Rare and radiative decays X_{cJ} within the NRQCD approach

Nikolay Kivel

HELMHOLTZ
 |Institut Mainz

in collaboration with M. Vanderhaeghen
JHEP 1602 (2016) \& arXive:1703.10383 (2017)

$$
X_{C J} \rightarrow e^{+} e^{-} \quad X_{C J} \rightarrow V \gamma
$$

Radio MonteCarLOW workshop, June 30, Mainz, Germany

NRQCD factorisation framework

There are 3 well separated scales integrate out hard modes

QCD
QED
$m v^{2} \ll m v \ll m \quad v^{2} \ll 1$
Bodwin, Braaten,Lepage 1994
eff. Lagrangian + power counting
= systematic approach
essential regions of loop momentum Beneke, Smirnov 1997
hard $\quad k_{0} \sim m \quad \vec{k} \sim m \quad$ PQCD
soft $\quad k_{0} \sim m v \quad \vec{k} \sim m v$
potential $k_{0} \sim m v^{2} \vec{k} \sim m v$
ultrasoft $\quad k_{0} \sim m v^{2} \quad \vec{k} \sim m v^{2}$

NRQCD factorisation framework

$$
J / \Psi\left({ }^{3} S_{1}\right) \rightarrow e^{+} e^{-}
$$

$$
\begin{aligned}
& \Gamma[J / \Psi \rightarrow e e]=\frac{4 \alpha^{2} e_{c}^{2}}{M^{2}}\left|R_{10}(0)\right|^{2}\left(1-5.33 \frac{\alpha_{s}}{\pi}\right) \\
& \left|R_{10}(0)\right|^{2}=0.81 \mathrm{GeV}^{3} \quad \\
& \quad \begin{array}{l}
\text { Buchmuller-Tye potential } \\
\\
\text { Eichten, Quigg } 1995
\end{array}
\end{aligned}
$$

theory
LO +NLO estimate

$$
\operatorname{Br}[J / \Psi \rightarrow e e]=5.4 \%
$$

experiment

$$
B r[J / \Psi \rightarrow e e]=5.971 \pm 0.032 \%
$$

NRQCD factorisation framework

$$
\begin{aligned}
& \Gamma\left[\chi_{c 0} \rightarrow \gamma \gamma\right]=216 \alpha^{2} e_{c}^{4} \frac{\left|R_{21}^{\prime}(0)\right|^{2}}{M^{2} m_{c}^{2}}\left(1+0.179 \frac{\alpha_{s}}{\pi}\right) \\
& \Gamma\left[\chi_{c 2} \rightarrow \gamma \gamma\right]=\frac{288}{5} \alpha^{2} e_{c}^{4} \frac{\left|R_{21}^{\prime}(0)\right|^{2}}{M^{2} m_{c}^{2}}\left(1-5.33 \frac{\alpha_{s}}{\pi}\right)
\end{aligned}
$$

Eichten, Quigg 1995 B.-T. potential $\quad\left|R_{21}^{\prime}(0)\right|^{2}=0.075 \mathrm{GeV}^{5} \quad m_{c}=1.5 \mathrm{GeV}^{2}$
theory
LO+NLO estimate experiment

$$
\begin{array}{lll}
\operatorname{Br}\left[\chi_{c 0} \rightarrow \gamma \gamma\right] & 3.1 \times 10^{-4} & (2.23 \pm 0.13) \times 10^{-4} \\
\operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \gamma\right] & 2.1 \times 10^{-4} & (2.74 \pm 0.14) \times 10^{-4}
\end{array}
$$

Ratio 1.48
0.81

The amplitude for $X_{c J} \rightarrow e^{+} e^{-}$decay

The hard and ultrasoft contributions overlap and can be described consistently within NRQCD \& pNRQED framework

$$
\begin{gathered}
\mathcal{A}_{\mathrm{hard}} \simeq R_{21}^{\prime}(0) T_{J}\left[\bar{c} c(0) \rightarrow e^{+} e^{-}\right] \\
T_{J=1} \sim \frac{\alpha^{2}}{m_{c}^{3}} \ln \frac{m_{c}^{2}}{\mu_{F}^{2}} \quad T_{J=2} \sim \frac{\alpha^{2}}{m_{c}^{3}}\left\{\ln \frac{m_{c}^{2}}{\mu_{F}^{2}}+\frac{1}{3}(\ln 2-1+i \pi)\right\}
\end{gathered}
$$

$$
\mu_{F} \sim M-2 m_{c} \quad T_{J=0} \sim m_{l}
$$

The ultrasoft contribution in $X_{c J} \rightarrow e^{+} e^{-}$decay
ultrasoft photon cannot resolve quark degrees of freedom
NRQCD low energy effective theory degrees of freedom: soft photons \& mesons:
$\mathcal{L}_{\text {eff }}$ includes exact and approximates symmetries of NRQCD in a systematic way using $1 / \mathrm{m}$ expansion: HHChPT

