

NUCLEON STRUCTURE PHENOMENOLOGY

Umberto D'Alesio Università & INFN - Cagliari

- MOTIVATIONS
- **3D** NUCLEON STRUCTURE
- HARD SEMI-INCLUSIVE/EXCLUSIVE (POLARIZED) PROCESSES
- OPEN ISSUES

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Motivations (general statements)

□ Nucleon: the most abundant piece of matter in the visible Universe... still a mysterious object (charge radius, spin content...??)

22/05/2017 NPQCD2017

2

QCD and confinement: still to be understood

 Semi-inclusive/exclusive processes w/wo spin: tools to study the inner structure of a composite system
 such as a nucleon

Transverse Spin effects A_N in $p^{\uparrow}p \rightarrow \pi X...$ "the origin"...a long-standing puzzle

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

Collinear twist-2 QCD: $A_N \leq \text{few \%}$

22/05/2017 NPQCD2017

1-D picture of the nucleon

ZEUS NLO QCD fit

* H1 (prel.) 99/00

H1 PDF 2000 fit

ZEUS 96/97

A BCDMS

D E665

. NMC

x=0.021

x=0.032

104

-0.25

 $Q^2(GeV^2)$

10 5

· H1 94-00

HERA F,

x=6.32E-5

x=0.000102 x=0.000161

0.000253

0.0005

0.000632

=0.0003

=0.0013

x=0.0021

x=0.0032

Collinear PDFs

22/05/2017 NPQCD2017

(open) Physics issues

atwor

NPQCD2017

5

22/05/2017

Parton orbital motion and its correlation to the nucleon spin Parton intrinsic transverse momentum Spatial distribution of partons and the nucleon shape

Non perturbative effects in high-energy processes Origin of transverse/azimuthal spin asymmetries

Role of local colour gauge invariance of QCD Factorization, universality, resummation

Proton spin puzzle

Proton Spin

Gluon Spin Gluon angular momentum Quark Spin Quark Angular Momentum

Role of TMDs and GPDs

7

Non trivial decomposition [Leader, Lorcé (2014)]

<u>???</u>

sio (Cagliari University & INFN)

22/05/2017 NPQCD2017

GPDs

Virtual Compton scattering

Elastic scattering **Form Factors:** Information on position not on quark momentum unpolarized quark and unpolarized quark transversely polarized and nucleon. nucleon $\int_{-1}^{1} dx H(x,\xi,t) = F_1(t); \int_{-1}^{1} dx E(x,\xi,t) = F_2(t)$ $\int_{-1}^{1} dx \widetilde{H}(x,\xi,t) = G_A(t); \int_{-1}^{1} dx \widetilde{E}(x,\xi,t) = G_P(t)$

GPDs: Information on position and quark momentum fraction

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

where $F_1(t)$ and $F_2(t)$ are the Dirac and Pauli FFs, and $G_A(t)$ and $G_P(t)$ are the axial and pseudoscalar FFs.

22/05/2017 NPQCD2017

DVCS Factorization

Collins et al. (1998)

Compton Form Factor

$${}^{a}\mathcal{H}(x_{\mathrm{B}},t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\frac{x_{\mathrm{B}}}{2-x_{\mathrm{B}}},\frac{\mathcal{Q}^{2}}{\mathcal{Q}_{0}^{2}}) \ H^{a}(x,\frac{x_{\mathrm{B}}}{2-x_{\mathrm{B}}},t,\mathcal{Q}_{0}^{2})$$

GPD

Different Φ modulations give access to different combinations of GPDs

sio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Physics issues in GPDs

- **DVCS: golden channel**. HERMES, COMPASS, **JLab**, H1, ZEUS

Silvia Niccolai

Ji (1997)

H, *E* non-flip GPDs

NPQCD2017

10

22/05/2017

- DVMP (virtual meson production): uncertainty on meson distribution amplit.
- Extraction of GPDs: model-dependent (4 GPDs in DVCS & integrated over *x* **CFFs**)
- Parameterizations: different families, not always able to describe all data, qualitatively good (different observables, few parameters and assumptions)

