Rare and radiative decays XcJ within the NRQCD approach

Nikolay Kivel

in collaboration with M. Vanderhaeghen

JHEP 1602 (2016) & arXive:1703.10383 (2017)
$$X_{cJ} \rightarrow e^{+}e^{-}$$
 $X_{cJ} \rightarrow V\gamma$

Radio MonteCarLOW workshop, June 30, Mainz, Germany

NRQCD factorisation framework

There are 3 well separated scales

$$mv^2 \ll mv \ll m$$

 $v^2 \ll 1$

integrate out hard modes

Bodwin, Braaten, Lepage 1994

QCD QED

NRQCD NRQED eff. Lagrangian + power counting

= systematic approach

pQCD

essential regions of loop momentum

hard

Beneke, Smirnov 1997

		•••	
soft	$k_0 \sim mv$	$\vec{k} \sim mv$	
potential	$k_0 \sim mv^2$	$\vec{k} \sim mv$	
ultrasoft	$k_0 \sim mv^2$	$\vec{k} \sim mv^2$	

 $k_0 \sim m$ $\vec{k} \sim m$

nonperturbative

NRQCD factorisation framework

$$J/\Psi(^3S_1) \to e^+e^-$$

$$\Gamma[J/\Psi \to ee] = \frac{4\alpha^2 e_c^2}{M^2} |R_{10}(0)|^2 \left(1 - 5.33 \frac{\alpha_s}{\pi}\right)$$

$$|R_{10}(0)|^2 = 0.81 \text{ GeV}^3$$

Buchmuller-Tye potential Eichten, Quigg 1995

theory LO+NLO estimate

$$Br[J/\Psi \to ee] = 5.4\%$$

experiment

$$Br[J/\Psi \to ee] = 5.971 \pm 0.032\%$$

NRQCD factorisation framework

$$\chi_{cJ} \to \gamma \gamma$$

$$\Gamma[\chi_{c0} \to \gamma \gamma] = 216\alpha^2 e_c^4 \frac{|R'_{21}(0)|^2}{M^2 m_c^2} \left(1 + 0.179 \frac{\alpha_s}{\pi}\right)$$

$$\Gamma[\chi_{c2} \to \gamma \gamma] = \frac{288}{5} \alpha^2 e_c^4 \frac{|R'_{21}(0)|^2}{M^2 m_c^2} \left(1 - 5.33 \frac{\alpha_s}{\pi}\right)$$

Eichten, Quigg 1995 B.-T. potential
$$|R'_{21}(0)|^2 = 0.075 \text{ GeV}^5$$
 $m_c = 1.5 \text{ GeV}^2$

$$|R'_{21}(0)|^2 = 0.075 \text{ GeV}^5$$

$$m_c = 1.5 \text{ GeV}^2$$

theory LO+NLO estimate

experiment

$$Br[\chi_{c0} \to \gamma \gamma]$$

$$3.1 \times 10^{-4}$$

$$(2.23 \pm 0.13) \times 10^{-4}$$

$$Br[\chi_{c2} \to \gamma \gamma]$$

$$2.1 \times 10^{-4}$$

$$(2.74 \pm 0.14) \times 10^{-4}$$

Ratio

1.48

0.81

The amplitude for $X_{cJ} \rightarrow e^+e^-$ decay

The hard and ultrasoft contributions overlap and can be described consistently within NRQCD & pNRQED framework

$$\mathcal{A}_{\text{hard}} \simeq R'_{21}(0) T_J[\bar{c}c(0) \rightarrow e^+e^-]$$

$$T_{J=1} \sim \frac{\alpha^2}{m_c^3} \ln \frac{m_c^2}{\mu_F^2}$$
 $T_{J=2} \sim \frac{\alpha^2}{m_c^3} \left\{ \ln \frac{m_c^2}{\mu_F^2} + \frac{1}{3} (\ln 2 - 1 + i\pi) \right\}$

$$\mu_F \sim M - 2m_c$$

$$T_{J=0} \sim m_l$$

The ultrasoft contribution in $X_{cJ} \rightarrow e^+e^-$ decay

ultrasoft photon cannot resolve quark degrees of freedom

NRQCD low energy effective theory

degrees of freedom: soft photons & mesons:

 \mathcal{L}_{eff} includes exact and approximates symmetries of NRQCD in a systematic way using 1/m expansion: HHChPT

Heavy Quark Spin Symmetry: ultrasoft photon does not resolve spin of heavy particles

