Predictions for single-diffractive Drell-Yan production at the LHC at 13 TeV

Federico Alberto Ceccopieri

IFPA, Université de Liège, Belgium

federico.alberto.ceccopieri@cern.ch

 2^{nd} Italian Workshop on Hadron Physics and Non-Perturbative QCD Pollenzo, 22^{nd} - 24^{th} May 2017.

based on F. A. Ceccopieri*, Eur. Phys. J. C77 (2017) 56

*We ackonwledge Dipartimento di Fisica e Geologia, Universitá di Perugia, where this work has been finalized

Outline

- Forward particle production in pp and ep collisions
- Hard diffraction in DIS : factorisation and evolution
- Factorisation tests at HERA
- Diffractive PDFs from combined HERA proton-tagged data
- Single-diffractive Drell-Yan pair production : a case study at hadron colliders
- Factorisation breaking effects vs Q^2 , $\sqrt{s}...$

The leading particle effect in hadronic collisions

- particle production in hadronic collisions: $\bar{p}p \rightarrow c + X$
- $x_F = 2p_{||}/\sqrt{s}$ in hadronic centre of mass
- Leading particle effect : privileged quark-flavour quantum number flow from the initial state particle to the final state one
- the more the quark-flavour content is conserved from initial to final state hadron c, the more the latter carries a substantial fraction of the energy available in the reaction: $d\sigma \sim (1 - x_F)^n$
- Mesons don't show LPE
- However, no large momentum transfer \rightarrow pQCD not applicable

Basile & al. '81

The leading particle effect in DIS

- Same effect observed in DIS
- $\mu p
 ightarrow \mu + h + X$, DIS@280 GeV
- Same pattern as in hadronic collisions
- LPE for backward proton (uud) and Λ (uds)
- No LPE for $\overline{\Lambda}$ ($\overline{u}\overline{d}\overline{s}$), \overline{p} ($\overline{u}\overline{u}\overline{d}$) and mesons
- But here an hard scale is present, $Q^2 \gg \Lambda^2_{QCD}$, pQCD analysis is possible:
 - Λ production : F.A.C. EPJ $\,$ C73 (2013) 2435
 - n production : F.A.C. EPJ C74 (2014) 3029

EMC Coll. '81

Fragmentation in SIDIS

- Deep Inelastic Scattering event in which a virtual photon interacts with a parton cascade in the nucleon
- Define $t = (P p_h)^2$
- $t \sim Q^2$ current fragmentation : $d\sigma \propto f \otimes D$
- $0 \ll t \ll Q^2$ central region: higher order corrections, current/target separation depends on factorisation scale
- $t \sim 0$ target fragmentation : $d\sigma \propto M$, fracture functions (Trentadue, Venaziano '94)

Hard diffraction in DIS

- Experiment
 - (hard) diffraction rebirth at HERA
 - $e(k) + p(P) \rightarrow e(k') + p(P') + X$
- kinematics
 - proton fragmentation region
 - $-|t| \leq 1 \; \mathrm{GeV}^2$
 - $x_{I\!\!P} \simeq 1 E_{P'}/E_P < 0.1$
- diffractive selection:
 - large rapidity gap
 - M_X -method
 - proton tagging
- Key features
 - Leading twist: $\mathcal{O}(Q^{-4})$ (as iDIS)
 - scaling violations of diffractive structure functions \rightarrow parton dynamics

Theory setup in DDIS

• Hard-scattering factorisation:

$$F_{k}^{D(3)}(\beta, Q^{2}, x_{I\!\!P}) = \sum_{i} \int_{\beta}^{1} \frac{d\xi}{\xi} f_{i}^{D}(\beta, \mu_{F}^{2}; x_{I\!\!P}) C_{ki}\left(\frac{\beta}{\xi}, \frac{Q^{2}}{\mu_{F}^{2}}, \alpha_{s}(\mu_{R}^{2})\right) + \mathcal{O}\left(\frac{1}{Q^{2}}\right)$$