- Major role in the nucleon spin decomposition

• "Ji's sum rule" (related to proton spin problem)

$$J^{q} = \frac{1}{2} \int_{-1}^{1} dx x \Big[H^{q}(x,\eta,t) + E^{q}(x,\eta,t) \Big]_{t \to 0}$$

Proton tomography from JLab data

$$\langle b_{\perp}^2 \rangle^q(x) = \frac{\int d^2 \mathbf{b}_{\perp} \mathbf{b}_{\perp}^2 \rho^q(x, \mathbf{b}_{\perp})}{\int d^2 \mathbf{b}_{\perp} \rho^q(x, \mathbf{b}_{\perp})}$$

Mean squared radius in the T space

Distribution in the transversal space

 $\rho^q(x, \mathbf{b}_\perp) = \int \frac{d^2 \mathbf{\Delta}_\perp}{(2\pi)^2} e^{-i\mathbf{b}_\perp \cdot \mathbf{\Delta}_\perp} H^q_-(x, 0, -\mathbf{\Delta}_\perp^2).$

GPD measurements

Direct access to TMDs:

Two-scale processes: $Q^2 \gg k_T^2 \approx \Lambda_{OCD}^2$

TMD factorization proven

22/05/2017 NPQCD2017

And possibly in processes like

Single-scale processes: large P_T

 $pp \to \pi X$ $(pp \to \gamma X, pp \to jet X)$

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

$$pp \to J/\psi X$$

$$pp \to D X$$
- Access to Gluon TMD

 $pp \rightarrow \pi jet X$ Two-scale process

And more

22/05/2017 NPQCD2017

TMDs and unpolarized cross sections

$l p \rightarrow l' h X$ hadron **A SIDIS** multiplicities P_h $d\sigma_N^h/dxdz dP_{hT}^2 dQ^2$ P_{hT} **Current fragmentation region:** $d\sigma_{\rm DIS}/dx dQ^2$ $\sim zk_{\perp}$ large z...to be reconsidered p k_{\perp} $f_{q/p}(x,k_{\perp}) = f_{q/p}(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle}$ $D_{h/q}(z,p_{\perp}) = D_{h/q}(z) \frac{e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}}{\pi \langle n^2 \rangle}$ photon Factorized Gaussian qquark forms k proton Р TMD-PDFs hard scattering TMD-FFs $\mathrm{d}\sigma^{\ell p \to \ell h X} = \sum f_q(x, \boldsymbol{k}_\perp; Q^2)$ $\otimes d\hat{\sigma}^{\ell q \to \ell q}(y, \boldsymbol{k}_{\perp}; Q^2) \otimes (D^h_q(z, \boldsymbol{p}_{\perp}; Q^2))$ 16

$< k_{\perp}^2 > = 0.57 - 0.38 \ GeV^2$ $< p_{\perp}^2 > = 0.12 - 0.18 \ GeV^2$

Anselmino, et al. (2014)

Theory: factorization and evolution

Collinear approach

Evolution \rightarrow DGLAP eqs.

TMD approach...more involved

 $\left(\alpha_s \ln^2 \frac{Q^2}{Q_T^2}\right)^n$

 $Q_T \ll Q$

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

TMD factorization approaches

Collins-Soper-Sterman (CSS) resummation framework

Seminal paper

Collins-Soper-Sterman 1985 ResBos: C.P. Yuan, P. Nadolsky Qiu-Zhang 1999, Vogelsang, etc... Kang-Xiao-Yuan 2011 Sun-Yuan 2013

progress

Tremendous

NPQCD2017

19

TMD framework

"New" Collins approach

Soft Collinear Effective Theory (SCET)

Collins 2011 Aybat-Rogers 2011, Aybat-Collins-Rogers-Qiu, 2012 Aybat-Prokudin-Rogers 2012 Anselmino-Boglione-Melis 2012 Prokudin-Bacchetta 2013 Echevarria-Idilbi-Kang-Vitev 2014 Collins-Rogers 2015 Kang-Prokudin-Sun-Yuan 2015 Collins et al 2016

Echevarria-Idilbi-Schafer-Scimemi 2012 D'Alesio-Echevarria-Melis-Scimemi 2014 Echevarria-Scimemi-Vladimirov 2016

