Update on $a_{\mu}^{\rm had, \ VP}$ from KNT17

Alex Keshavarzi

University of Liverpool

(in collaboration with Daisuke Nomura & Thomas Teubner [KNT17])

Working Group on Radiative Corrections and Generators for Low Energy Hadronic Cross Section and Luminosity

Institute of Nuclear Physics, Mainz

30th June 2017

The previous analysis... [HLMNT(11), J. Phys. G38 (2011), 085003]

QED contribution	11 658 471.808 (0.015) ×10 ⁻¹⁰	Kinoshita & Nio, Aoyama et al		
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al		
Hadronic contribution				
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11		
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11		
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein		
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰			
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg		
Exp - Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy		

(Numbers taken from HLMNT11, arXiv:1105.3149)

 $ightarrow a_{\mu}^{
m had,\ LOVP}$ still dominated uncertainty

- \rightarrow Potential for improvement from experimental data and data combination
- \rightarrow New x4 accuracy measurements planned from Fermilab and J-PARC
- \implies If a_{μ}^{SM} & a_{μ}^{EXP} improve as planned...

g-2 discrepancy $> 7\sigma!$

Correlation and covariance matrices

- \Rightarrow Correlated data beginning to dominate full data compilation...
 - \rightarrow Non-trivial, energy dependent influence on both mean value and error estimate

KNT17 prescription

- Construct full covariance matrices for each channel & entire compilation
 ⇒ Framework available for inclusion of any and all inter-experimental correlations
- If experiment does not provide matrices...
 - \rightarrow Statistics occupy diagonal elements only
 - \rightarrow Systematics are 100% correlated
- If experiment does provide matrices...
 - \rightarrow Matrices **must** satisfy properties of a covariance matrix
- e.g. KLOE $\pi^+\pi^-\gamma(\gamma)$ combination covariance matrices update
- Originally, NOT a positive semi-definite matrix:
 (DO NOT USE PPG14 DATA!)

The KLOE data sets [preliminary]

- \Rightarrow They are, in part, highly correlated
 - ightarrow must be incorporated
 - \rightarrow e.g. KLOE08 and KLOE12 share the same $\pi\pi(\gamma)$ data, with KLOE12 normalised by the measured $\mu\mu(\gamma)$ cross section

- $\Rightarrow \mbox{Three measurements of } \sigma^0_{\pi\pi\gamma(\gamma)} \mbox{ by KLOE} \\ \rightarrow \mbox{ KLOE08, KLOE10 and KLOE12}$
- \Rightarrow Overlapping energy range covering ρ region

Updating the KLOE $\pi^+\pi^-\gamma(\gamma)$ data sets [preliminary]

- \Rightarrow For KLOE08, KLOE10 and KLOE 12,
 - \rightarrow Analysis data is not rounded
 - \rightarrow Updated precision of input parameters and fundamental constants
- \Rightarrow For KLOE08 and KLOE10,
 - \rightarrow Updated VP correction (FJ03VP \rightarrow FJ16VP)
 - \rightarrow VP correction now applied using both real and imaginary parts

$$\begin{aligned} a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE08}, 0.35 \leq s' \leq 0.95 \text{ GeV}^2) &= (386.6 \pm 0.5_{\text{stat}} \pm 3.3_{\text{sys}}) \times 10^{-10} \\ \text{Before: } a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE08}, 0.35 \leq s' \leq 0.95 \text{ GeV}^2) &= (387.2 \pm 0.5_{\text{stat}} \pm 3.4_{\text{sys}}) \times 10^{-10} \\ a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE10}, 0.1 \leq s' \leq 0.85 \text{ GeV}^2) &= (477.8 \pm 2.2_{\text{stat}} \pm 6.7_{\text{sys}}) \times 10^{-10} \\ \text{Before: } a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE10}, 0.1 \leq s' \leq 0.85 \text{ GeV}^2) &= (478.5 \pm 2.0_{\text{stat}} \pm 6.7_{\text{sys}}) \times 10^{-10} \end{aligned}$$

 \Rightarrow For KLOE12,

 \rightarrow Corrected for flaw in error determination

$$a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE12}, 0.35 \le s' \le 0.95 \text{ GeV}^{2}) = (385.1 \pm 1.2_{\text{stat}} \pm 2.3_{\text{sys}}) \times 10^{-10}$$