Grazzini, Trentadue, Veneziano'98, Collins '98

- C_{ki} (k = 2, L) calculable as a power expansion α_s , same as in iDIS
- Diffractive parton distributions: $f_i^D(eta,\mu_F^2,x_{I\!\!P})$
- Partonic structure of the colourless exchange
- DPDFs obey DGLAP evolution equations (for t integrated up to $t_{max} \ll Q^2$)

$$Q^{2} \frac{\partial f_{i}^{D}(\beta, Q^{2}, x_{\mathbb{I}})}{\partial Q^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{\beta}^{1} \frac{du}{u} P_{ji}(u) f_{j}^{D}\left(\frac{\beta}{u}, Q^{2}, x_{\mathbb{I}}\right)$$

• Phenomenological analyses of DPDFs via pQCD fits of DDIS data

Factorisation in hard diffraction: overview

- Diffractive PDFs have bees used to test hard-scattering factorisation in
 - dijet in DIS at HERA
 - dijet in PHP at HERA ($Q^2 \simeq 0$, $E_T \sim 5, 6$ GeV)
 - dijet and electroweak boson production in $p\bar{p}$ collisions at Tevatron
- Results:
 - dijet in DIS: data/NLO $\simeq 1$
 - dijet in PHP: debated H1 reports violation: data/NLO $\simeq 0.5$ ZEUS consistent with no violation: data/NLO $\simeq 1$
 - $par{p}$: Striking breakdown observed at Tevatron: data/NLO $\simeq 0.1$
- NB: Factorisation predicted to fail in Resolved PHP and hadronic collisions

7/32

Most recent factorisation tests at HERA

• Focus on the latest H1 results : JHEP 1505 (2015) 056

Results: E_T^{*jet1} distribution

- Diffractive PHP at higher E_T with good statistics

Results: double ratios

- large NLO corrections: jets produced nearly at threshold (soft gluon resum?)
- \hookrightarrow Consider ratios
 - H1 confirms an overall suppression factor ~ 0.5
 - Critical variable: Q^2 not E_T

Emerging picture:

- \Rightarrow factorisation broken for (spatially extended) hadrons
- \Rightarrow factorisation OK for pointlike probes as the virtual photon

diffractive PDFs pQCD fits : status

- Knowledge on DPDFs can be further refined
 - Global fit? LRG+FPS+jets+charm diffracive data from both HERA collaboration
 - Latest fits:
 - * H1 2006 (iDIS)
 - * H1 2007 (iDIS+jets)
 - * ZEUS 2010 (iDIS+jets)
 - gluon DPDF poorly constrained in DDIS: include in the fit diffractive dijet data
- In this talk:
 - QCD analysis of combined H1 and ZEUS proton tagged DDIS data (EPJ '12)
 - cross-calibration: improved precision of the cross section measurements
 - $2.5 < Q^2 < 200 \; {\rm GeV}^2$
 - $0.00035 < x_{I\!\!P} < 0.09$
 - $-0.09 < |t| < 0.55 \text{ GeV}^2$ (restricted *t*-range to avoid extrapolations)
 - $-10^{-3} < \beta < 1$

Fitting strategy

Remarks:

- hard-scattering factorisation holds at fixed values of $x_{I\!\!P}$ and t
- dependence on $x_{I\!\!P}$ and t fully contained in DPDFs
- these conditional parton distributions are uniquely fixed by the kinematics of the outgoing proton: DPDFs are, in principle, different for different values of $x_{I\!P}$ and t.
- Approach exploited in F.A.C and L.Favart arXiv:1205.6356

H1ZEUS12 data:

- 192 points for $\sigma_r^{D(3)}(\beta, Q^2, x_{I\!\!P}) = F_2^{D(3)}(\beta, Q^2, x_{I\!\!P}) \frac{y^2}{1 + (1 y)^2} F_L^{D(3)}(\beta, Q^2, x_{I\!\!P})$
- 10 $x_{I\!P}$ bins, on average 20 points in each $x_{I\!P}$ bin \Rightarrow too low sensibility to use this approach \Rightarrow simpler approach