Heavy Quark Spin Symmetry : ultrasoft photon does not resolve spin of heavy particles

Effective Lagrangian

Casalbuoni et al, 1993

$$
\mathcal{L}_{i n t}^{e f f}=e e_{Q} f_{\gamma}\left\{\chi_{2}^{i j} \vec{\psi}_{j} \vec{E}_{i}+\sqrt{2} \vec{\chi}_{1} \cdot(\vec{\psi} \times \vec{E})+\frac{1}{\sqrt{3}} \chi_{0} \vec{\psi} \cdot \vec{E}\right\}+\left(\psi \rightarrow \psi^{\prime}, f_{\gamma} \rightarrow f_{\gamma}^{\prime}\right)+\ldots
$$

$$
\begin{array}{ll}
\chi_{c J} \rightarrow J / \psi+\gamma & \psi^{\prime} \rightarrow \chi_{c J}+\gamma \\
\left|f_{\gamma}\right|=\left\{\begin{array}{ll}
\left(\chi_{c 0}\right) 5.87 \\
\left(\chi_{c 1}\right) 6.05 \\
\left(\chi_{c 2}\right) 6.03
\end{array}\right\} \simeq 6.0 & \left|f_{\gamma}^{\prime}\right|=\left\{\begin{array}{l}
6.5\left(\chi_{c 0} \gamma\right) \\
7.0\left(\chi_{c 1} \gamma\right) \\
8.1\left(\chi_{c 2} \gamma\right)
\end{array}\right\} \simeq 7.2
\end{array}
$$

$$
f_{\gamma}=\sqrt{2 M_{\chi}} \sqrt{2 M_{\psi}} \frac{1}{\sqrt{3}} \int_{0}^{\infty} d r r^{3} R_{21}(r) R_{10}(r)
$$

Eichten et al, 1978, 2004

$$
f_{\gamma}>0 \quad f_{\gamma}^{\prime}<0
$$

The results for widths

$$
\begin{aligned}
& \Gamma\left[\chi_{c 1} \rightarrow e^{+} e^{-}\right]=\frac{1}{12 \pi} M_{\chi}\left|C_{\gamma \gamma}^{(1)}\left(\mu_{0}\right)\left\langle\mathcal{O}\left({ }^{3} P_{0}\right)\right\rangle+\frac{\alpha^{2} e_{c}^{2}}{m_{c}^{2}} \frac{1}{\sqrt{2}} \mathcal{S}\left(\mu_{0}\right)\right|^{2} \\
& \Gamma\left[\chi_{c 2} \rightarrow e^{+} e^{-}\right]=\frac{1}{40 \pi} M_{\chi}\left|C_{\gamma \gamma}^{(2)}\left(\mu_{0}\right)\left\langle\mathcal{O}\left({ }^{3} P_{0}\right)\right\rangle+\frac{\alpha^{2} e_{c}^{2}}{m_{c}^{2}} \mathcal{S}\left(\mu_{0}\right)\right|^{2}
\end{aligned}
$$

$$
\mathcal{S}=f_{\gamma}\left\langle\mathcal{O}\left({ }^{3} S_{1}\right)\right\rangle \frac{\Delta}{M_{\chi}}\left(\ln 2-1-\ln \frac{\mu_{0}}{\Delta}-i \pi\right)+f_{\gamma}^{\prime}\left\langle\mathcal{O}^{\prime}\left({ }^{3} S_{1}\right)\right\rangle \frac{\Delta^{\prime}}{M_{\chi}}\left(\ln 2-1-\ln \frac{\mu_{\chi}}{\left|\Delta^{\prime}\right|}\right)
$$

$$
\Delta=\left(M_{\chi}^{2}-M_{J / \Psi}^{2}\right) / 2 M_{\chi}
$$

$$
\text { Eichten, Quigg } 1995
$$

Buchmüller-Tye potential

$$
\begin{aligned}
\left\langle\mathcal{O}\left({ }^{3} P_{0}\right)\right\rangle & \sim R_{21}^{\prime}(0) \\
\left\langle\mathcal{O}\left({ }^{3} S_{1}\right)\right\rangle & \sim R_{10}(0) \\
\left\langle\mathcal{O}^{\prime}\left({ }^{3} S_{1}\right)\right\rangle & \sim R_{20}(0)
\end{aligned}
$$