Effective Lagrangian

Casalbuoni et al, 1993

$$\mathcal{L}_{int}^{eff} = ee_Q f_{\gamma} \left\{ \chi_2^{ij} \vec{\psi}_j \vec{E}_i + \sqrt{2} \vec{\chi}_1 \cdot (\vec{\psi} \times \vec{E}) + \frac{1}{\sqrt{3}} \chi_0 \vec{\psi} \cdot \vec{E} \right\} + (\psi \to \psi', f_{\gamma} \to f_{\gamma}') + \dots$$

$$\chi_{cJ} \to J/\psi + \gamma$$
 $\psi' \to \chi_{cJ} + \gamma$

$$|\mathbf{f}_{\gamma}| = \left\{ \begin{array}{c} (\chi_{c0}) \, 5.87 \\ (\chi_{c1}) \, 6.05 \\ (\chi_{c2}) \, 6.03 \end{array} \right\} \simeq 6.0 \qquad |\mathbf{f}_{\gamma}'| = \left\{ \begin{array}{c} 6.5 \, (\chi_{c0} \gamma) \\ 7.0 \, (\chi_{c1} \gamma) \\ 8.1 \, (\chi_{c2} \gamma) \end{array} \right\} \simeq 7.2$$

$$f_{\gamma} = \sqrt{2M_{\chi}} \sqrt{2M_{\psi}} \frac{1}{\sqrt{3}} \int_0^{\infty} dr r^3 R_{21}(r) R_{10}(r)$$
 Eichten et al, 1978, 2004 $f_{\gamma} > 0$ $f_{\gamma}' < 0$

The results for widths

$$\Gamma[\chi_{c1} \to e^+ e^-] = \frac{1}{12\pi} M_\chi |C_{\gamma\gamma}^{(1)}(\mu_0) \langle \mathcal{O}(^3P_0) \rangle + \frac{\alpha^2 e_c^2}{m_c^2} \frac{1}{\sqrt{2}} \mathcal{S}(\mu_0)|^2$$

$$\Gamma[\chi_{c2} \to e^+ e^-] = \frac{1}{40\pi} M_\chi |C_{\gamma\gamma}^{(2)}(\mu_0) \langle \mathcal{O}(^3P_0) \rangle + \frac{\alpha^2 e_c^2}{m_c^2} \mathcal{S}(\mu_0) |^2$$

$$S = f_{\gamma} \left\langle \mathcal{O}(^{3}S_{1}) \right\rangle \frac{\Delta}{M_{\chi}} \left(\ln 2 - 1 - \ln \frac{\mu_{0}}{\Delta} - i\pi \right) + f'_{\gamma} \left\langle \mathcal{O}'(^{3}S_{1}) \right\rangle \frac{\Delta'}{M_{\chi}} \left(\ln 2 - 1 - \ln \frac{\mu_{\chi}}{|\Delta'|} \right)$$

$$\Delta = (M_\chi^2 - M_{J/\Psi}^2)/2M_\chi$$

$$\langle \mathcal{O}(^3P_0)\rangle \sim R'_{21}(0)$$

 $\langle \mathcal{O}(^3S_1)\rangle \sim R_{10}(0)$
 $\langle \mathcal{O}'(^3S_1)\rangle \sim R_{20}(0)$

Eichten, Quigg 1995

Buchmüller-Tye potential

$$|R'_{21}(0)|^2 \simeq 0.075 \text{GeV}^5$$

$$|R_{10}(0)|^2 \simeq 0.81 \text{GeV}^3$$

$$|R_{20}(0)|^2 \simeq 0.53 \text{GeV}^3$$

Numerical estimates

m_c=1.5GeV

NK, Vanderhaeghen 2016

μ_0, MeV	$\Gamma[\chi_{c1} \to e^- e^+], \text{ eV}$	$\Gamma[\chi_{c2} \to e^- e^+], \text{ eV}$
300	$0.060_s + 0.009_{hs} + 0.023_h = 0.091$	$0.036_s + 0.020_{hs} + 0.016_h = 0.072$
400	$0.063_s + 0.013_{hs} + 0.011_h = 0.087$	$0.038_s + 0.017_{hs} + 0.013_h = 0.068$
500	$0.066_s + \frac{0.011_{hs}}{0.004_h} + \frac{0.004_h}{0.0082}$	$0.040_s + 0.015_{hs} + 0.010_h = 0.065$

Comparison with other estimates:

Kühn, Kaplan, Safiani 1979 generalized VDM model

$$\Gamma[\chi_{c1} \to e^+ e^-] \simeq 0.46 \text{ eV}$$

 $\Gamma[\chi_{c2} \to e^+ e^-] \simeq 0.014 \text{ eV}$

Denig, Guo, Hahnhart, Nefediev 2014 VDM model

$$\Gamma[\chi_{c1} \to e^+e^-] \simeq 0.1 \text{ eV}$$

Czyz, Kühn, Tracz, 2016 phenom. model (VDM?)

$$\Gamma[\chi_{c1} \to e^+ e^-] \simeq 0.078 \text{ eV}$$

 $\Gamma[\chi_{c2} \to e^+ e^-] \simeq 1.35 \text{ eV}$

	$\gamma \gamma + J/\psi \gamma$	$\gamma\gamma$	$J/\psi\gamma$	$QED+Z^0$
$\Gamma(\chi_{c_1} \to e^+ e^-) \text{ [eV]}$	0.078	0.073	0.003	0.071
$\Gamma(\chi_{c_2} \to e^+ e^-) \text{ [eV]}$	1.35	0.032	0.975	-

Radiative decays $X_{cJ} \rightarrow V_{Y}$

Data: CLEO & BESIII

Branching fractions in units 10⁻⁴

	$\chi_{c1} \to V \gamma$	$\chi_{c1} \to V_{ } \gamma$	$\chi_{c1} \to V_\perp \gamma$	$\chi_{c0} \to V \gamma$	$\chi_{c2} \to V \gamma$
$\gamma \rho$	220 ± 18	184.8 ± 15.7	35.2 ± 7.4	< 9	< 20
$\gamma \omega$	69 ± 8	51.8 ± 8.9	17.3 ± 6.5	< 8	< 6
$\gamma \phi$	25 ± 5	17.7 ± 4.9	7.3 ± 3.6	< 6	< 8

Theory?

Gao, Zhang, Chao 2006, '07

Chen, Dong, Liu Eur. Phys. J. (2010)

These decays must be simpler then pure hadronic decays ...

Radiative decays $X_{cJ} \rightarrow V_{Y}$

$$A_{0V}^{\perp}: \chi_{c0} \to V(\lambda_V = \pm 1)\gamma(\lambda_{\gamma} = \pm 1)$$

$$A_{1V}^{\perp}$$
: $\chi_{c1}(\lambda_{\chi}=0) \rightarrow V(\lambda_{V}=\pm 1)\gamma(\lambda_{\gamma}=\pm 1)$

$$A_{1V}^{\parallel}$$
: $\chi_{c1}(\lambda_{\chi} = \pm 1) \rightarrow V(\lambda_{V} = 0)\gamma(\lambda_{\gamma} = \pm 1)$

$$A_{2V}^{\perp}$$
: $\chi_{c2}(\lambda_{\chi}=0) \to V(\lambda_{V}=\pm 1)\gamma(\lambda_{\gamma}=\pm 1),$

$$A_{2V}^{\parallel}$$
: $\chi_{c2}(\lambda_{\chi} = \pm 1) \rightarrow V(\lambda_{V} = 0)\gamma(\lambda_{\gamma} = \pm 1)$

$$T_{2V}^{\perp}$$
: $\chi_{c2}(\lambda_{\chi} = \pm 2) \rightarrow V(\lambda_{V} = \mp 1)\gamma(\lambda_{\gamma} = \pm 1)$

Color-singlet mechanism: decays with longitudinal VII are dominant

$$A[\chi_{cJ} \to V_{||} \gamma] \sim \frac{R'_{21}(0)}{m_c^{5/2}} \sqrt{4\pi\alpha} \int_0^1 dx \, \frac{f_V}{m_c} \phi_V^{||}(x) \, \alpha_s^2(\mu_h) T_J(x)$$

$$\operatorname{Re} T_{1}(x) = -\frac{\pi^{2}}{12} \frac{1}{\bar{x}^{3}} - \frac{x}{4\bar{x}^{3}} \ln^{2} 2 + \left(-\frac{1}{\bar{x}^{2}} - \frac{1}{4\bar{x}} - \frac{3}{4x} \right) \ln 2 + \left(-\frac{3}{4\bar{x}} + \frac{1}{4x} - \frac{1}{2x-1} \right) \ln \bar{x}$$

$$+ \frac{x}{\bar{x}^{3}} \ln x \ln \bar{x} + \left(-\frac{1}{2\bar{x}^{2}} + \frac{3}{4\bar{x}} - \frac{1}{4x} + \frac{1}{2x-1} \right) \ln x - \frac{3x}{4\bar{x}^{3}} \ln^{2} x - \frac{x}{2\bar{x}^{3}} \ln x \ln 2$$