Before: $a_{\mu}^{\pi^{+}\pi^{-}} (\text{KLOE12}, 0.35 \le s' \le 0.95 \text{ GeV}^{2}) = (385.1 \pm 1.1_{\text{stat}} \pm 2.7_{\text{sys}}) \times 10^{-10}$

KLOE $\pi^+\pi^-\gamma(\gamma)$ correlations [preliminary]

KLOE08 and KLOE10

Statistics - no correlation

Systematics - luminosity, radiator function and vacuum polarisation correction

(Note: more correlations now included after revised analysis. Waiting for approval from KLOE collaboration.)

KLOE08 and KLOE12

Statistics - unfolding and unshifting

Systematics - all uncertainties that enter from shared $\pi^+\pi^-\gamma(\gamma)$ data are correlated

KLOE10 and KLOE12

Statistics - no correlation

Systematics - no correlation

(Note: KLOE10 and KLOE12 are now correlated for systematic uncertainties after revised analysis. Waiting for approval from KLOE collaboration.)

The KLOE $\pi^+\pi^-\gamma(\gamma)$ combination covariance matrices [preliminary]

Statistical covariance and correlation matrix:

Systematic covariance and correlation matrix:

Systematic bias and use of the data/covariance matrix

 \Rightarrow Iterative fit of covariance matrix as defined by data \rightarrow D'Agostini bias

Allows for increased fit flexibility and full use of energy dependent, correlated uncertainties

Alex Keshavarzi (UoL)

Linear χ^2 minimisation

- \Rightarrow Redefine clusters to have linear cross section
 - \rightarrow Fix covariance matrix with linear interpolants at each iteration (extrapolate at boundary)

$$\chi^{2} = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_{i}^{(m)} - \mathcal{R}_{m}^{i} \right) \mathbf{C}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_{j}^{(n)} - \mathcal{R}_{n}^{j} \right)$$

- ⇒ Through correlations and linearisation, result is the minimised solution of all neighbouring clusters
 - \rightarrow ...and solution is the product of the influence of all correlated uncertainties
- ⇒ The flexibly of the fit to vary due to the energy dependent, correlated uncertainties benefits the combination
 - \rightarrow ...and any data tensions are reflected in a local $\chi^2 \mbox{ error}$ inflation

Results

Data combination

The resulting KLOE $\pi^+\pi^-\gamma(\gamma)$ combination [preliminary]

⇒ Combination of KLOE08, KLOE10 and KLOE12 gives 85 distinct bins between $0.1 \le s \le 0.95$ GeV²

- \rightarrow Covariance matrix now correctly constructed
 - \Rightarrow a positive semi-definite matrix
- \rightarrow Non-trivial influence of correlated uncertainties on resulting mean value

$$u_{\mu}^{\pi^+\pi^-}(0.1 \le s' \le 0.95 \text{ GeV}^2) = (489.9 \pm 2.0_{\text{stat}} \pm 4.3_{\text{sys}}) \times 10^{-16}$$

 \rightarrow Reduction in uncertainties within uncertainties of individual measurements... ...and emanate smallest contributing stat/sys uncertainties

$\pi^+\pi^-$ channel [preliminary]

\Rightarrow Large improvement for 2π estimate

→ BESIII [Phys.Lett. B753 (2016) 629-638] and KLOE combination provide downward influence to mean value

 $\Rightarrow \frac{\text{Correlated & experimentally corrected}}{\sigma^0_{\pi\pi(\gamma)} \text{ data now entirely dominant}}$

 $a_{\mu}^{\pi^+\pi^-}$ (0.305 $\leq \sqrt{s} \leq$ 2.00 GeV): HLMNT11: 505.77 \pm 3.09

> KNT17: 502.85 ± 1.93 (no radiative correction uncertainties)

Other notable exclusive channels

Alex Keshavarzi (UoL)

$KK\pi\text{, }KK\pi\pi$ and isospin

Inclusive

 $\Rightarrow \text{New KEDR inclusive } R \text{ data ranging } 1.84 \leq \sqrt{s} \leq 3.05 \text{ GeV [Phys.Lett. B770 (2017) 174-181]} \\ \text{and } 3.12 \leq \sqrt{s} \leq 3.72 \text{ GeV [Phys.Lett. B753 (2016) 533-541]} \end{cases}$