$$
\begin{aligned}
&\left|R_{21}^{\prime}(0)\right|^{2} \simeq 0.075 \mathrm{GeV}^{5} \\
&\left|R_{10}(0)\right|^{2} \simeq 0.81 \mathrm{GeV}^{3} \\
&\left|R_{20}(0)\right|^{2} \simeq 0.53 \mathrm{GeV}^{3}
\end{aligned}
$$

Numerical estimates

$\mathrm{m}_{\mathrm{c}}=1.5 \mathrm{GeV}$
NK, Vanderhaeghen 2016

μ_{0}, MeV	$\Gamma\left[\chi_{c 1} \rightarrow e^{-} e^{+}\right], \mathrm{eV}$	$\Gamma\left[\chi_{c 2} \rightarrow e^{-} e^{+}\right], \mathrm{eV}$
300	$0.060_{s}+0.009_{h s}+0.023_{h}=0.091$	$0.036_{s}+0.020_{h s}+0.016_{h}=0.072$
400	$0.063_{s}+0.013_{h s}+0.011_{h}=0.087$	$0.038_{s}+0.017_{h s}+0.013_{h}=0.068$
500	$0.066_{s}+0.011_{h s}+0.004_{h}=0.082$	$0.040_{s}+0.015_{h s}+0.010_{h}=0.065$

Comparison with other estimates:
Kühn, Kaplan, Safiani 1979 generalized VDM model

$$
\begin{aligned}
& \Gamma\left[\chi_{c 1} \rightarrow e^{+} e^{-}\right] \simeq 0.46 \mathrm{eV} \\
& \Gamma\left[\chi_{c 2} \rightarrow e^{+} e^{-}\right] \simeq 0.014 \mathrm{eV}
\end{aligned}
$$

Denig, Guo, Hahnhart, Nefediev 2014 VDM model $\Gamma\left[\chi_{c 1} \rightarrow e^{+} e^{-}\right] \simeq 0.1 \mathrm{eV}$ Czyz, Kühn, Tracz, 2016 phenom. model (VDM?)

$$
\begin{aligned}
& \Gamma\left[\chi_{c 1} \rightarrow e^{+} e^{-}\right] \simeq 0.078 \mathrm{eV} \\
& \Gamma\left[\chi_{c 2} \rightarrow e^{+} e^{-}\right] \simeq 1.35 \mathrm{eV}
\end{aligned}
$$

	$\gamma \gamma+J / \psi \gamma$	$\gamma \gamma$	$J / \psi \gamma$	$\mathrm{QED}+Z^{0}$
$\Gamma\left(\chi_{c_{1}} \rightarrow e^{+} e^{-}\right)[\mathrm{eV}]$	0.078	0.073	0.003	0.071
$\Gamma\left(\chi_{c_{2}} \rightarrow e^{+} e^{-}\right)[\mathrm{eV}]$	1.35	0.032	0.975	-

Radiative decays $X_{C J} \rightarrow V_{Y}$

Data: CLEO \& BESIII

Branching fractions in units 10^{-4}

	$\chi_{c 1} \rightarrow V \gamma$	$\chi_{c 1} \rightarrow V_{\\|} \gamma$	$\chi_{c 1} \rightarrow V_{\perp} \gamma$	$\chi_{c 0} \rightarrow V \gamma$	$\chi_{c 2} \rightarrow V \gamma$
$\gamma \rho$	220 ± 18	184.8 ± 15.7	35.2 ± 7.4	<9	<20
$\gamma \omega$	69 ± 8	51.8 ± 8.9	17.3 ± 6.5	<8	<6
$\gamma \phi$	25 ± 5	17.7 ± 4.9	7.3 ± 3.6	<6	<8

Theory?
Gao, Zhang, Chao 2006, '07
Chen, Dong, Liu Eur. Phys. J. (2010)
These decays must be simpler then pure hadronic decays ...

