

Same sign WW production via DPS: 8 TeV and preliminary results from Run-II

ALESSANDRO ROSSI

ON BEHALF OF CMS COLLABORATION

Introduction

Proja INFN

- Why Multi Parton Interaction?
 - o information on the spatial structure of the hadrons
 - correlations in the hadronic wave-function
 - o production of high mass particles from MPI are backgrounds for NP searches
- Measure MPI with large Q^2 and compare with model derived from Low Q^2 measurements
- Simple hypothesis for DPS:
 - No (or negligible) momentum correlations, the two scatters are independent
 - DPS cross section expressed as function of single cross section and an effective cross section
 - σ_{eff} characterize the transverse area of hard partonic interaction

$$\sigma_{A+B}^{DPS} = \frac{m}{2} \frac{\sigma_A \cdot \sigma_B}{\sigma_{eff}}$$

- σ_{eff} theoretically independent of energy
 - Existing measurements at different energies have large systematics
 - No coclusions on the energy trend can be extracted
 - \circ $\,$ Measured σ_{eff} in the range 15-20mb $\,$

- same-sign WW DPS to leptons is very promising theoretically
 - Single parton scattering ssWW production suppressed

- \circ Very clean final states: two leptons with missing E_T
- Good probe for correlation in the proton's pdf structure

CMS Simulations

- DY process and WW production from SPS reduced by requesting same-sign bosons
 - Number of jets is another discriminant between SPS and DPS
- Moderate leptons p_T and Missig E_T
 - 0 Difficult phase-space
- No b-jets at all
- Event selection

CMS Simulations

- p_T (leading) >20GeV & p_T (sub-leading) >10GeV
- Reject leptons from hadronic activities in the event
- Third lepton veto ($p_T > 10 \text{GeV}$)

Backgrounds

• Few backgrounds contribute after events selection

- Improve rejection is challenging
 - WZ production
 - Kinematically most similar to DPS ssWW
 - "fake leptons", mainly QCD and W+jets
 - Experimentally complicated
 - Smaller contribution from Wγ*, ZZ, WWW, charge-flip (mainly e)
 - DY and tt production (mainly eµ)

DPS in WW at 8TeV

- First search at CMS in RunI data
- Center of mass energy 8TeV
- Integrated luminosity 19.7fb⁻¹
- First performed only on µµ channel
- Then added also the eµ channel
- "Fake leptons" estimated from data
 - Leptons generated by heavy flavour decays reconstructed as prompt
 - Fake-rate method
- Boosted Decision Tree (BDT) trained in order to maximize sensitivity
- Public analysis: <u>CDS 2103756</u> (only Dimuon) http://cds.cern.ch/record/2103756?ln=en
 - Combined μμ and eμ channel will be published soon

BDT trained on 8 variables

ο μμ

- $p_T s$, Missing E_T , $\Delta \phi(\mu_{1/2}, ME_T)$, $M_T(\mu_{1/2}, ME_T)$, $M_T(\mu_{1,}, \mu_2)$
- ο eμ
 - p_Ts , Missing E_T , $p_T(I_1+I_2)$, $\Delta \varphi(I_2, ME_T)$, $\Delta \eta(\mu_1, \mu_2)$, $\Delta \varphi(I_1I_2, ME_T)$, $\Delta \varphi(I_{1,}I_2)$
- Training sample
 - Signal : DPS MC (Pythia8 + CTEQ6L1 pdf set)
 - Backgrounds: WZ MC , QCD-W+jets (fake leptons) form data, Wγ*-ZZ-WWW MC

Systematic uncertainties

- Uncertainties on MC yield arise from
 - Luminosity Calib (2.6%)
 - Pileup reweight (4.5%)
 - Data/MC scale factor uncertainties from triggers, lepton ID and b-jet veto (~6-10%)
 - $\circ~$ Theoretical uncertainties on PDFs, α_{s} and high-order corrections
 - Between 1 and 10%, depends on the particular proces
- Main systematic on data driven "fake leptons" (~40%)
 - Differences on the background shape (from control region)
 - Statistical uncertainties on fake rate

Results

 Yields extracted with a INFN fit to the BDT output

- \circ Separately for $\mu\mu$ and $e\mu$ channels
- Major background from "fake leptons"
- CLs on DPS σ_{WW} extracted from fit results
- Dimuon and Electron-Muon combined results not yet approved

Only dimuon results

$$\sigma_{W^{\pm}W^{\pm}}^{DPS} < 1.12pb$$

$$\sigma_{eff} > \frac{(\sigma_{W \to l\nu})^2}{2 \cdot (\mathcal{B}_{W \to l\nu}^2) \cdot \sigma_{W^{\pm}W^{\pm}}^{DPS}} = 5.91$$

- DPS ssWW search extended to 13TeV RunII data
- $\sqrt{s} = 13TeV$
- £=35.9fb⁻¹
- Both Dimuon and Electron-Muon channel exploited
- Almost same structure as the RunI analysis
 - Events selection
 - Data-driven method for "fake leptons"
 - BDT to maximize sensitivity
- Public analysis : <u>CDS 2257583</u> http://cds.cern.ch/record/2257583?ln=en

