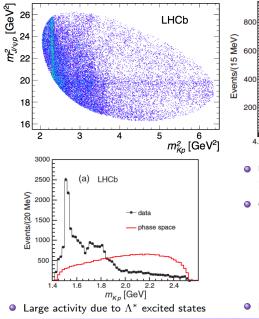
Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017

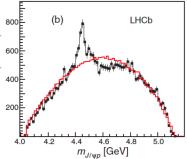
1

Outline

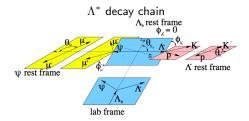

Pentaquarks searches

- Exotic baryonic resonances in Λ⁰_b → J/ψpK⁻ [LHCb, PRL 115 (2015) 072001 - LHCb, PRL 117, 082002 (2016)]
- and in $\Lambda_b^0 \to J/\psi p \pi^-$ [LHCb, PRL 117, 082002 (2016)]
- Observation of $\Xi_b^- \to J/\psi \Lambda K^-$ [LHCb, arXiv: 1701.05274]
- Observation of $\Lambda_b^{\bar 0} \to \chi_{c(1,2)} p K^-$ decays [LHCb, arXiv: 1704.07900
- Standard baryon spectroscopy
 - Heavy-dilight baryons
 - Observation of five new narrow Ω^0_c states decaying to $\Xi^+_c K^-$ [LHCb, PRL 118 (2017) 182001]
 - Excited Λ_c^+ states in $\Lambda_b^0 \to D^0 p \pi^-$ [LHCb, arXiv:1701.07873]
 - Improved measurement of Ξ_c masses and first observation of $\Xi_c(3055)^0$ state [Belle, PRD 94, 032002 Belle, PRD 94, 052011 (2016)]
 - Beauty baryons
 - ^{*}/_b states [CMS, PRL 108 (2012) 252002, LHCb, PRL 114 (2015) 062004 - LHCb, JHEP 05 (2016) 161]


Exotic baryonic resonances in $\Lambda^0_b\to J/\psi pK^-$ [LHCb, PRL 115 (2015) 072001, PRL 117, 082002 (2016)] and in $\Lambda^0_b\to J/\psi p\pi^-$ [LHCb, PRL 117, 082002 (2016)]


$\Lambda_b o J/\psi K^- p$ [lhcb, prl 115 (2015) 072001]

- Sample with $> 26000 \Lambda_b^0$ signal candidates in $3 \, {\rm fb}^{-1}$
- Background from sidebands: only 5.4% of combinatorial bkg in the signal region

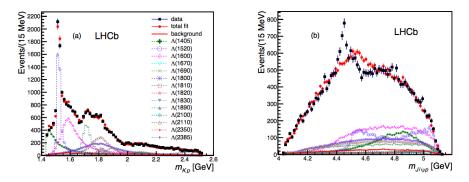

- The decay was used to measure Λ_b^0 lifetime [LHCb, PRL111 (2013) 102003]
- But looking closer at the $J/\psi pK$ Dalitz plot with $3\,{
 m fb}^{-1}$ of data

- Unexpected narrow peak in the $m_{J/\psi p}$ at $19.5\,{\rm GeV}^2$
- Cross-checks to exclude possible artifacts:
 - Efficiencies vary smoothly
 - Veto of the $B_s \rightarrow J/\psi KK$ and $B^0 \rightarrow J/\psi K\pi$ after swapping the mass hypothesis of the Λ_b daughters
 - Removed clone and ghost tracks
 - Not a partially reconstructed Ξ_b decay
- None of them explained the narrow peak

- Could the interference between Λ^* resonances generate a peak in the $J/\psi p$ mass spectrum?
- Analyze all dimensions of the $\Lambda_b^0 \to J/\psi p K^-$, $J/\psi \to \mu^+ \mu^-$ decay kinematics:
 - to maximise sensitivity to the decay dynamics
 - to avoid biases due to averaging over some dimensions in presence of the non-uniform detector efficiency
- 6D amplitude fit based on the helicity formalism using the isobar model: the matrix element \mathcal{M} is parametrized as a function of the invariant mass m_{pK}^2 and 5 angles (helicity and decay planes angles)
- Two different background subtraction methods have been investigated

Amplitude analysis with Λ^*

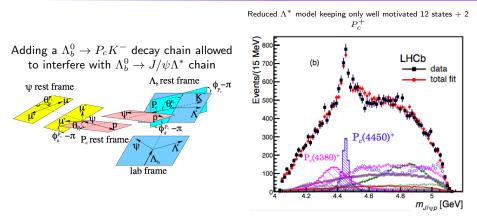
- Dynamical amplitudes given by relativistic Breit-Wigners plus the Flatte parametrization for the $\Lambda(1405)$
- Two models: Reduced (No high- J^P high-mass states, less LS-coupling) and Extended with all known Λ^* states


State	JP	M_0 (MeV)	Γ ₀ (MeV)	Red.	Ext.
Λ(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
Λ(1520)	3/2-	1519.5 ± 1.0	15.6 ± 1.0	5	6
Λ(1600)	$1/2^{+}$	1600	150	3	4
Λ(1670)	1/2-	1670	35	3	4
Λ(1690)	3/2-	1690	60	5	6
Λ(1800)	$1/2^{-}$	1800	300	4	4
Λ(1810)	$1/2^{+}$	1810	150	3	4
Λ(1820)	$5/2^{+}$	1820	80	1	6
Λ(1830)	5/2-	1830	95	1	6
Λ(1890)	$3/2^{+}$	1890	100	3	6
Λ(2100)	7/2-	2100	200	1	6
Λ(2110)	5/2+	2110	200	1	6
Λ(2350)	9/2+	2350	150		6
Λ(2585)	?	≈2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed.