Radiative decays $X_{C J} \rightarrow V_{Y}$

$$
\begin{aligned}
A_{0 V}^{\perp} & : \chi_{c 0} \rightarrow V\left(\lambda_{V}= \pm 1\right) \gamma\left(\lambda_{\gamma}= \pm 1\right) \\
A_{1 V}^{\perp} & : \chi_{c 1}\left(\lambda_{\chi}=0\right) \rightarrow V\left(\lambda_{V}= \pm 1\right) \gamma\left(\lambda_{\gamma}= \pm 1\right) \\
A_{1 V}^{\|} & : \underline{\chi_{c 1}\left(\lambda_{\chi}= \pm 1\right) \rightarrow V\left(\lambda_{V}=0\right) \gamma\left(\lambda_{\gamma}= \pm 1\right)} \\
A_{2 V}^{\perp} & : \chi_{c 2}\left(\lambda_{\chi}=0\right) \rightarrow V\left(\lambda_{V}= \pm 1\right) \gamma\left(\lambda_{\gamma}= \pm 1\right), \\
A_{2 V}^{\|} & : \underline{\chi_{c 2}}\left(\lambda_{\chi}= \pm 1\right) \rightarrow V\left(\lambda_{V}=0\right) \gamma\left(\lambda_{\gamma}= \pm 1\right) \\
T_{2 V}^{\perp} & : \chi_{c 2}\left(\lambda_{\chi}= \pm 2\right) \rightarrow V\left(\lambda_{V}=\mp 1\right) \gamma\left(\lambda_{\gamma}= \pm 1\right)
\end{aligned}
$$

Color-singlet mechanism: decays with longitudinal $\mathrm{V}_{\|}$are dominant

Radiative decays $X_{C J} \rightarrow V_{\|} \gamma$

$\operatorname{Re} T_{1}(x)=-\frac{\pi^{2}}{12} \frac{1}{\bar{x}^{3}}-\frac{x}{4 \bar{x}^{3}} \ln ^{2} 2+\left(-\frac{1}{\bar{x}^{2}}-\frac{1}{4 \bar{x}}-\frac{3}{4 x}\right) \ln 2+\left(-\frac{3}{4 \bar{x}}+\frac{1}{4 x}-\frac{1}{2 x-1}\right) \ln \bar{x}$ $+\frac{x}{\bar{x}^{3}} \ln x \ln \bar{x}+\left(-\frac{1}{2 \bar{x}^{2}}+\frac{3}{4 \bar{x}}-\frac{1}{4 x}+\frac{1}{2 x-1}\right) \ln x-\frac{3 x}{4 \bar{x}^{3}} \ln ^{2} x-\frac{x}{2 \bar{x}^{3}} \ln x \ln 2$

$$
\begin{gathered}
-\frac{1}{2} \frac{x}{\bar{x}^{3}}\left(\operatorname{Li}\left[1-\frac{1}{2 x}\right]+\operatorname{Li}[1-2 x]+\operatorname{Li}[1-x]+\operatorname{Li}[-\bar{x} / x]-\operatorname{Li}[2 x-1]\right)+(x \rightarrow \bar{x}), \\
\operatorname{Im} T_{1}(x)=\frac{\pi}{4 x \bar{x}^{3}}\left(\bar{x}(1+x(2 x-1))+2 x^{2} \ln [x]\right)+(x \rightarrow \bar{x})
\end{gathered}
$$

Radiative decays $X_{C J} \rightarrow V_{\|} \gamma$

$$
A\left[\chi_{c J} \rightarrow V_{\|} \gamma\right] \sim \frac{R_{21}^{\prime}(0)}{m_{c}^{5 / 2}} \sqrt{4 \pi \alpha} \int_{0}^{1} d x \frac{f_{V}}{m_{c}} \phi_{V}^{\|}(x) \alpha_{s}^{2}\left(\mu_{h}\right) T_{J}(x)
$$

decay const. $f_{\rho}=221 \mathrm{MeV}, \quad f_{\omega}=198 \mathrm{MeV}, \quad f_{\phi}=161 \mathrm{MeV}$.
$\phi_{V}^{\|}(x) \quad$ Light-cone distribution amplitude describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle Fock state

This function is well known in literature!

$$
\begin{gathered}
\text { Model } \quad \phi_{V}(x, \mu)=6 x \bar{x}\left\{1+a_{2}^{V}(\mu) C_{2}^{3 / 2}(2 x-1)\right\} \\
\mu=1 \mathrm{GeV} \quad a_{2}^{\rho}=a_{2}^{\omega}=0.15 \pm 0.07, a_{2}^{\phi}=0.18 \pm 0.08 \\
\text { QCD SR Ball, Braun 1996, } 1999 \\
\text { Ball, Braun, Lenz } 2006
\end{gathered}
$$