 \implies Choose to adopt entirely data driven estimate from threshold to 11.2 GeV

Alex Keshavarzi (UoL)

	Results	KNT17 update	
KNT17 $a_{\mu}^{\text{had, VP}}$	and $\Delta lpha_{ m had}^{(5)}(M)$	$M_Z^2)$ update	[preliminary]

$$\begin{array}{ll} \underbrace{(g-2)_{\mu}} & \text{HLMNT}(11):\ 694.91 \pm 4.27 \\ & \downarrow \\ \text{This work:}\ a_{\mu}^{\text{had, LOVP}} = 692.23 \pm 1.26_{\text{stat}} \pm 2.02_{\text{sys}} \pm 0.31_{\text{vp}} \pm 0.70_{\text{fsr}} \\ & = 692.23 \pm 2.42_{\exp} \pm 0.77_{\text{rad}} & \text{value} & (\text{error})^2 \\ & = 692.23 \pm 2.54_{\text{tot}} & a_{\mu}^{\text{had, NLOVP}} = -9.83 \pm 0.04_{\text{tot}} & a_{\mu}^{\text{had, DVP}} = -9.83 \pm 0.04_{\text{tot}} & a_{\mu}^{\text{had, DVP}} = 0.83 \pm 0.04_{\text{tot}} & a_{\mu}^{\text{had, DVP}} = -9.83 \pm 0$$

 \Rightarrow Accuracy better then 0.4% (uncertainties include all available correlations) Full KNT17 VP package [vp_knt_v3_0.f] available for use

Alex Keshavarzi (UoL)

KNT17 vs. DHMZ17 vs. FJ17 [preliminary]

 \Rightarrow Different data treatment/methods produce very different results

Channel $\sqrt{s} \le 1.8$ GeV	KNT17	DHMZ17	FJ17
$\pi^+\pi^-$	502.73 ± 1.94	507.14 ± 2.58	
$\pi^+\pi^-2\pi^0$	17.80 ± 0.99	18.03 ± 0.55	
$2\pi^{+}2\pi^{-}$	14.00 ± 0.19	13.68 ± 0.31	
K^+K^-	22.70 ± 0.25	22.81 ± 0.41	
$K^0_S K^0_L$	13.08 ± 0.14	12.81 ± 0.24	
Total HVP $\sqrt{s} < \infty$ GeV	692.23 ± 2.54	693.1 ± 3.4	689.43 ± 3.25

- ⇒ Between $1.8 \le \sqrt{s} \le 2$ GeV, KNT use data, DHMZ use pQCD BUT, pQCD = 8.30 ± 0.09 , KNT data = 8.42 ± 0.29 , DHMZ data = 7.71 ± 0.32
- \Rightarrow DHMZ17 may not use correlated systematics in determination of the mean value
 - \rightarrow Determining $\pi^+\pi^-$ using only local weighted average gives 508.91 ± 2.84
 - \longrightarrow Much better agreement when neglecting the effect of correlated uncertainties on the mean value

KNT17 a_{μ}^{SM} update [preliminary]

	<u>2011</u>		2017
QED	11658471.81 (0.02)	\longrightarrow	11658471.90~(0.01)~[Phys. Rev. Lett. 109 (2012) 111808]
EW	15.40 (0.20)	\longrightarrow	$15.36 \ (0.10) \ [Phys. Rev. D 88 \ (2013) \ 053005]$
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]
	HLMNT11		<u>KNT17</u>
LO HVP	694.91 (4.27)	\rightarrow	692.23 (2.54) this work
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.83 (0.04) this work
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (2014) 144]
Theory total	11659182.80 <mark>(4.94)</mark>	\longrightarrow	11659181.00 (3.62) this work
Experiment			11659209.10 (6.33) world avg
Exp - Theory	26.1 (8.0)	\longrightarrow	28.1 (7.3) this work
Δa_{μ}	3.3σ	\rightarrow	3.9σ this work
Alex Keshavarzi (UoL) KNT17:	$a_{\mu}^{had, VP}$	update 30 th June 2017 17