7

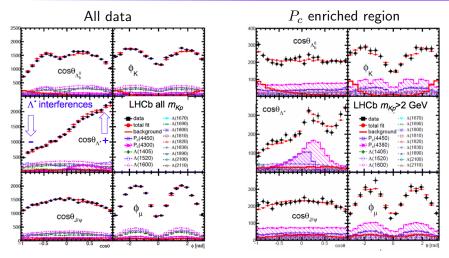
Fit results without pentaquark states


• m_{Kp} projection looks fine, but the fit projection can't reproduce the peaking structure in $J/\psi p$

- Extended model used in this fit: adding more Λ resonances does not help
- Letting the width and masses floating does not help
- ${\rm \bullet}\,$ Additions of non-resonant term and suppressed Σ^* states does not help

P_c^+ : Fit results with pentaquark states

[LHCb, PRL 115 (2015) 072001]



- Reduced Λ^* model + 2 pentaquarks
 - $\bullet~$ Good fit even with the reduced Λ^* model
 - Best fit has $J^P = (3/2^-, 5/2^+)$ also $(3/2^+, 5/2^-)$ and $(5/2^+, 3/2^-)$ preferred
 - Adding further states (also in $J/\psi K$) did not improve the fit significance

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 9

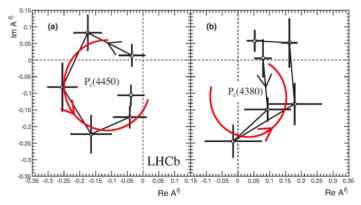
Angular distributions

[LHCb, PRL 115 (2015) 072001]

• Good description of the data in all 6 dimensions!

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 10

Significances and results [LHCb, PRL 115 (2015) 072001]


• Simulations of pseudo-experiments are used to quote the significances

- $P_c(4450)^+$: 12σ
- $P_c(4380)^+: 9\sigma$
- Main systematic uncertainty: difference between extended and reduced fit models
- Systematic uncertainty included when computing significances
- Spin-parity assignment not conclusive

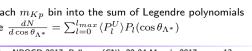
State	Mass [MeV]	Width [MeV]	fav. J ^P	Fit fraction
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$3/2^{-}$	$(8.4 \pm 0.7 \pm 4.2)$ %
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	$5/2^+$	$(4.1 \pm 0.5 \pm 1.1)$ %

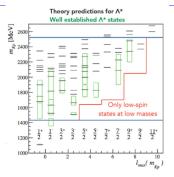
Argand diagrams [LHCb, PRL 115 (2015) 072001]

• Alternative fit: replace BW amplitude with 6 independent complex numbers in 6 bins of $m_{J/\psi p}$ in region $m_0 \pm \Gamma_0$ where m_0 is the mass of P_c^+



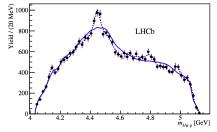
- $\bullet \ P_c(4450)$ shows resonance behaviour: a rapid counter-clockwise change of phase across the pole mass
- The errors for $P_c(4380)$ are too large to be conclusive

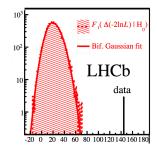

Model independent analysis of $\Lambda_h^0 \rightarrow J/\psi p K^-$


[LHCb, PRL 117 082002]

- Amplitude analyses are powerful tool but are model dependent
- The Λ^* spectroscopy is complex and not completely understood
- High density of states with large widths
- Not trivial to model NR components: the NR K^-p component could have non trivial mass-dependence
- Isobar model has well known limitation: unitarity violation when adding broad overlapping states. K-matrix formalism?

- Inspect the data with a model independent approach wrt K^-p contributions
- Allow a maximum spin of Λ^* components in each interval of Kp invariant mass 0
- 0 Decompose angular distribution in each m_{Kp} bin into the sum of Legendre polynomials calculated from the Λ^* helicity angle $\frac{dN}{d\cos\theta_{\star\star}} = \sum_{l=0}^{l_{max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$

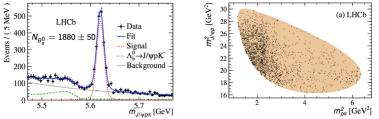



Model independent analysis of $\Lambda_b^0 \to J/\psi p K^-$

[LHCb, PRL 117 082002]

- A normalized weight is calculated and used to reweight generated uniformly in $(m_{Kp}, \cos \theta_{\Lambda^*})$ simulated events by the m_{Kp} and moments to obtain a prediction for $m_{J/\psi p}$ distribution
- null hypothesis gives poor description of $m_{J/\psi p}$

- Hypothesis test through likelihood ratio
- Compare null hypothesis with data



• The hypothesis that data can be described by reflections of Kp structures is excluded at 9σ !