Radiative decays $X_{C J} \rightarrow V_{\|} Y$

Theory vs. experiment : only the color singlet contribution branching fractions in units $10^{-4} \quad m_{c}<\mu_{h}<2 m_{c}$

	$\gamma \rho$	$\gamma \omega$	$\gamma \phi$	
$\begin{aligned} & \chi_{c 1} \rightarrow V_{\\|} \gamma \\ & \quad \text { exp. } \end{aligned}$	$\begin{gathered} 153.1_{-16.7}^{+18.2+10.5} \\ 184.8 \pm 15.7 \end{gathered}$	$\begin{gathered} 13.6_{-1.5-6.3}^{+1.6+9.2} \\ 51.8 \pm 8.9 \end{gathered}$	$\begin{gathered} 31.3_{-3.8-14.5}^{+4.2+21.4} \\ 17.7 \pm 4.9 \end{gathered}$	
$\begin{aligned} & \chi_{c 2} \rightarrow V_{\\|} \gamma \\ & \quad \text { exp. } \end{aligned}$	$\begin{gathered} 4.8_{-0.2-2.1}^{+0.2+3.1} \\ <20 \end{gathered}$	$\begin{gathered} 0.43_{-0.02-0.19}^{+0.02+0.27} \\ <6 \end{gathered}$	$\begin{gathered} 0.9_{-0.04-0.41}^{+0.05+0.59} \\ <8 \end{gathered}$	

Theory $\frac{B r\left[\chi_{c 1} \rightarrow \omega_{\|} \gamma\right]}{B r\left[\chi_{c 1} \rightarrow \rho_{\|} \gamma\right]} \simeq \frac{1}{9}$ (0.28)
clear indication about significance of the color octet contribution

$$
\langle V(p)| J_{e m}^{\mu}\left|\chi_{c J}\right\rangle=\langle V(p)| \sum_{u, d, s} e_{q} \bar{q} \gamma^{\mu} q\left|\chi_{c J}\right\rangle+\langle V(p)| e_{c} \bar{c} \gamma^{\mu} c\left|\chi_{c J}\right\rangle
$$

SU(2) breaking
color octet mechanism

Radiative decays $X_{C J} \rightarrow V_{\|} Y$

Theory vs. experiment : only the color singlet contribution branching fractions in units 10^{-4}

	$\gamma \rho$	$\gamma \omega$	$\gamma \phi$	
$\chi_{c 1} \rightarrow V_{\\|} \gamma$	$153.1_{-16.7-70.5}^{+18.2+103.7}$ exp.	$13.6_{-1.5-6.3}^{+1.6+9.2}$ 184.8 ± 15.7	31.8 ± 8.9	
$\chi_{c 2} \rightarrow V_{\\|} \gamma$	$2.11_{-3.8-14.5}^{+0.09+1.3}$			
exp.	<20	$0.19_{-0.9}^{+0.008}+0.12$ $+0.007-0.08$	$0.41_{-0.02}^{+0.02+0.26}$	

color octet contributions c-quark $\quad v^{2} \simeq 0.3 \quad \alpha_{s}\left(2 m_{c}^{2}\right)=0.29$

$$
\left[A_{1 V}^{\|}\right]_{o c t} /\left[A_{1 V}^{\|}\right]_{s i n g} \sim v^{2} / \alpha_{s}\left(\mu_{h}\right) \sim 1
$$

SU(2) breaking (only ω and ϕ)

$$
\left[A_{1 V}^{\|}\right]_{o c t} /\left[A_{1 V}^{\|}\right]_{\operatorname{sing}} \sim v^{3} / \alpha_{s}\left(\mu_{h}\right) \sim v \sim 0.5
$$

Radiative decays $X_{C J} \rightarrow V_{T Y}$

color singlet

color octet

$\left[A_{1 V}^{\perp}\right]_{o c t} /\left[A_{1 V}^{\perp}\right]_{\text {sing }} \sim 1$
large ambiguity