$$- \frac{1}{2} \frac{x}{\bar{x}^{3}} \left(\operatorname{Li} \left[1 - \frac{1}{2x} \right] + \operatorname{Li} \left[1 - 2x \right] + \operatorname{Li} \left[1 - x \right] + \operatorname{Li} \left[-\bar{x}/x \right] - \operatorname{Li} \left[2x - 1 \right] \right) + (x \to \bar{x}),$$

$$\operatorname{Im} T_{1}(x) = \frac{\pi}{4x\bar{x}^{3}} \left(\bar{x}(1 + x(2x-1)) + 2x^{2} \ln[x] \right) + (x \to \bar{x})$$

decay const.
$$f_{\rho}=221\,\mathrm{MeV},~f_{\omega}=198\,\mathrm{MeV},~f_{\phi}=161\,\mathrm{MeV},$$

$$\phi_V^{\parallel}(x)$$
 Light-cone distribution amplitude

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle Fock state

This function is well known in literature!

$${\rm Model} \qquad \phi_V(x,\mu) = 6x\bar{x} \left\{ 1 + a_2^V(\mu) C_2^{3/2}(2x-1) \right\}$$

$$\mu = 1 \,\text{GeV}$$
 $a_2^{\rho} = a_2^{\omega} = 0.15 \pm 0.07, \ a_2^{\phi} = 0.18 \pm 0.08$

QCD SR

Ball, Braun 1996, 1999

Ball, Braun, Lenz 2006

Theory vs. experiment: only the color singlet contribution

branching fractions in units 10⁻⁴

$$m_c < \mu_h < 2m_c$$

	γho	$\gamma \omega$	$\gamma\phi$	
$\chi_{c1} \to V_{\parallel} \gamma$ $\exp.$	$153.1^{+18.2+103.7}_{-16.7-70.5} \\ 184.8 \pm 15.7$	$13.6^{+1.6+9.2}_{-1.5-6.3}$ 51.8 ± 8.9	$31.3^{+4.2+21.4}_{-3.8-14.5}$ 17.7 ± 4.9	
$\chi_{c2} \to V_{ } \gamma$ exp.	$4.8^{+0.2+3.1}_{-0.2-2.1} < 20$	$0.43^{+0.02+0.27}_{-0.02-0.19}$ < 6	$0.9^{+0.05+0.59}_{-0.04-0.41}$ < 8	

Theory $\frac{Br\left[\chi_{c1} o \omega_{\parallel} \gamma\right]}{Br\left[\chi_{c1} o
ho_{\parallel} \gamma\right]} \simeq \frac{1}{9}$ (0.28)

clear indication about significance of the color octet contribution

$$\langle V(p)|J^{\mu}_{em}|\chi_{cJ}\rangle = \langle V(p)|\sum_{u,d,s}e_q \ \bar{q}\gamma^{\mu}q|\chi_{cJ}\rangle + \langle V(p)|e_c \ \bar{c}\gamma^{\mu}c|\chi_{cJ}\rangle$$
 SU(2) breaking

SU(2) breaking color octet mechanism

Theory vs. experiment: only the color singlet contribution branching fractions in units 10⁻⁴

	γho	$\gamma \omega$	$\gamma \phi$	
$\begin{array}{c} \chi_{c1} \to V_{ } \gamma \\ \text{exp.} \end{array}$	$153.1^{+18.2+103.7}_{-16.7-70.5} 184.8 \pm 15.7$	$13.6^{+1.6+9.2}_{-1.5-6.3}$ 51.8 ± 8.9	$31.3^{+4.2+21.4}_{-3.8-14.5}$ 17.7 ± 4.9	
$\chi_{c2} \to V_{\parallel} \gamma$ exp.	$\begin{array}{c c} 2.11^{+0.09+1.3}_{-0.08-0.9} \\ < 20 \end{array}$	$0.19^{+0.008+0.12}_{-0.007-0.08} < 6$	$\begin{array}{c c} 0.41^{+0.02+0.26}_{-0.02-0.18} \\ < 8 \end{array}$	

color octet contributions c-quark $v^2 \simeq 0.3$ $\alpha_s(2m_c^2) = 0.29$

$$\left[A_{1V}^{\parallel}\right]_{oct} / \left[A_{1V}^{\parallel}\right]_{sing} \sim v^2 / \alpha_s(\mu_h) \sim 1$$