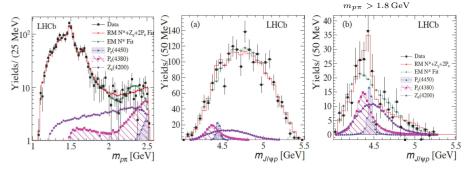
 ${\ensuremath{\bullet}}$ This result supports the amplitude model-dependent observation of the $J/\psi p$ resonances

Search for exotics in $\Lambda^0_b o J/\psi p\pi^-$ [lhcb, prl 117, 082003 (2016)]

- Observing the same P_c^+ states in a different decay mode could indicate they are really resonances and not some kinematic effects [arXiv:1512.01959]
- No striking features in the Dalitz plot [N(1535), $Z_c(4200)^+$?, P_c ?]

• Limited sample size (Cabibbo suppressed decay with statistics about factor 10 lower and background $\sim 20\%,\,3\times$ larger)

• Six-dimensional fit to interfering amplitudes: more complicated dynamics


•
$$\Lambda_b^0 o J/\psi N^*$$
 dominant contributions

•
$$\Lambda_b^0 \to P_c^+ \pi^-$$

• $\Lambda_b^0
ightarrow Z_c p$ [PRD 90 (2014) 112009]

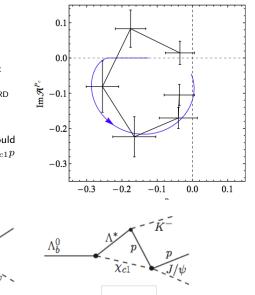
Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 15

- $N^* \to p\pi^-$ contributions:
 - Baseline: isobar $p\pi^-$ with 7-14 states
 - Tried BW and Flatté for N(1535) (opening of nη threshold)
 - Cross-check: K-matrix for $1/2^- p\pi^-$ contributions [arXiv:0911.5277]
- P_c^+ and Z_c^- parameters fixed (limited statistics)

- The combined significance of these three exotic states together is more than 3σ : evidence for exotic hadrons. Individual exotic hadron contributions are not significant.
- Fit fractions consistent with what expected for the Cabibbo suppressed decay

Observation of $\Lambda_b \to \chi_{c(1,2)} p K^-$ decays and measurement of the Λ_b^0 mass

[LHCb, arXiv: 1704.07900]

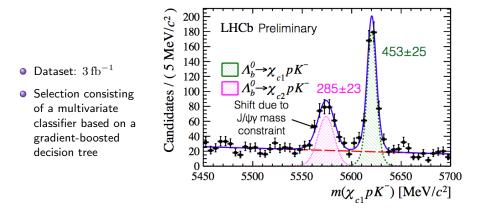

Test of the exotic nature of $P_c(4450)$

- P_c(4450)⁺ is close to χ_{c1}p threshold: could be explained by kinematic rescattering effects [PLB 751 (2015) 59, PRD 91 (2015) 071502 (R)]
- Information from \(\chi_c1p\) can help to understand observed pentaquarks: would not explain narrow enhancement in \(\chi_c1p\)

K-,'

 χ_{c1}

 Λ_b^0


18

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017

Observation of $\Lambda_b \rightarrow \chi_{c(1,2)} p K^-$

[LHCb, arXiv: 1704.07900]

• Reconstructed with $\chi_{c(1,2)} \rightarrow J/\psi\gamma$ with $J/\psi\gamma$ mass constrain to the χ_{c1} mass

• Observed two modes: $\Lambda_b^0 \to \chi_{c1} p K$ (29 σ) and $\Lambda_b^0 \to \chi_{c2} p K$ (17 σ)

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 19

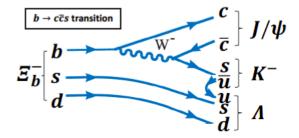
Observation of $\Lambda_b \to \chi_{c(1,2)} p K^-$ - Results

[LHCb, arXiv: 1704.07900]

• Measured branching ratios wrt $\Lambda_b^0 \to J/\psi p K$

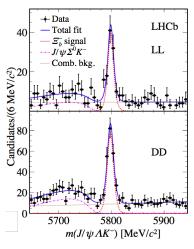
$$\begin{aligned} \frac{\mathcal{B}(A_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(A_b^0 \to J/\psi \, p K^-)} &= 0.242 \pm 0.014 \pm 0.013 \pm 0.009\\ \frac{\mathcal{B}(A_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(A_b^0 \to J/\psi \, p K^-)} &= 0.248 \pm 0.020 \pm 0.014 \pm 0.009\\ \frac{\mathcal{B}(A_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(A_b^0 \to \chi_{c1} p K^-)} &= 1.02 \pm 0.10 \pm 0.02 \pm 0.05 \end{aligned}$$

where the first uncertainty is statistical, the second systematic and the third due to the uncertainty on the branching fractions of the $\chi_{c1(2)} \rightarrow J/\psi\gamma$ decays


• Using both decay modes, measurement of the mass of Λ_b^0 :

$$m(\Lambda_b^0) = 5619.44 \pm 0.28 \pm 0.25 \,\mathrm{MeV}/c^2$$

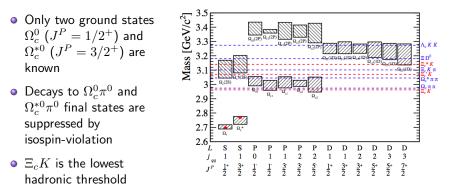
Observation of $\Xi_b \to J/\psi \Lambda K$ [LHCb, arXiv:1701.05274]