Initial condition and pQCD details

Fully factorised ansatz, momentum distributions at Q_0^2 :

$$\mathcal{F}(x_{I\!\!P}) = x_{I\!\!P}^{f_0} (1 + f_1 x_{I\!\!P}^{f_2}),$$

$$\beta \Sigma(\beta, Q_0^2, x_{I\!\!P}) = \mathcal{F}(x_{I\!\!P}) A_q \beta^{B_q} (1 - \beta)^{C_q} (1 + D_q \beta^{E_q}),$$

$$\beta g(\beta, Q_0^2, x_{I\!\!P}) = \mathcal{F}(x_{I\!\!P}) A_g \beta^{B_g} (1 - \beta)^{C_g}.$$

- M_{Σ} : flavour symmetric singlet distribution
- minimisation performed with MINUIT, stat \oplus syst errors

pQCD settings **@LO**

- Evolution and convolution with QCDNUM17 Botje '11
- ZM VFNS scheme
- $m_c = 1.4 \text{ GeV}, m_b = 4.5 \text{ GeV}, \alpha_s(M_Z^2) = 0.130, Q_0^2 = 1.5 \text{ GeV}^2$ (tuned)
- $\mu_F^2 = \mu_R^2 = Q^2$
- No Q^2 or y cuts imposed

Best-fit results and χ^2 breakdown

- C_q and C_g difficult to constrain : $C_q = C_g = 0.5$, large β controlled by D_q and E_q
- mild dependence of χ^2 on Q^2_0 (tuned)
- $\chi^2/d.o.f = 167/(192 9) = 0.91$
- parameters well constrained, no misrepresentation in any $x_{I\!\!P}$ bin

Parameter	$p_i \pm \delta p_i$	$x_{I\!\!P}$	χ^2	Fitted points
f_0	-1.208 ± 0.022	0.00035	4.44	4
f_1	48.2 ± 11.9	0.0009	6.78	10
f_2	1.42 ± 0.13	0.0025	21.36	16
A_q	0.0039 ± 0.0007	0.0085	20.34	24
Bq	-0.237 ± 0.026	0.0160	20.70	26
C_q	0.5	0.0250	27.24	25
D_q	22.6 ± 2.8	0.0350	13.85	24
E_q	2.28 ± 0.20	0.0500	28.69	27
$\overline{A_g}$	0.057 ± 0.011	0.0750	13.10	26
B_g	0.41 ± 0.13	0.0900	10.51	10
C_g	0.5	Total	167.0	192

Best-fit vs combined H1ZEUS12 data

- σ_r vs eta and Q^2
- the initial condition assumes same β -shape in all $x_{I\!P}$ -bins
- this theo bias induces unnatural small error with the standard $\Delta_{\chi}^2 = 1$ criterion.
- Allow for more flexibility: one χ^2 -unit for $x_{I\!P}$ bin $\rightarrow \Delta_{\chi}^2 = 10$

DPDFs evolution

- Singlet and gluon momentum distributions for two different $x_{I\!\!P}$ at different Q^2
- band: propagation of experimental V_{NG}^{b+b} uncertainties with $\Delta \chi^2 = 10$ (eigenvector method)
- Singlet (top): valence-like at low Q^2
- Gluon (bottom): fast rise with raising Q^2 at low β
- Error shrinkage at high Q^2 : effect of pQCD evolution
- Evolution washes away the large- β bump

Flux factor

- $Q^2 = 1.5 \text{ GeV}^2$
- Band = best fit $\oplus \Delta \chi^2 = 10$
- stability of the fit checked against variation of the cuts:
- best-fit (band) vs fit with y < 0.5 (solid) fit with $Q^2 > 6 \text{ GeV}^2$ (dashed)
- insensitive to variation of phase space boundary