18

- ✓ Many necessary changes made since HLMNT11 in order to improve data combination
- ✓ KLOE combination covariance matrices correctly constructed to incorporate all available correlations
- \Rightarrow When combining data...
 - \checkmark ...all covariance matrices are correctly constructed with a framework that can accommodate any available correlations
 - \checkmark ...employ a linear χ^2 minimisation that has been shown to be free from bias
- \checkmark New method shows improvements in all channels due to increased fit flexibility
- \checkmark Less reliance on isospin for estimated states with more measured final states
- $\checkmark~a_{\mu}^{\rm had,LOVP}$ accuracy better than 0.4%
- \checkmark Differences comparing with other analyses due to different treatment and combination of data

Extra Slides

Vacuum polarisation corrections

 \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0]

- \rightarrow Cross sections undressed with full photon propagator (must include imaginary part), $\sigma_{\rm had}^0(s)=\sigma_{\rm had}(s)|1-\Pi(s)|^2$
- ⇒ Applied to all dressed experimental data in all channels → Accurate to O(1%) precision

 $\Rightarrow \text{ If correcting data, apply corresponding radiative correction uncertainty} \\ \rightarrow \text{Take } \frac{1}{3} \text{ of total correction per channel as conservative extra uncertainty} \\ \Rightarrow \text{ Influence/need for VP corrections has changed over time}$

 \rightarrow Less prominent in some dominant channels

 \Rightarrow Undressing of narrow resonances must be done excluding the contribution from the resonance

 \rightarrow ...or would double count contribution

Final state radiation corrections

- \Rightarrow For $\pi^+\pi^-$, FSR more frequently included
 - \rightarrow If not, must include through sQED approximation [Eur. Phys. J. C 24 (2002) 51,

Eur. Phys. J. C 28 (2003) 261]

 \Rightarrow For K^+K^- , is there available phase space for the creation of hard photons?

- \Rightarrow Choose to no longer apply FSR correction for K^+K^-
- \Rightarrow For higher multiplicity states, difficult to estimate correction
 - . Apply conservative uncertainty

Need new, more developed tools to increase precision here

(e.g. - CARLOMAT 3.1 [Eur.Phys.J. C77 (2017) no.4, 254]?)

Alex Keshavarzi (UoL)

KNT17: $a_{\mu}^{had, VP}$ update

late

Clustering data

 \Rightarrow Re-bin data into *clusters*

Better representation of data combination through adaptive clustering algorithm

 \rightarrow More and more data \Rightarrow risk of over clustering

 \Rightarrow loss of information on resonance

ightarrow Scan cluster sizes for optimum solution (error, χ^2 , check by sight...)

 \Rightarrow Scanning/sampling by varying bin widths

 \rightarrow Clustering algorithm now adaptive to points at cluster boundaries

Fixing the covariance matrix [JHEP 1005 (2010) 075, Eur.Phys.J. C75 (2015), 613]

 \Rightarrow Apply a procedure to fix the covariance matrix

$$\mathbf{C}_{I}(i^{(m)}, j^{(n)}) = \mathsf{C}^{\mathsf{stat}}(i^{(m)}, j^{(n)}) + \frac{\mathsf{C}^{\mathsf{sys}}(i^{(m)}, j^{(n)})}{R_{i}^{(m)}R_{j}^{(n)}}R_{m}R_{n} ,$$

in an iterative χ^2 minimisation method that, to our best knowledge, is free from bias

- $\Rightarrow {\sf Fixing with theory value regulates} \\ {\sf influence} \\$
- \Rightarrow Can be shown from toy models to be free from bias
- \Rightarrow Swift convergence
- ⇒ Comparison with past results shows HLMNT11 estimates are largely unaffected

Allows for increased fit flexibility and full use of energy dependent, correlated uncertainties

Alex Keshavarzi (UoL)	Alex	Keshavarzi	(UoL)
-----------------------	------	------------	-------

30th June 2017

18 / 18

Integration

- \Rightarrow Trapezoidal rule integral
 - \rightarrow Consistency with linear cluster definition
 - \rightarrow High data population \therefore Accurate estimate from linear integral