Observation of $\Xi_b o J/\psi \Lambda K$ [LHCb, arXiv:1701.05274]

- With observation of two hidden charm pentaquark states, quest for other such states
- Suggested to search for strangeness hidden charm pentaquark state $(udsc\bar{c})$ in the $J/\psi\Lambda$ system: predicted state with a mass of $4650 \,\mathrm{MeV}$ and a width of order of $10 \,\mathrm{MeV}$ [PRC 93 (2016) 065203]
- $\Xi_b \to J/\psi \Lambda K$ channel has a similar topology to $\Lambda_b^0 \to J/\psi p K$ mode by replacing the u by the s quark

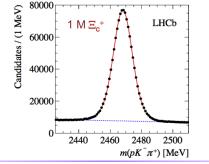
Observation of $\Xi_b o J/\psi \Lambda K$ [LHCb, arXiv:1701.05274]

- Λ can decay inside (LL) or outside the vertex detector (DD)
- ~ 300 candidates in Run1 $(3 \, \mathrm{fb}^{-1})$
- J/ψ and Λ mass constrained
- First observation!
- Branching ratio measured relative to $\Lambda_b^0 \rightarrow J/\psi \Lambda$:

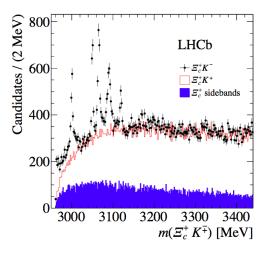

$$\frac{J_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi\Lambda K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi\lambda)} = (4.19 \pm 0.29(\text{stat}) \pm 0.14(\text{syst})) \times 10^{-2}$$

Baryon spectroscopy

Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+K^ _{\rm [LHCb,\ PRL\ 118\ (2017)\ 182001]}$


Excited Ω_c^0 states

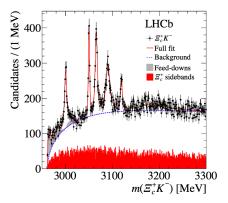
- Spectroscopy of charmed baryons is intricate
- Spectrum predictions using HQET: precise measurements of the excited heavy meson properties to test of the validity of HQET


Ξ_{c}^{+} sample

- $\Xi_c^+ \to p K^- \pi^+$: Cabibbo suppressed $c \to d$ decay
- No hyperons in the final state (tend to decay outside the vertex detector)
- Data sample: $1.0 \, \text{fb}^{-1}$ (7 TeV) + $2.0 \, \text{fb}^{-1}$ (8 TeV) + $0.3 \, \text{fb}^{-1}$ (13 TeV)
- Dedicated trigger in the 13 TeV data (and the larger collision energy): boost of the number of reconstructed Ξ_c^+ candidates in the 13 TeV sample (×3)
- Data-driven multivariate selection based on likelihood ratios (vertex χ^2 , proton and kaon PID, Ξ_c^+ FD, Ξ_c^+ p_T): 83% signal purity

$\Xi_e^+ K^-$ invariant mass

- \(\mathcal{E}_c^+\) candidates combined with opposite charge kaons
- 5 narrow peaks in the \(\mathbb{\exists}_c^+ K^-\) mass spectrum
- in addition an ehnancement around a mass of 3180 MeV
- No peaks in the wrong sign sample Ξ⁺_cK⁺
- No peaks in the \(\mathcal{E}_c^+\) sidebands K^- sample



Fit model

- 6 RBW convolved with Gaussian PDF (resolution 0.7-1.7 MeV)
- 3 feed-downs due to $\Omega^0_c\to\Xi_c^{'+}K^-$ with $\Xi_c^{'+}\to\Xi_c^+\gamma$
 - States with masses $M > m(\Xi'_c) + m(K)$ could decay also to $\Xi'_c K^-$ and appear into $\Xi_c K^-$ as partially reconstructed decays (i.e. feed-downs)
- Wrong-sign sample to study combinatorial background parameterisation

$$B(m) = \begin{cases} P(m)e^{a_1m + a_2m^2} & \text{for } m < m_0, \\ P(m)e^{b_0 + b_1m + b_2m^2} & \text{for } m > m_0, \end{cases}$$

where $P(\boldsymbol{m})$ is a two-body phase-space factor, $\boldsymbol{m}_0, \, \boldsymbol{a}$ and \boldsymbol{b} are free parameters

Results

- Observation of 5 new excited Ω_c states with significances greater than 5σ
- The broad state $(\Omega_c(3188))$ could be a superposition of several states
- The largest systematic uncertainty is due to possible interference and due to the \(\mathcal{\Xi}_c^+\) mass knowledge

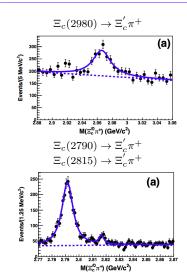
Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_c(3000)^0$	$3000.4\pm0.2\pm0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm~80$	20.4
$\Omega_c(3050)^0$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm~60\pm~20$	20.4
		$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm~50$	23.9
$arOmega_c(3090)^0$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$arOmega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$< 2.6\mathrm{MeV}, 95\%$ CL		
$\Omega_c(3188)^0$	$3188\pm5\pm13$	$60\pm~15\pm11$	$1670\pm450\pm360$	
$\Omega_c(3066)^0_{ m fd}$			$700\pm~40\pm140$	
$arOmega_c(3090)^0_{ m fd}$			$220\pm~60\pm~90$	
$arOmega_c(3119)^0_{ m fd}$			$190\pm70\pm20$	