Best-fit vs H1 parametrisations

- Singlet (top) and gluon (bottom) momentum distribution at $Q^2 = 25 \text{ GeV}^2$
- Comparison with FitB
 (based on LRG06 DDIS data) :
- similar hard valence at large β .
- no gluon structure at at large β
- Reduced errors at large $x_{I\!\!P}$, where FitB is dominated by systematics errors (for LRG06 : $x_{I\!\!P}^{max} < 0.03$)

• Normalisations shift due to different t range and proton dissociation background

Preliminar NLO Best-fist vs H1 LRG 2012 data

- preliminar NLO fit ready (no error estimates yet)
- comparison with H1 LRG 2012 inclusive DDIS data (H1 Coll. EPJ C72 (2012) 2014)
- $x_{I\!\!P} = 0.01$: overlap region of two data sets
- Best fit scaled up by a factor 2.3:
 - Extrapolation to $0 < |t| < 1 \ {\rm GeV}^2$
 - proton dissociative background
- Acceptable description of H1 data in shape, $\frac{1}{3}$ BUT Q^2 -dependent normalisation offset 2
- attempt combination?

Hadronic collisions : on hard-scattering factorisation

- Hard-scattering factorisation is at the basis of discovery and precision physics at hadron colliders.
- Factorisation proven only for inclusive Drell-Yan (soft exchanges are power suppressed when one sums over final states).
- Generalise: $H_1 + H_2 \rightarrow H + \gamma^* + X$
- Assume hard scattering factorisation: $d\sigma \propto f_{H_1} \otimes f_{H_2} \otimes D_H \otimes d\hat{\sigma}$
 - $H = \pi^{\pm}$ at high p_t : factorisation should be ok
 - $H = \pi^{\pm}$ at low p_t : underlying event (beyond factorisation)
 - H= forward p at at low p_t : single-diffractive DY, factorisation breaking

Hard Diffraction at LHC

- Numerous analyses on soft and hard diffraction are ongoing at LHC by all Collaborations.
- Method :
 - LRG with main detectors
 - forward proton tagger
- Strategy: Assume hard scattering factorization : use HERA DPDFs to predict (single) diffractive cross sections for
 - W^{\pm} , Z (clean, rare)
 - dijet (abundant, busy)
 - γ -jet
 - ...
- Drell-Yan pairs provide easily tunable Q^2 (relevant scale)

Single Diffractive DRell-Yan: details

• SD-DY cross section written in terms of final state lepton rapidities y_3, y_4 and transverse momentum p_t

•
$$Y = \frac{1}{2}(y_3 + y_4)$$
, $\bar{y} = \frac{1}{2}(y_3 - y_4)$

•
$$\beta = \frac{x_1}{x_{I\!\!P}} = \frac{p_t}{x_{I\!\!P}\sqrt{s}} (e^{y_3} + e^{y_4}) \equiv \frac{M_{\mu\mu}}{x_{I\!\!P}\sqrt{s}} e^{Y_4}$$

•
$$x_2 = \frac{p_t}{\sqrt{s}}(e^{-y_3} + e^{-y_4}) \equiv \frac{M_{\mu\mu}}{\sqrt{s}}e^{-Y}$$

• Assume factorisation:

$$\frac{d\sigma^{D}}{dy_{3}dy_{4}dp_{t}dx_{I\!\!P}} = \sum_{q} e_{q}^{2} \frac{f_{q}^{D}(\beta, x_{I\!\!P}, \mu_{F}^{2})}{x_{I\!\!P}} f_{\bar{q}}(x_{2}, \mu_{F}^{2}) \frac{2p_{t}\hat{s}}{3s} \frac{2\pi\alpha_{em}^{2}}{\hat{s}^{2}} \frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}$$

