2nd Hadron Physics and NPQCD Workshop

3-dimensional nucleon

structure

Pp-cross section, elastic scattering and

diffraction physics

hadron spectroscopy

22 - 24 May 2017 Albergo dell'Agenzia Pollenzo (CN)

http://npqcd17.to.infn.it/ e-mail: npgcd17@to.infn.it

cosmic rays and accelerator physics multi parton interactions and

underlying event heavy ion collisions and quark gluon plasma

Organizing Committee

M. Anselmino (INFN/Università di Torino) Chair M. Chiosso (INFN/Università di Torino) D. Panzieri (INFN/Università del Piemonte Orientale) M. Ruspa (INFN/Università del Piemonte Orientale)

Program Committee

- A. Bacchetta (INFN/Università di Pavia) P. Di Nezza (INFN - LNF) F. Donato (INFN/Università di Torino)
- L. Fanò (INFN/Università di Perugia)
- F. Ferro (INFN Sezione di Genova)
- R. Mussa (INFN Sezione di Torino)
- A. Papa (INFN/Università della Calabria) A. Polosa (INFN/Università di Roma La Sapienza) M. Rinaldi (INFN/Università di Perugia) P. Rossi (Jefferson Lab, USA / LNF-INFN) E. Scomparin (INFN/Università di Torino)
- A. Tricomi (INFN/Università di Catania)

Marco Radici **INFN** - Pavia

INFN Istituto Nazionale di Fisica Nucleare

European Research Council

Outline : the 5 W's of journalism

You have to write about Who, What, Where, When, and Why. If you want to add something, ask for my permission!

the EIC project : What ? Why ? Where ? When ? Who ?

What ?

What is it all about ?

the EIC project : What ?

EIC = Electron - Ion Collider

machine parameters as identified in the 2015 Long Range Plan for Nuclear Science :

- Ion beams from protons, deuterons, to the heaviest stable nuclei
- polarized (~ 70%) electrons, protons, and light nuclei
- variable c.m. energy $\sqrt{s} \sim 20-100$ GeV, upgradable to ~ 140 GeV
- high collision luminosity ~ 10^{33-34} cm⁻² sec⁻¹
- possibly have more than one interaction region

EIC = a high-resolution giant microscope

Why ?

the EIC Physics case ?

Hadron scale → non-perturbative QCD

The Higgs mechanism explains only ~ 1% of visible matter, which rather emerges as a result of **non-linear dynamics of QCD**

".. the vast majority of the nucleon's mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light.."

Why #2 proton spin 1/2 =

We know that quarks contribute only a fraction of nucleon's spin. What about the rest? Gluon helicity? **partonic orbital motion ?**

Hadron scale → non-perturbative QCD

Why #3

gluon self-interaction \rightarrow proliferation of # gluons dramatic rise of gluon density @ low fractional momenta x

unitarity → gluons must recombine to balance splitting (saturation)

Where does saturation set in? Never clearly seen before. Is there a universal gluonic matter at high density? How does nuclear matter affect quark & gluon interactions?

Electron-Ion Collider : a multi-purpose microscope

very good PID capability required !

Electron-Ion Collider : a multi-purpose microscope

 $Q^2 = s \times y$ the larger the energy the larger the coverage, but $\sigma \sim 1 / (xQ^4)$ and detector resolution $\Rightarrow y > y_{min}$

 $Q^2 = s \times y$ the larger the energy the larger the coverage, but $\sigma \sim 1 / (xQ^4)$ and detector resolution $\Rightarrow y > y_{min}$

NP QCD: from Discovery to Precision

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

 high luminosity and wide reach in √s

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

- high luminosity and wide reach in √s
- polarized lepton & hadron beams
- nuclear beams

EIC stands out as unique facility

Potential of EIC

A glimpse of the expected performance of EIC about some "observables" related to the issues raised by Why's

details in

INT 2010 arXiv:1108.1713

White Paper EPJ A52 (16) 268, arXiv:1212.1701

The Nucleon Spin Puzzle

Why #2 : How does QCD generate the Nucleon's spin ?

sum rule

$$\frac{1/2}{1/2} = \frac{1}{2}\Delta\Sigma + \Delta g + \sum_{q} L^{q+\bar{q}} + L^{g} \Big|_{Q^{2}}$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + \sum_{q} L^{q+\bar{q}} + L^{g} \Big|_{Q^{2}}$$

$$quark \quad \Delta\Sigma(Q^{2}) = \sum_{q} [\Delta q(Q^{2}) + \Delta \bar{q}(Q^{2})]$$

$$gluon \quad \Delta g(Q^{2}) \qquad \text{where do they come from}?$$

The Nucleon Spin Puzzle

polarized Deep-Inelastic Scattering (DIS)

The Nucleon Spin <u>Puzzle</u>

EIC projected me precise determination sea and gluons \rightarrow \rightarrow A clear idea of

The Nucleon Spin Puzzle

The Nucleon Spin Puzzle

Present situation is not so clear...

- new data from RHIC \rightarrow new fit DSSV14 $\rightarrow \Delta g$ larger \rightarrow no room for OAM but data only *P.R.L.* 115 (15) 092002 *De Florian et al., P.R.L.* 113 (14) 012001 *De Florian et al., P.R.L.* 113 (14) 012001

- recent lattice calculations → direct S^g ~ 50% ± 10% *P.R.L.* **118** (17) 102001 S^g ↔ Δg ? from χQCD Collab. → **sea quark OAM** = J^q – ΔΣ /2 ~ 50% ± 10% **disconnected** *P.R. D91* (15) 014505 diagrams ?