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017

30

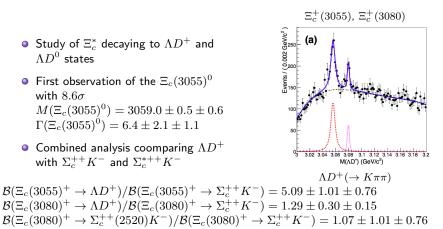
 Ξ_c Charmed Baryon Decays at Belle using the entire $980\,{\rm fb}^{-1}$ of data [Belle, PRD 94, 032002 - Belle, PRD 94, 052011 (2016)]:

- using particles produced in the charm continuum
- easier to detect and with a better signal/noise ratio


•
$$\Xi_c^{*(*)} \to \Xi_c X$$
 decays

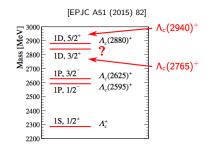
• $\Xi_c^{*(*)} \to \Lambda D$ decays

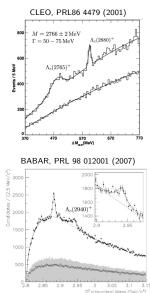
Ξ_c Charmed Baryon Decays at Belle [Belle, PRD 94,


032002]

- Study of 5 different Ξ_c states: $\Xi'_c (J^P = 1/2^+),$ $\Xi'_c (2646) (J^P = 3/2^+),$ $\Xi_c (2790) (J^P = 1/2^-),$ $\Xi_c (2815) (J^P = ?)$ using several decay modes
- Measurements of masses and widths
- All measured values significantly more precise than PDG: to investigate hadron mass models including isospin splittings
- Good agreement with theoretical expectations, modest disagreement for the $\Xi_c(2980)$ state wrt previous measurements

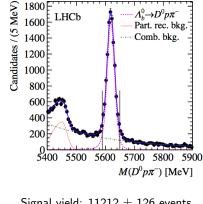
Ξ_c Charmed Baryon Decays at Belle


- Study of Ξ_c^* decaying to ΛD^+ and ΛD^0 states
- First observation of the $\Xi_c(3055)^0$ with 8.6σ $M(\Xi_c(3055)^0) = 3059.0 \pm 0.5 \pm 0.6$ $\Gamma(\Xi_c(3055)^0) = 6.4 \pm 2.1 \pm 1.1$
- Combined analysis coomparing ΛD^+ with $\Sigma_{c}^{++}K^{-}$ and $\Sigma_{c}^{*++}K^{-}$


Contradictions with expectations from theory

 $\Lambda_c^+(2940)$ and other states in D^0p $_{\rm [LHCb,\ arXiv:1701.07873]}$

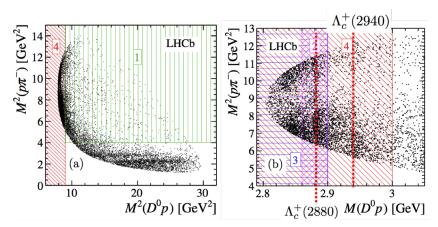
Excited Λ_c^+ states


- J^P = 3/2⁺ state (2nd member of the D-wave doublet) is missing in data
- Two experimentally observed states without clear assignment: $\Lambda_c(2765)^+$ and $\Lambda_c(2940)^+$
- $\Lambda_c(2940)^+$: mass close to the D^*N threshold: possible molecular interpretation

35

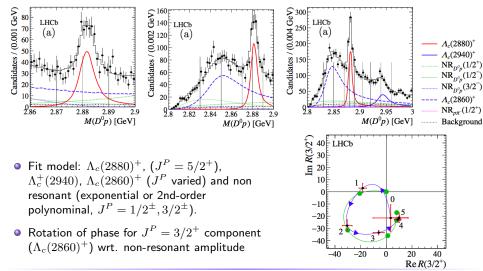
Amplitude analysis of $\Lambda^0_b \to D^0 p \pi^-$ decay at LHCb [LHCb, arXiv:1701.07873]

- Search for excited Λ_c^+ states in exclusive b decays: $\Lambda_b^0\to D^0p\pi^-$, $D^0\to K^-\pi^+$
- Advantages: well-defined initial state, low background, access to quantum numbers



Signal yield: 11212 \pm 126 events Background: $\sim 16\%$

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 36


Amplitude analysis of $\Lambda_b^0 \rightarrow D^0 p \pi^-$ decay

- Λ_b^0 polarisation small: 2 DoF, 2D Dalitz plot phase space
- PWA in the low- $M(D^0p)$ region (admixture of $p\pi^-$ amplitude is small)

Amplitude analysis of $\Lambda_b^0 \rightarrow D^0 p \pi^-$ decay

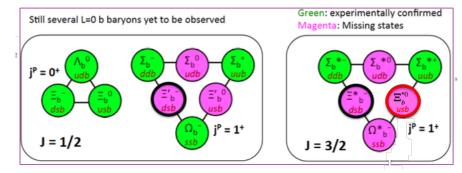
• Fit in subregions, gradually extended since many unexplored contributions: large number of unknown parameters and large range of systematic variations