SU(2) breaking $\left[A_{1V}^{\parallel}\right]_{oct} / \left[A_{1V}^{\parallel}\right]_{sing} \sim v^3/\alpha_s(\mu_h) \sim v \sim 0.5$ (only ω and φ)

color singlet

color octet

$$\left[A_{1V}^{\perp}\right]_{oct}/\left[A_{1V}^{\perp}\right]_{sing}\sim1$$

large ambiguity

Twist-3 DAs

$$A(\alpha_i) = 360\zeta_3\alpha_1\alpha_2\alpha_3^2 \left(1 + \underline{\omega_3^A}\frac{1}{2}\left(7\alpha_3 - 3\right)\right) \qquad G(\alpha_i) = 5040 \ \zeta_3\underline{\omega_3^G}\alpha_1^2\alpha_2^2\alpha_3^2$$

$$V(\alpha_i) = 540\zeta_3 \omega_3^V \alpha_1 \alpha_2 \alpha_3^2 (\alpha_2 - \alpha_1).$$

$$\mu = 1 \, \mathrm{GeV}$$

$$\rho \text{ and } \omega\text{-mesons}$$
 : $\zeta_3 = 0.030 \pm 0.010, \quad \omega_3^A = -3.0 \pm 1.4, \quad \omega_3^V = 5.0 \pm 2.4$

$$\phi$$
-meson : $\zeta_3 = 0.024 \pm 0.008$, $\omega_3^A = -2.6 \pm 1.3$, $\omega_3^V = 5.3 \pm 3.0$

$$|\omega_3^G(\mu = 1 \text{GeV})| \ll 1$$

Ball, Braun 1996, 1999
Ball, Braun, Koike, Tanaka 1998
Ball, Braun, Lenz 2006

color singlet

color octet

$$\left[A_{1V}^{\perp}\right]_{oct}/\left[A_{1V}^{\perp}\right]_{sing}\sim 1$$
 large ambiguity

only the color singlet contribution

$$\Gamma_{\rho}^{\perp} = 222.4 \zeta_3^2 (-9.82 + 4.78\omega_3^A + 3.31\omega_3^V)^2$$

$$\Gamma_{\phi}^{\perp} = 168.7 \; \zeta_3^2 (6.5 - 3.3 \; \omega_3^A + 2.9 \; \omega_3^V + 733.6 \; \underline{\omega}_3^G)^2$$

$$\Gamma_{\omega}^{\perp} = 181.2 \ \zeta_3^2 (-3.3 + 1.4 \ \omega_3^A + 8.3 \ \omega_3^V + 735.6 \ \omega_3^G)^2$$

color singlet

only the color singlet

branching fractions in units 10⁻⁴

					$\chi_{c1} o V_{\perp} \gamma$			
ζ	3	ω_3^A	ω_3^V	ω_3^G	ρ	ω	ϕ	
0.0	03	-2.2	2.8	-0.037	(35.2 ± 7.4)	(17.3 ± 6.5)	(7.3 ± 3.6)	
0.0	03	-2.2	2.0	-0.037	29.6	20.8	4.8	
0.0	03	-4.4	5.9	-0.043	30.0	13.9	8.5	
0.0	04	-2.5	3.7	-0.041	39.2	13.5	6.5	
0.0	04	-3.4	5.1	-0.038	33.2	14.2	6.2	

Data can be described including small 3g contribution

2	$\chi_{c2} \to V \gamma$		$\chi_{c0} \to V \gamma$		
ρ	ω	ϕ	ρ	ω	ϕ
< 20	< 6	< 8	< 9	< 8	< 6
3.4	0.18	2.6	2.0	0.17	0.66
17.2	3.7	6.5	0.40	0.05	0.15
7.1	0.40	5.6	1.9	0.16	0.54
16.3	3.6	6.50	0.62	0.09	0.23

color singlet

only the color singlet contribution

color octet

$$\left[A_{1V}^{\perp}\right]_{oct}/\left[A_{1V}^{\perp}\right]_{sing}\sim1$$

large ambiguity

Data can be described including small 3g contributions

$$Br[\chi_{c1} \to \gamma \rho] > Br[\chi_{c2} \to \gamma \rho] > Br[\chi_{c0} \to \gamma \rho]$$

$$Br[\chi_{c2} \to \gamma \rho] > Br[\chi_{c2} \to \gamma \phi] > Br[\chi_{c2} \to \gamma \omega]$$

$$Br[\chi_{c2} \to \gamma \phi] \ge Br[\chi_{c1} \to \gamma \phi]$$

Precise measurements of $Br[X_{c2} \rightarrow \gamma \rho]$

can help to reduce theoretical ambiguity

Thank you!