An example: Fit to Drell-Yan and Z⁰ production data

Low energy

TMD evolution at NNLL (SCET) UD, Echevarria, Melis, Scimemi (2014) (223 data points)

Gaussian width correlations

Current fragmentation region in SIDIS

Recent study by Boglione et al (2017)

- Large *z* is not enough
- Relevance of the hadron rapidity
- CFR: even small z if P_T is small
- NO CFR if large z and large P_T
- NO CFR if $P_T \approx Q$

TMDs and SPIN

Collinear: unpol (f_1) , helicity (g_1) and transversity (h_1) distributions, TMD approach: 5 TMDs more, in particular,

N

Correlation between the spin of the proton and the parton transverse momentum

$$f_{q/h^{\uparrow}}(x, \vec{k}_{\perp}, \vec{S}) = f_{q/h}(x, k_{\perp}^2) - \frac{1}{M} f_{1T}^{\perp q}(x, k_{\perp}^2) \vec{S} \cdot (\hat{P} \times \vec{k}_{\perp})$$
Spin independent
Calceon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)
$$22/05/2017 \quad \text{NPQCD2017} \qquad 24$$

Correlation between the spin of the fragmenting quark and the hadron transverse momentum

$$D_{q/h}(z, \vec{p}_{\perp}, \vec{s}_q) = D_{q/h}(z, p_{\perp}^2) + \frac{1}{zM_h} H_1^{\perp q}(z, p_{\perp}^2) \vec{s}_q \cdot (\hat{k} \times \vec{p}_{\perp})$$

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Extracted Sivers functions TO-CA and PV groups large-*x* region: unconstrained [→ JLab] sea region: unconstrained [→ EIC]

Aybat, Collins, Qiu, Rogers (2012)

Effect of the TMD evolution

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Distortion in the transverse plane

picture from A. Bacchetta, M. Contalbrigo,

Non zero Sivers effect related to parton orbital angular momentum

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Collins (2012)

22/05/2017

NPQCD2017

29

Final state interactions in **SIDIS Initial** state interactions in **DY**

A clear-cut test

If falsified:

- misunderstanding of final-state interacts. leading to T-odd effects

- missing points in QCD factorization (TMD and collinear) [most severe scenario]

First results from RHIC: $p^{\uparrow}p \rightarrow W^{\pm} X$

Sivers asymmetry for Drell-Yan at COMPASS $\pi^- p \rightarrow \mu^+ \mu^- X$

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

Collins function & transversity

Combined analysis of SIDIS and $e^+e^- \rightarrow \pi\pi X$ $h_1(x_B, k_\perp)H_1^\perp(z_h, p_\perp)$ $H_1^\perp(z_1, p_{1\perp})H_1^\perp(z_2, p_{2\perp})$

Without TMD evolution

Same analysis but with TMD evolution

Kang, Prokudin, Sun, Yuan (2015)

Compatible with LO analysis No compelling TMD evolution yet Remember: SSAs are ratios....

Anselmino, Boglione, UD, Melis, Murgia, Prokudin (2015)

22/05/2017 NPQCD2017

Back to *A_N* : **further evidence of Sivers and Collins effects**

$$\begin{array}{c|c} p^{\uparrow} p \to \pi X \\ \hline \\ \bullet \end{array} \quad A_N = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}} \quad \mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\uparrow} \quad \stackrel{\circ}{\to} \begin{array}{l} \mathrm{Sivers} \\ + \text{ transversity} \otimes \mathrm{Collins} + \dots \end{array}$$

In a phenomenological TMD scheme (GPM)Non separableFrom SIDIS extractions to pp data (STAR (2008)):Anselmino, Boglione, UD, Leader, Melis, Murgia, Prokudin (2012 & 13)

Sivers effect alone

Collins effect alone

SSAs for Quarkonium production: direct access to the GLUON Sivers function UD, Murgia, Pisano, Taels (2017) $gg \rightarrow J/\psi g$

GPM: parton model with universal TMDs

CGI: TMD approach with initial/final state interactions (DY/SIDIS sign change)