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 38

Amplitude analysis of $\Lambda_b^0 \rightarrow D^0 p \pi^-$ decay

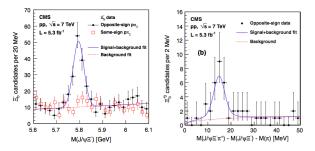
• Near-threshold enhancement in the D^0p amplitude: $\Lambda_c(2860)^+$, $J^P=3/2^+$

 $M(\Lambda_c(2860)^+) = 2856.1^{+2.0}_{-1.7} \pm 0.5(syst)^{+1.1}_{-5.6}(model) \text{ MeV}$ $\Gamma(\Lambda_c(2860)^+) = 67.6^{+0.1}_{-8.1} \pm 1.4(syst)^{+5.9}_{-20.0}(model) \text{ MeV}$


- Phase rotation obtained in a model independent way consistent with resonant behaviour
- Fits well into Λ_c^+ spectrum as 1D state (nonrelativistic heavy quark-light diquark model [arXiv:1609.07967]/QCD sum rules in the HQET framework [PRD94 (2016) 114016])
- First constraints on the spin and parity of the $\Lambda_c(2940)$: preferred $J^P = 3/2^-$

 $M(\Lambda_c(2940)^+) = 2944.8^{+3.5}_{-2.5} \pm 0.4(syst)^{+0.1}_{-4.6}(model) \text{ MeV}$ $\Gamma(\Lambda_c(2940)^+) = 27.7^{+8.2}_{-6.0} \pm 0.9(syst)^{+5.2}_{-10.4}(model) \text{ MeV}$

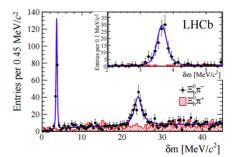
• $J^P = 3/2$ (1/2 and 7/2 cannot be excluded) consistent with molecular interpretation [PRD89 (2014) 096006, PLB 718 (213) 1381, 1405.0919] or radial 2P excitation [EPJ A51 (2015) 82].


Beauty baryons spectroscopy:

- The system of baryons containing a *b* quark remains largely unexplored
- Large production cross-section of baryons at LHC

$\Xi_b^{*0} o \Xi_b^- \pi^+$ observation at CMS [CMS, PRL108 (2012) 252002]

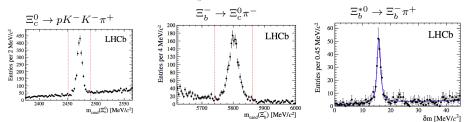
• Observation of a new b baryon in the $\Xi_b^-\pi^+$ with $\Xi_b^- \to J/\psi(\to \mu\mu)\Xi^-(\to \Lambda\pi)$


 Ξ_b^{*0} : 21 candidates observed, 3 expected (BKG)

- Identified as the $J^P = 3/2^+$ neutral state
- No observation of the $J^P=1/2^+(j^P=1+)$ partner $\Xi_b^{\prime 0}$ in agreement with theoretical models

•
$$m(\Xi_b^{'}(J^P = 1/2^+) \sim m(\Xi_b) + m(\pi))$$

• $m(\Xi_b^*(J^P = 3/2^+) > m(\Xi_b) + m(\pi))$


Two new Ξ_b^- baryon resonance [LHCb, PRL 114 (2015) 062004]

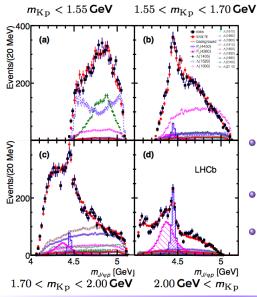
- Study of the $\Xi_b^0 \pi^-$ combinations in $\Xi_b^0 \to \Xi_c^+ \pi^-$ and $\Xi_c^+ \to \Lambda_c^+ p K^-$ using $3 \, {\rm fb}^{-1}$ of data
- Taking wrong-sign combination as background proxy
- Observation of two narrow peaks, interpreted as $\Xi_b^{'}$ $[1/2^+]$ and Ξ_b^* $[3/2^+]$: mass and angular distributions consistent with expected values
- Very unlikely scenario: narrow peak at 3 MeV as feed-down of $\Xi_b^{**-} \rightarrow \Xi_b^{\prime 0} (\Xi_b^0 \pi^0) \pi^- (\Xi_b^{**-} = L = 1, J^P = (1/2)^-)$

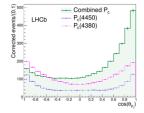
$$\begin{array}{lll} m(\Xi_b^{\prime-}) - m(\Xi_b^0) - m(\pi^-) &=& 3.653 \pm 0.018 \pm 0.006 \ \mathrm{MeV}/c^2 \\ m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^-) &=& 23.96 \pm 0.12 \pm 0.06 \ \mathrm{MeV}/c^2 \\ \Gamma(\Xi_b^{*-}) &=& 1.65 \pm 0.31 \pm 0.10 \ \mathrm{MeV} \end{array}$$

Measurement of Ξ_{b}^{*0} properties [LHCb, JHEP 05 (2016) 161]