 \rightarrow Higher order polynomial integrals give (at maximum) differences of $\sim 10\%$ of error

- \Rightarrow Estimates of error non-trivial at integral borders
 - \rightarrow Extrapolate/interpolate covariance matrices

Alex Keshavarzi (UoL)

 $\langle NT17: a_{\mu}^{nad, VP} upda$

Kaon FSR study

BUT K^+K^- cross section is totally dominated by ϕ resonance \Rightarrow No phase space for creation of hard real photons at ϕ Inclusive FSR correction is large over-correction \rightarrow \therefore No longer apply FSR correction Inclusive FSR correction was previously applied to K^+K^- cross section KLN theorem requires all virtual and soft corrections necessarily included in given cross section \therefore Only hard real radiation is left to be

corrected for

Properties of a covariance matrix

Any covariance matrix, C_{ij} , of dimension $n \times n$ must satisfy the following requirements:

• As the diagonal elements of any covariance matrix are populated by the corresponding variances, all the diagonal elements of the matrix are positive. Therefore, the trace of the covariance matrix must also be positive

$$\mathsf{Trace}(\mathcal{C}_{ij}) = \sum_{i=1}^{n} \sigma_{ii} = \sum_{i=1}^{n} \mathsf{Var}_{i} > 0$$

- It is a symmetric matrix, $C_{ij} = C_{ji}$, and is, therefore, equal to its transpose, $C_{ij} = C_{ij}^T$
- The covariance matrix is a positive, semi-definite matrix,

$$\mathbf{a}^T \mathcal{C} \ \mathbf{a} \ge 0 \ ; \ \mathbf{a} \in \mathbf{R}^n,$$

where $\mathbf a$ is an eigenvector of the covariance matrix $\mathcal C$

• Therefore, the corresponding eigenvalues $\lambda_{\mathbf{a}}$ of the covariance matrix must be real and positive and the distinct eigenvectors are orthogonal

$$\mathbf{b} \ \mathcal{C} \ \mathbf{a} = \lambda_{\mathbf{a}} (\mathbf{b} \cdot \mathbf{a}) = \mathbf{a} \ \mathcal{C} \ \mathbf{b} = \lambda_{\mathbf{b}} (\mathbf{a} \cdot \mathbf{b})$$
$$\therefore \text{ if } \lambda_{\mathbf{a}} \neq \lambda_{\mathbf{b}} \Rightarrow (\mathbf{a} \cdot \mathbf{b}) = 0$$

• The determinant of the covariance matrix is positive: $\mathsf{Det}(\mathcal{C}_{ij}) \geq 0$

Alex Keshavarzi (UoL)

Tests of reliability of f_k method

Did the f_k method incur a bias?

Compare f_k method and fixed matrix method with only multiplicative normalisation uncertainties.

 \rightarrow If we see differences in mean value, then bias previously influenced the fit.

→ Previous results unreliable

 \rightarrow If we see **no differences** in mean value, then bias did not influence fit (any change comes from improved treatment of systematics)

 \longrightarrow Previous results reliable

Example - $\pi^+\pi^-$ Set 1 - CMD-2(06) (0.7% Systematic Uncertainty), Set 2 - CMD-2(06) (0.8% Systematic Uncertainty), Set 3 - SND(04) (1.3% Systematic Uncertainty)

From $0.37 \rightarrow 0.97 \text{ GeV}$

Fit Method:	f_k method		Fixed matrix method		
Channel	a_{μ}	$\chi^2_{\sf min}/{\sf d.o.f.}$	a_{μ}	$\chi^2_{\sf min}/{\sf d.o.f.}$	Difference
$\pi^+\pi^-$	481.42 ± 4.26	1.10	481.42 ± 4.05	1.02	0.00

Comparison of KLOE combination methods [preliminary]

Comparison of KLOE combination with other experiments [preliminary]

KLOE combination errors [preliminary]

R(s) for $m_{\pi} \leq \sqrt{s} < \infty$

 \Rightarrow Full compilation data set for hadronic R-ratio to be made available soon...

\implies ...complete with full covariance matrix

Alex Keshavarzi (UoL)

KNT17: a_{μ}^{mad} , Υ

30th

Contributions to mean value below 2GeV

Contributions to uncertainty below 2GeV