Open issues in TMD phenomenology

TMD evolution and its relevance A_N for $p^{\uparrow} p \to W^{\pm} X$

□ Role of non perturbative input choices

□ Transverse momentum dependence in SIDIS and its consistency with DY
 □ Proper definition/selection of the current fragmentation region in SIDIS
 □ TMD factorization breaking effects in *pp* → π*X*, *pp* → *jet jet X* (sizeable???)
 □ Gluon TMDs at low x, TMD factorization vs. Color Glass Condensate
 Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

access to small-*x* domain: Space, (transv.) momentum and spin distributions of gluon and sea quarks Missing and complementary information on TMDs and GPDs Marco Radici

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

CONCLUSIONS AND OPEN ISSUES

- NUCLEON STRUCTURE: MYSTERIOUS AND FASCINATING EXPERIMENTAL EVIDENCE TO GO BEYOND A SIMPLE COLLINEAR (1D) PICTURE DATA INTERPRETATION TOWARDS A TRUE 3D IMAGE OF THE NUCLEON
- SPIN-TMD EFFECTS AND GPDS WELL ESTABLISHED: ORBITAL ANGULAR MOMENTUM

22/05/2017

NPQCD2017

37

- TRANSVERSE SINGLE-SPIN ASYMMETRIES: CHALLENGING AND TOOL TO LEARN DEEPER ON THE NUCLEON STRUCTURE AND QCD
- WAITING FOR COMPASS, JLAB-12, RHIC, AND EVENTUALLY EIC RESULTS
- PHENOMENOLOGY ISSUES
- GPDS: MODELLING, ALGORITHMS IN FITTING,...
- TMDS: EVOLUTION, NON PERTURBATIVE INPUTS,...

BACK-UP SLIDES

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

22/05/2017 NPQCD2017

$$\begin{aligned} \mathbf{TMD \ Factorization \ and \ evolution \ (I)} \\ \frac{d\sigma_{\mathrm{DY}}}{dq_{T}} \sim \mathcal{H}_{\mathrm{DY}} \int d^{2}\vec{k}_{aT} \ d^{2}\vec{k}_{bT} \ \delta(\vec{q}_{T} - \vec{k}_{aT} - \vec{k}_{bT}) \ f_{1}^{q}(x_{a}, \vec{k}_{aT}^{2}) \ f_{1}^{\bar{q}}(x_{b}, \vec{k}_{bT}^{2}) + Y_{\mathrm{DY}} \\ \mathbf{DY \ processes} \end{aligned}$$

$$\begin{aligned} f_{1}^{a}(x, k_{\perp}; \mu^{2}) &= \frac{1}{2\pi} \int d^{2}b_{\perp}e^{-ib_{\perp}\cdot k_{\perp}} \ \widetilde{f}_{1}^{a}(x, b_{\perp}; \mu^{2}) \qquad \text{Collins approach (2011)} \end{aligned}$$

$$\begin{aligned} \widetilde{f}_{1}^{a}(x, b_{T}; \mu^{2}) &= \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right) (x, b_{*}; \mu_{b}) e^{\tilde{S}(b_{*}; \mu_{b}, \mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \ \widehat{f}_{\mathrm{NP}}^{a}(x, b_{T}) \\ \mathbf{Collinear \ PDF} \qquad \mathbf{PQCD} \qquad \text{Non perturbative parts} \end{aligned}$$

$$\begin{aligned} \text{Calculation is perturbative, valid only in region} \qquad b \ll 1/\Lambda_{QCD} \\ \text{Fourier transform in momentum space involves non-perturbative region} \qquad f(x, k_{\perp}; Q) = \int_{0}^{\infty} \frac{bdb}{2\pi} J_{0}(k_{\perp}b) \overline{f}(x, b; Q) \end{aligned}$$

TMD Factorization and evolution (II)

$$\frac{d\sigma}{dQdq_T} \sim H(Q^2, \mu^2) \int d^2 \mathbf{k}_{AT} \, d^2 \mathbf{k}_{BT} \, F_A(x_A, \mathbf{k}_{AT}; \zeta_A, \mu) \, F_B(x_B, \mathbf{k}_{BT}; \zeta_B, \mu) \, \delta^{(2)}(\mathbf{k}_{AT} + \mathbf{k}_{BT} - \mathbf{q}_T)$$
DY processes: $pp \rightarrow l^+ l^- X$