- factorisation scale : $\mu_F = M_{\mu\mu}$
- f_q^D from the fit, f_q CTEQ6@LO

SD-DY fiducial cross sections

pp	\sqrt{s} =13 TeV		
Muon pair kinematics	$ y^{\mu} < 2.45$		
	$2 < M_{\mu\mu} < 20 \; GeV$		
	No cuts on muon p_t or $oldsymbol{p}$		
Proton kinematics	$0.09 < t < 0.55 \; { m GeV}^2$		
	$10^{-4} < x_{I\!\!P} < 10^{-1}$		
$\sigma^{SD,DY}$	$1635 \pm 60 \; (ext{exp}) \; {}^{+650}_{-460} \; (ext{scale}) \; ext{pb}$		

- single-side result (x2 double side)
- the result does not include SGR
- integrated over the *t*-range of the out of which dPDFs are estracted.
- dominated by theo errors associated with higher order corrections
- if $\mathcal{L}^{-1} = 0.4 \text{pb}^{-1}$, $N = 1635 \text{pb} \cdot 2 \cdot 0.1 \cdot 0.4 \text{pb}^{-1} = 130$ events

SD-DY cross sections, first glance

- p_t distribution as a maximum at $M^{min}_{\mu\mu}$
- jacobian peak
- Scattered proton at positive $Y\sim9$
- DY pair has a rather symmetric Y distribution

$x_{I\!\!P}$ -dependence

- at low $M_{\mu\mu}$ behaves as inverse power of $x_{I\!\!P}$
- at higher masses, the pomeron has not enough energy to produce the pair:
 - $\Rightarrow x_{I\!\!P}$ distributions flattens at low $x_{I\!\!P}$

$x_{I\!\!P}$ -Y correlations

Universality and diffractive PDFs

- Sensitivity of the measurement to diffractive PDFs
- β is fractional momentum with respect to the pomeron
- recall : $M^2_{\mu\mu} = \beta x_{I\!\!P} x_1 s$
- Up to normalisation effects, is dPDFs β-dependence in hadronic collisions compatible with the one observed at HERA? (pomeron universality)

SD-DY: asymmetries and ratio

Control theoretical error \Rightarrow consider ratios

- peculiar $M_{\mu\mu}$ dependence of the ratio
- slowly decreasing from 9% to 5% (no SGR included)

Some phenomenological speculation

	DIS	PHP	hadronic collisions
MPI	no	?	yes
factorisation in diffraction	yes	?	no

- DIS : $|b| \sim 1/Q$ (c.f.r. dipole model, Nikolaev and Zakharov '91)
- hadronic collision : $|b| \sim 1/\Lambda_{QCD}$

 \Rightarrow Critical is then the transverse profile $T(\mathbf{b})$ of the probe: **b** relative distance of interacting partons (from double parton scattering)

rethink diffraction:

$$\sigma^{SD} \propto \int d^2 oldsymbol{b} \; T_{a=\gamma^*,\gamma,p}(oldsymbol{b}) \; T_{b=p}(oldsymbol{b})$$

LHC as a γp machine

PHP regime crucial for studying factorisation breaking and the transition from large to small b(interparton transverse distance) of the probe: Can we use pA collisions at LHC to exploits the large quasi-real photon flux

from A to measure diffractive dijets in γp ?

• Hard scale in the final state :

like in PHP in ep they guarantee the applicability of pQCD techniques.

• Factorisation breaking related to jets E_T or to size $b \sim 1/Q$ of the quasi-real photon?

Conclusions and Perspectives

- Impressive knowledge on hard diffraction accumulated by HERA and Tevatron
- This knowledge is quantitative and predictive (dPDFs etc.)
- Hard diffraction program at hadron collider:
 - Prediction: with $0.4 \text{pb}^{-1} \sim 130 \text{ SD-DY}$ events
 - SD-DY is ideal place to study details of factorisation breaking vs Q^2 , \sqrt{s}
 - Explore the feasibility to use LHC pA runs in γp mode to settle the diffrative PHP factorisation issue raised at HERA
- Plans (in stand-by):
 - NLO fit \rightarrow can be used to predict cross section in other SD channel: dijet,prompt photon,W
 - Impact of higher order corrections : SD-DY @ NLO