Twist-3 DAs

$$
\begin{aligned}
& A\left(\alpha_{i}\right)=360 \zeta_{3} \alpha_{1} \alpha_{2} \alpha_{3}^{2}\left(1+\omega_{3}^{A} \frac{1}{2}\left(7 \alpha_{3}-3\right)\right) \quad G\left(\alpha_{i}\right)=5040 \zeta_{3} \omega_{3}^{G} \alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2} \\
& V\left(\alpha_{i}\right)=540 \zeta_{3} \omega_{3}^{V} \alpha_{1} \alpha_{2} \alpha_{3}^{2}\left(\alpha_{2}-\alpha_{1}\right) \\
& \mu=1 \mathrm{GeV}
\end{aligned}
$$

$$
\rho \text { and } \omega \text {-mesons }: \quad \zeta_{3}=0.030 \pm 0.010, \quad \omega_{3}^{A}=-3.0 \pm 1.4, \quad \omega_{3}^{V}=5.0 \pm 2.4
$$

$$
\phi \text {-meson }: \quad \zeta_{3}=0.024 \pm 0.008, \quad \omega_{3}^{A}=-2.6 \pm 1.3, \quad \omega_{3}^{V}=5.3 \pm 3.0
$$

$$
\left|\omega_{3}^{G}(\mu=1 \mathrm{GeV})\right| \ll 1
$$

Ball, Braun 1996, 1999
Ball, Braun, Koike, Tanaka 1998
Ball, Braun, Lenz 2006

Radiative decays $X_{C J} \rightarrow V_{T Y}$

color singlet

color octet
$\left[A_{1 V}^{\perp}\right]_{o c t} /\left[A_{1 V}^{\perp}\right]_{\text {sing }} \sim 1$ large ambiguity
only the color singlet contribution

$$
\begin{aligned}
& \Gamma_{\rho}^{\perp}=222.4 \zeta_{3}^{2}\left(-9.82+4.78 \omega_{3}^{A}+3.31 \omega_{3}^{V}\right)^{2} \\
& \Gamma_{\phi}^{\perp}=168.7 \zeta_{3}^{2}\left(6.5-3.3 \omega_{3}^{A}+2.9 \omega_{3}^{V}+733.6 \underline{\omega}_{3}^{G}\right)^{2} \\
& \Gamma_{\omega}^{\perp}=181.2 \zeta_{3}^{2}\left(-3.3+1.4 \omega_{3}^{A}+8.3 \omega_{3}^{V}+735.6 \omega_{3}^{G}\right)^{2}
\end{aligned}
$$

Radiative decays $X_{C J} \rightarrow V_{T Y}$

color singlet

only the color singlet
branching fractions in units 10^{-4}

				$\chi_{c 1} \rightarrow V_{\perp \gamma}$		
ζ_{3}	ω_{3}^{A}	ω_{3}^{V}	ω_{3}^{G}	ρ	ω	ϕ
0.03	-2.2	2.8	-0.037	(35.2 ± 7.4)	(17.3 ± 6.5)	(7.3 ± 3.6)
			-9.6	20.8	4.8	
0.03	-4.4	5.9	-0.043	30.0	13.9	8.5
0.04	-2.5	3.7	-0.041	39.2	13.5	6.5
0.04	-3.4	5.1	-0.038	33.2	14.2	6.2

Data can be described including small 3 g contribution

$\chi_{c 2} \rightarrow V \gamma$			$\chi_{c 0} \rightarrow V \gamma$		
ρ	ω	ϕ	ρ	ω	ϕ
<20	<6	<8	<9	<8	<6
3.4	0.18	2.6	2.0	0.17	0.66
17.2	3.7	6.5	0.40	0.05	0.15
7.1	0.40	5.6	1.9	0.16	0.54
16.3	3.6	6.50	0.62	0.09	0.23

Radiative decays $X_{C J} \rightarrow V_{T Y}$

color singlet

only the color singlet contribution
color octet

$$
\left[A_{1 V}^{\perp}\right]_{o c t} /\left[A_{1 V}^{\perp}\right]_{s i n g} \sim 1
$$

large ambiguity

Data can be described including small 3g contributions

$$
\begin{aligned}
& \operatorname{Br}\left[\chi_{c 1} \rightarrow \gamma \rho\right]>\operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \rho\right]> \operatorname{Br}\left[\chi_{c 0} \rightarrow \gamma \rho\right] \\
& \operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \rho\right]> \operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \phi\right]>\operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \omega\right] \\
& \operatorname{Br}\left[\chi_{c 2} \rightarrow \gamma \phi\right] \geq \operatorname{Br}\left[\chi_{c 1} \rightarrow \gamma \phi\right]
\end{aligned}
$$

Precise measurements
of $\mathrm{Br}\left[\mathrm{X}_{\mathrm{c} 2} \rightarrow \gamma \rho\right]$
can help to reduce theoretical ambiguity

Thankyou!