Precise mass measurement

$$egin{aligned} m(arepsilon_b^{*0}) - m(arepsilon_b^{-}) - m(\pi^+) &= 15.727 \pm 0.068 \pm 0.023 \, \mathrm{MeV}/c^2 \ & \Gamma(arepsilon_b^{*0}) &= 0.90 \pm 0.16 \pm 0.08 \, \mathrm{MeV}_{\Box} \end{aligned}$$


- Compatible with CMS result
- Width compatible with theory expectations [PRD85 (2012) 114508, PRD75 (2007) 094017]


Conclusions

- Followed on pentaquarks observation
 - Check in model independent way
 - Decay $\Lambda_b \to J/\psi p\pi$ consistent with $\Lambda_b \to J/\psi pK$
 - Observed other decays we can use for further searches of pentaquarks
 - Further studies are required: e.g. Cusps can also mimic the circle in the Argand diagram
- Also "conventional" spectroscopy: many excited states are still missing
- 5 narrow peaks observed in $\Xi_c^+ K^-$: excited Ω_c states
 - These states are likely 1P and 2S
 - Determination of their quantum numbers from Ω_b decays might be possible
 - None of the theoretical models predicted the mass splitting exactly
 - Search for other decay modes are ongoing
- Observed new excited Λ_c^+ state
- Missing double heavy baryons (*bcq*, *ccq*) [LHCb, JHEP 12 (2013) 090]
- Good experimental prospects with increasing LHC(b) data size and its upgrade program and with Belle II

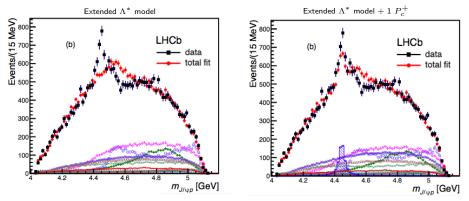
Spare slides

P_c interference [LHCb, PRL 115 (2015) 072001]

- The peaking structure in $m_{J/\psi p}$ is asymmetric as a function of m_{Kp} (or $\cos \theta_{P_c}$)
- This can be explained by interference of two states with opposing parity
- The need for a second broad P_c^+ state becomes visually apparent in the region where the $\Lambda^* \to pK^-$ background is the smallest

- Ξ_b isodoublets: Ξ_b^0 (bsu) and Ξ_b^- (bds)
- Three such Ξ_b isodoublets that are neither orbitally nor radially excited are expected to exist
- Categorized by

• j: the spin of the su or the sd diquark

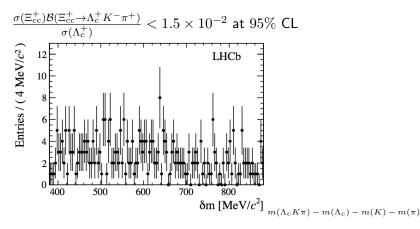

- J^P : spin-parity of the baryon
- $J = (1/2)^+$ and $j^P = 0$ (Ξ_b decays weak, lightest ones)

•
$$J = (1/2)^+$$
 and $j^P = 1$ (Ξ_b')

•
$$J = (3/2)^+$$
 and $j^P = 1$ (Ξ_b^*)

- The other should decay strongly (Ξ^(',*)_b → Ξ_bπ) if their masses are above the kinematich threshold (otherwise electromagnetically)
- $m(\Xi_b^*) m(\Xi_b)$: above kinematic threshold
- $m(\Xi_b^{'}) m(\Xi_b)$: close to kinematic threshold

P_c^+ : Fit results with pentaquark states

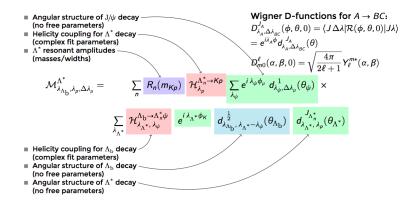

- Extended Λ^* model $+ \; 1 \; {\rm pentaquark}$
 - Explored all J^P up to $7/2^{\pm}$
 - Best fit has $J^P = 5/2^+$ but still not a good fit
 - Improvement wrt to fit without P_c : $\sqrt{\Delta 2\mathcal{L}} = 14.7\sigma$

Ξ_c Charmed Baryon Decays at Belle

- Chiral quark model: $\Xi_c(3055)^+$ as D-wave excitation in the N=2 shell
- $\mathcal{B}(\Xi_c(3055)^+ \to \Sigma_c^{++}K^-) : \mathcal{B}(\Xi_c(3055)^+ \to \Lambda D^+) = 2.3 : 0.1 \text{ or}$ 5.6 : 0.0 depending on the possible excitation modes
- $\Xi_c(3080)^+$ as an S-wave excitation mode in N=2 shell and predicts that its decay into ΛD is forbidden. [PRD 86, 034024 (2012)]

Double Heavy Baryons

• No signal found in $0.6 \, {\rm fb}^{-1}$


Additional cross-checks

- Many additional cross-check have been performed
 - $\bullet\,$ Same P_c^+ structure found using very different selections by different LHCb teams
 - Two independently coded fitters using different background subtractions (cFit-sFit)
 - Split data show consistency: 2011/2012, magnet up/down, ...
 - Extended model fits tried without P_c states, but with two additional high mass Λ^* resonances allowing masses and widths to vary, or 4 non-resonant terms of J up to 3/2