3Dim Imaging of Partons

In order to directly explore the orbital motion of partons, we need to extend our view **from 1Dim to 3Dim pictures**

- hard scale Q to localize the probe and see partons as particles

- soft scale $Q_0 \sim k_\perp \sim 1/b_\perp \sim \Lambda_{QCD}$ to be sensitive to confinement scale

high luminosity required !

New Tools

Useful tool for 3Dim imaging of partons: Wigner distributions

W(x, \mathbf{k}_{\perp} , \mathbf{b}_{\perp})

coordinate momentum ∫db」 ∫dk⊥ \mathbf{k}_{\perp} space space $q(\mathbf{x}, \mathbf{b}_{\perp})$ $q(x, \mathbf{k}_{\perp})$ Х + 1 Dim images 2 3Dim images in mom. space \perp coord. space + x long. mom. Transverse-Momentum Depende Fourier Transformed ($\mathbf{b}_{\perp} \leftrightarrow \mathbf{q}$) of distribution functions **Generalized Parton Distributions** TMD's **GPD's** SIDIS: factor. th. if $\mathbf{k}_{\perp} \ll \mathbf{Q}$ exclusive processes: factor. th. if $-\mathbf{q}^2 \ll \mathbf{Q}^2$

 $\mathbf{k}_{\perp} \not\ge \mathbf{b}_{\perp}$

TMD: the Sivers function

Saturation at high nuclear density

Why #3 : Is there a universal gluon matter at high density? First of all, how well do we know nuclear nPDF?

nuclear PDF

EIC: better precision at small x; adding charm pseudo-data, also at high x
complementary to LHC data: + test universality of nPDF

+ reduce QCD uncertainties in BSM searches

impact on Heavy Ion Physics: initial state cleanly disentangled

nuclear PDF

EIC: better precision at small x; adding charm pseudo-data, also at high x
complementary to LHC data: + test universality of nPDF

+ reduce QCD uncertainties in BSM searches

- impact on Heavy Ion Physics: initial state cleanly disentangled

What happens at very low x?

(implications for astronomical objects like neutron stars)

Saturation at high nuclear density

Where is onset of high-density regime? Look at evolution eq.'s

Universal gluonic matter (CGC) ?

virtual photon has wave length L ~ $1/x \gg 2R_A \sim A^{1/3}$ boosted nucleus size lepton probes coherently all gluons inside nucleus at given b

Saturation scale
$$[Q_s(x,A)]^2 \sim \left(\frac{A}{x}\right)^{\frac{1}{3}}$$

(maximum at b=0)

Advantage of having ion beams same Q_s reached at (A × larger) x hence, at ($1/\sqrt{A}$ × smaller) energy \sqrt{s}

Importance of diffraction

Diffraction: a powerful probe of onset of QCD non-linear dynamics in saturation

coherent destructive interf. in $\sigma_{diff} \ll \sigma_{tot}$

diffractive vector meson production $\sigma_{diff}^{V}(Au) / \sigma_{diff}^{V}(p)$ Q² dependence of saturation

Diffractive di-jet production: access gluon Wigner distribution ?

Zheng et al., P.R. D**89** (14) 074037

the EIC project: Where ?

Where ?

Where can this facility become real ?

the EIC project : Where ?

- "figure 8" layout optimized for high ion polarization
- fully integrated detector/IR
- use existing CEBAF for polarized e⁻ injector

- energy range \sqrt{s} : 20 \rightarrow 65 140 GeV (depending on magnet tech.)
- JLEIC achieves initial high Lumi;
 choice of magnet technology
 determines initial / upgraded
 energy reach

the eRHIC project

- use existing RHIC: tunnel, detector halls, hadron injector
- add 18 GeV e⁻ accelerator in same tunnel (use either Electron Storage Ring or Energy Recovery Linac)

the EIC Science Matrix

JLEIC initial.....eRHIC initialJLEIC upgraded----eRHIC ultimate

the EIC Science Matrix

by the EIC physics case

the EIC project : When ?

When ?

the time scale ?

the EIC project : When ?

JLEIC possible timeline (eRHIC similar)

Updated: 1/13/17

CD0 = DOE "Mission Need" statement; CD1 = design choice and site selection CD2/CD3 = establish project baseline cost and schedule

A. Accardi, Giornata sulle opportunità del progetto EIC, Genova Jan. 17 2017

Who ?

the Institutions involved ?

The EIC User Group: www.eicug.org

The EIC User Group: www.eicug.org

The EIC User Group: www.eicug.org

28 countries, 151 institutions **685** collaborators (April, 2017)

Institutional Board: one representative for each one of 151 institutions elections (fall 2016)

Steering Committee:

Members elected

J. Arrington

C.E. Hyde

President

A. Deshpande

Vice President B. Surrow

> Europe repres.

Asian repres.

elections

The EIC User Group: www.eicug.org

28 countries, 151 institutions685 collaborators (April, 2017)

EICUG previous meetings

- Stony Brook, Jun. 2014 <u>http://skypper.physics.sunysb.edu/~eicug/meeting1/SBU.html</u>
- Berkeley, Jan. 6-9 2016 <u>http://skypper.physics.sunysb.edu/~eicug/meeting2/UCB2016.html</u>
- Argonne Nat. Lab., Jul. 7-10 2016 http://eic2016.phy.anl.gov/
- remote/web, Mar. 2017 (preparation of NAS review)

EICUG next meeting

Trieste, Jul. 18-22 2017

https://agenda.infn.it/conferenceDisplay.py?ovw=True&confld=13037

EICUG MEETING – July 18-22 TRIESTE

> Hosting Institution: INFN, Sezione di Trieste n cooperation with Trieste University