Comparison with previous analysis

- Different pdf tuning in pythia8
- Slightly different events selection
 - $\circ~$ Harder cut on p_{T} : form 20(10) to 25(20) GeV for leading (subleading) lepton
 - Added a cut on the number of jets : $N_{jet} < 2 (p_T > 30 GeV)$
 - Lowered the p_T threshold for third lepton veto (form 10 to 5 GeV)
- BDT trained only against WZ background
 - o gives biggest separation to most similar background
- BDT trained on 11 variables
 - o Added
 - $|\eta_1 x \eta_2|$
 - $\eta_1 + \eta_2$
 - M_{T2(I1,I2)}

$$M_{T_2} = \min(\max(m_{T,1}, m_{T,2}))$$

BDT output

High sensitivity —

Low sensitivity

- BDT trained on the 4 different channel togheter
 Then the output is analyzed separately
- Expected ~135 events on top of 2900 backgrounds
- Simultaneous Likelihood fit to all the channels

CMS

- Three main background components
 - WZ production (~16%): estimated from MC, shape and normalization uncertainty from MC simulation and data-MC comparison in 3l
 - fake leptons (~30%):
 estimated from data with fake-rate method, shape and scale uncertainty from variations in fake-rate and MC closure
 - rare MC contributions (~50%):
 Wγ*, ZZ, WWW, etc. from MC simulation estimate scale and shape uncertainties from variations in MC
- Theoretical uncertainties on PDFs
- Uncertainties constrained by likelihood fit

Results at 13TeV

- From likelihood fit expected and observed cross section (from pythia8 and/or factorization approach) are extracted
 - As well as significance and UL (no signal hypothesis)
- First 3σ sensitivity measurement
- Observed an inclusive cross section of 1.09±0.50pb with a significance of 2.23 σ
- Interpreting the results as σ_{eff} measurement
 - $\circ \sigma_{eff}$ =16.4^{+16.1}-6.0 mb

expected	observed	
1.64 pb	$1.09^{+0.50}$ pb	
0.87 pb	$1.09_{-0.49}$ pb	
3.27 σ	2.23σ	
1.81 σ	2.250	
< 0.97 pb	< 1.94 pb	
	expected 1.64 pb 0.87 pb 3.27 σ 1.81 σ < 0.97 pb	

CDF y+3jets (1.8 TeV) PRL 79 (1997) 584 D0 γ+3jets (1.96 TeV) PRD 89 (2014) 072006 HVH D0 γ+b/c+2jets (1.96 TeV) PRD 89 (2014) 072006 D0 2γ+2jets (1.96 TeV) PRD 93 (2016) 052008 ATLAS W+2jets (7 TeV) New J. P. 15 (2013) 033038 CMS W+2jets (7 TeV) JHEP 03 (2014) 032 ATLAS Z+J/ψ (8 TeV) EPJC 75 (2015) 229 CMS W[±]W[±] (8 TeV) PAS FSQ-13-001 (2015) CMS W[±]W[±] (13 TeV) PAS FSQ-16-009 (2017) 0 20 25 30 35 5 10 15 σ_{eff} (mb)

$\sigma_{\rm eff}$ extractions (vector boson final states)

- Wait for more data (end of 2017 middle 2018) in order to improve significance on DPS ssWW
 - Higher statistics could make parton correlations visible
 - Other final states could become accessible
- In the meanwhile
 - Review and optimized selection and MVA method to improve sensitivity
- Preliminary study for other final states DPS
 - i.e. Open charm production could give a high separation between DPS and SPS

Conclusions

- DPS same-sign WW has been analyzed on both 8TeV and 13TeV data
 - Dimuon and dilepton channel
 - UL setted up at 8TeV on DPS cross section
 - \circ 2.23 σ significance reached ad 13TeV : DPS σ_{WW} =1.09±0.5pb
 - First MPI measurement at 13TeV

Backup

Results at 8TeV

BDT Variables (8TeV)

MET [GeV]

180

MET [GeV]

Δ φ(μ., MET)

Mr [GeV]

M_T [GeV]

V99 10,

10

E 103

ts/10

Š.

GeV

9

10

10

5 10°

20 180 200

m_T(W2) [GeV]

$\rightarrow \mu\mu$

180 200

m_r(W1) [GeV]

Results at 13TeV

	$\mu^+\mu^+$	$\mu^{-}\mu^{-}$	$e^+\mu^+$	e^{_{\mu^-}}
fakes	151.1 ± 26.6	132.7 ± 23.4	412.7 ± 47.2	341.4 ± 39.0
WZ	$\textbf{277.2} \pm \textbf{28.1}$	164.5 ± 16.7	$\textbf{355.9} \pm \textbf{36.1}$	$\textbf{228.1} \pm \textbf{23.2}$
ZZ	$\textbf{24.8} \pm \textbf{7.0}$	18.7 ± 5.3	$\textbf{57.8} \pm \textbf{16.4}$	55.8 ± 15.8
$W\gamma *$	85.9 ± 27.5	73.1 ± 23.4	142.8 ± 45.7	127.7 ± 40.9
other rare	$\textbf{39.7} \pm \textbf{15.0}$	20.2 ± 7.7	83.7 ± 31.7	49.4 ± 18.8
charge flips			$\textbf{20.4} \pm \textbf{0.0}$	21.5 ± 0.0
background	578.6 ± 50.3	409.2 ± 38.2	1073.3 ± 83.0	824.0 ± 65.8
DPS WW	41.1 ± 1.0	20.6 ± 0.5	48.7 ± 1.2	24.1 ± 0.6
observed	604	411	1091	869

BDT Variables (13TeV)