Systematic uncertainties

Source	$M_0 ({\rm MeV}) \Gamma_0 ({\rm MeV})$					Fit fractions (%)		
	low	high	low	high	low	high	$\Lambda(1405)$	A(1520)
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P(3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_{1}} \Lambda^0_b \to P^+_c \ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{o} P_c^+ (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L^{A^*_n}_{A^0_b} \Lambda^0_b \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Isobar Model helicity amplitudes for $\Lambda_b \to J/\psi \Lambda^*$

Resonance parametrisation

Dynamical Terms $R_n(m_{Kp})$ given by

- Relativistiv, single-channel Breit-Wigner amplitudes $BW(M_{K\rho}|M_0^{\Lambda_n^*}, \Gamma_0^{\Lambda_n^*})$
- special case $\Lambda(1405)$ is subthreshold: Flatté (K p and $\Sigma \pi$ channels)
- **Blatt-Weiskopf barrier factors** $B'_{\ell}(p, p_0, d)$

$$\begin{split} R_{n}(M_{K\rho}) &= B'_{\ell_{\Lambda_{D}}^{\Lambda^{*}}}(p,p_{0},d) \left(\frac{p}{M_{\Lambda_{D}}}\right)^{\ell_{\Lambda_{D}}^{\Lambda^{*}}} \times BW(M_{K\rho}|M_{0}^{\Lambda^{*}},\Gamma_{0}^{\Lambda^{*}}) \times B'_{\ell_{\Lambda_{n}}^{*}}(q,q_{0},d) \left(\frac{q}{M_{0}^{\Lambda^{*}}}\right)^{\ell_{\Lambda^{*}}} \\ BW(M|M_{0},\Gamma_{0}) &= \frac{1}{M_{0}^{2} - M^{2} - iM_{0}\Gamma(M)} \,, \end{split}$$

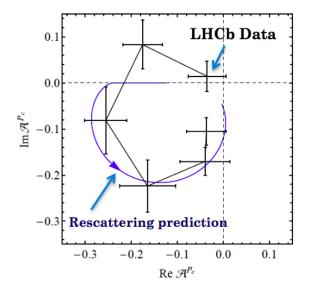
where

$$\Gamma(\boldsymbol{M}) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2\ell_{\Lambda^*}+1} \frac{M_0}{M} B'_{\ell_{\Lambda^*}}(\boldsymbol{q}, \boldsymbol{q}_0, \boldsymbol{d})^2.$$

p(q) are momenta of the daughter particles in the rest-frame of the decaying particle.

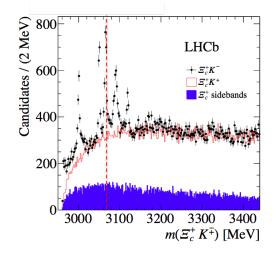
 $p_0(q_0)$ calculated on the nominal resonance mass

$$\mathcal{M}_{h_{a}}^{h_{b}} = 0$$


$$\mathcal{M}_{h_{a}}^{h_{a}} = 0$$

$$\mathcal{M}_{h_{a}}^{h_{a}$$

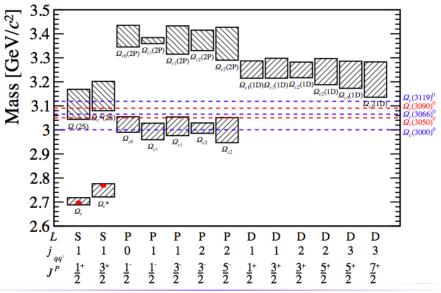
Pentaquark states as threshold effects or cusps:


- closest threshold = $4457.1\pm0.3\,{\rm MeV}=\Lambda_c(2595)^+\bar{D^0}:$ higher than the peak mass
- $\Lambda_c(2595)^+ \bar{D^0}:$ structure with $J^P=1/2^+$
- no threshold close to the lower state

Test of the exotic nature of $P_c(4450)$

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017 58

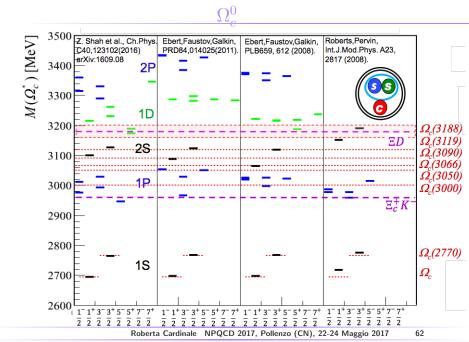
• States with masses $M > m(\Xi'_c) + m(K)$ could decay also to $\Xi'_c K^-$ and appear into $\Xi_c K^-$ as partially reconstructed decays (i.e. feed-downs)



Combinatorial bkg parameterization for Ω_c states

• Wrong-sign $\Xi_c^+ K^+$ used to study the combinatorial background parameterization

$$B(m) = \begin{cases} P(m)e^{a_1m + a_2m^2} & \text{for } m < m_0, \\ P(m)e^{b_0 + b_1m + b_2m^2} & \text{for } m > m_0, \end{cases}$$


• P(m) is a two-body phase-space factor, m_0 , a and b are free parameters

 Ω^0

Roberta Cardinale NPQCD 2017, Pollenzo (CN), 22-24 Maggio 2017

61