Echevarria, Idilbi, Scimemi (2012,13,14)

r

UD, Echevarria, Melis, Scimemi (2014)

22/05/2017

NPQCD2017

40

$$\tilde{F}_{q/N}(x, b_T; \zeta, \mu) = \tilde{F}_{q/N}^{\text{pert}}(x, b_T; \zeta, \mu) \tilde{F}_{q/N}^{\text{NP}}(x, b_T; \zeta) \quad \text{TMD in b space}$$
$$e^{-\lambda_1 b_T} \left(1 + \lambda_2 b_T^2\right)$$

The non perturbative part of evolution is the main reason of different predictions

A_N in $l p \rightarrow \pi X$ (single-scale process)

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$A(\phi_S, S_T) = \mathbf{S}_T \cdot (\hat{\mathbf{p}} \times \hat{\mathbf{P}}_T) = S_T \sin \phi_S \mathbf{A}_N$$

43

A bridge between SIDIS and $pp \rightarrow h X$

From SIDIS to $l p \rightarrow h X$: test of a unified TMD approach

LO: $lq \rightarrow lq$ Anselmino, Boglione, UD, Melis, Murgia, Prokudin (2010&14)Fairly good description of HERMES data but

Inclusive events: final lepton scattered almost collinear $Q^2 \approx 0$

Quasi-real photon exchange

• Lepton as a source of quasi-real γ $l \rightarrow l' \gamma$ final lepton almost collinear

$$\sigma^{WW}(\ell p \to hX) = \int dy f_{\gamma/\ell}(y) \,\sigma(\gamma p \to hX)$$

$$f_{\gamma/\ell}(y) = \frac{\alpha}{2\pi} \frac{1 + (1 - y)^2}{y} \left[\ln\left(\frac{\mu^2}{y^2 m_{\ell}^2}\right) - 1 \right]$$

Weizsäcker-Williams approximation

22/05/2017

NPQCD2017

44

Reanalysis of SSAs (and unpol. xsecs): UD, Flore, Murgia 2017

Collins effect: from SIDIS to $pp \rightarrow \pi jet X$

 Y_{cm}

X_{cm}

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

and

TMDs and spin

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

49

An example: DY process

Extra gluons:

- Wilson lines, operators between parton fields in the correlator function
- Soft factors, vacuum expectation values of further Wilson lines, absorbed in the TMDs)

Wilson lines: path-ordered exponential of the gauge field ensuring local gauge invariance, but inducing some process dependence

$$\mathcal{U}_{[\eta;\xi]} = \mathcal{P} \exp\left[-ig \int_C ds \cdot A^a(s) t^a\right]$$

$$\Phi_{ij}^{[\mathcal{U}]}(x,p_T;P,S) = \int \frac{d(\xi \cdot P)d^2\xi_T}{(2\pi)^3} \ e^{ip \cdot \xi} \left\langle P,S \right| \overline{\psi}_j(0) \mathcal{U}_{[0;\xi]} \psi_i(\xi) \left| P,S \right\rangle \right|_{\mathrm{LF}} \,.$$

Access to the gluon Sivers function

PHENIX Collaboration data (2014)

All other effects are washed out

Nucleon structure phenomenology -- U. D'Alesio (Cagliari University & INFN)

A_N at mid-rapidity

UD, Murgia, Pisano JHEP09 (2015)

22/05/2017 NPQCD2017

Higher-twist contributions to *A_N*

- Collinear factorization: proven Qiu, Sterman (1991)
- Twist-three functions could be related to TMDs:

$$T_{q,F}(x,x) = -\int \mathrm{d}^2 k_\perp \frac{|k_\perp|^2}{M} f_{1T}^{\perp q}(x,k_\perp^2)|_{\mathrm{SIDIS}} \text{ Boer, Mulders, Piljman (2003)}$$

- A completely new twist-3 fragm. function seems to be able (necessary) to explain A_N Kanazawa, Koike, Merz, Pitonyak (2014)

22/05/2017 NPQCD2017

52

- Recent analysis with use of Lorentz Invariant Relations: Gamberg et al (2017)

 A_N in $pp \rightarrow \gamma X$ ideal to disentangle the two approaches (A_N with different sign)