
Introduction
HiGPUs N-body code

Performance results and code profiling

HiGPUs
N-body code

Giuliano Taffoni - Luca Tornatore - David Goz
INAF Trieste

OpenCL EcoScale and ExaNeSt discussion meeting
Rome, March 16, 2017

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

N-body problem

The study of the motion of N point-like masses having initial positions and velocities
ri,0, vi,0, i = 1, 2, ...,N interacting through a pair-wise force that depends only on
their positions is known as the N-body problem.

Its applications can be found on both small and large scales starting from nuclear
physics up to astrophysical problems.
In this latter case, the interacation force is gravity, and the problem is referred as the
classical gravitational newtonian N-body problem.

As a matter of fact, the gravitational N-body problem is explicitly solvable only for
N < 3 while, for N ≥ 3, the procedure to get a solution is exclusively numerical.

Two types of N-body algorithms:

I the so-called collision-less, where a body sees the background potential of the rest
of the stellar system (e.g. Barnes-Hut treecode which scale as O(N log N) with
N bodies);

I expensive collisional one or direct summation, in which all gravitational forces are
integrated for all bodies to take into account the graininess of the potential and
individual time step; they tipically scale as O(N2).

GPUs can very efficiently be used for this kind of problem, due to their highly parallel
structure and computational speed (see e.g. the work of Portegies Zwart et al. 2007; Hamada & Iitaka 2007;

Belleman et al. 2008; Berczik et al. 2011; Nitadori & Aarseth 2012; Capuzzo-Dolcetta et al. 2013, Berczik et al. 2013).

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

The numerical solution of the N-body problem
The newtonian interaction potential between a point mass mi and another mass mj is
given by:

Uij =
Gmimj

| rj − ri |
≡

Gmimj

rij
= Uji

where ri and ri are the position vectors of the i-th and j-th bodies, G is the
gravitational constant and rij ≡| rj − ri | represents the euclidean distance betweeen
the two bodies.
There is the so called double-divergence of the two-body interaction potential:

I close encounters (rij → 0) yield to an unbound force between interaction bodies
(Fij → 0) producing an unbound error in the relative acceleration. This
divergence is often faced introducing a softening parameter, ε, in the interaction
potential which becomes (loss of resolution at scales of the order of ε and below)

Uij =
Gmimj√
r2
ij + ε2

I the resultant force acting on every body of an N-body-system requires summation
over N − 1 pair-wise contributions, yielding to an O(N2) computational
complexity (e.g. N ' 1011 for a typical galaxy); moreover the evaluation of rij
requires the evaluation of the irrational square root which needs more than one
floating point operation.

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

HiGPUs N-body code

HiGPUs (R. Capuzzo-Dolcetta, M. Spera, D. Punzo 2013) is an N-body code suitable
for studying the dynamical evolution of stellar systems composed up to 10 millions of
stars with the precision guaranteed by direct summation of the pair-wise forces.
The code is written combining tools of C and C++ programming languages and it is
parallelized using Message Passing Interface (MPI), OpenMP, and OpenCL to allow
the utilization of GPUs of different vendors.

The code implements the Hermite’s 6th order time integration scheme (Nitadoi &
Makino 2008) with block time steps, allowing both high precision and speed in the
study of the dynamical evolution of star systems.

The coarse-grained parallelization is such that a one-to-one correspondence between
MPI process and computational nodes is established and each MPI process manages
all the GPUs available per node.

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

Hermite’s step

Let us assume that the i-th particle, has at time tc,0, a position ri,0, a velocity vi,0 an
acceleration ai,0, a jerk ȧi,0, a snap äi,0, a crackle

...
a i,0 and an individual time step

∆ti,0. Calling m (with m ≤ N) the number of particles belonging to the same
time-block, which have to be evolved to the same time tc,0 + ∆ti,0, the generic
Hermite’s step is composed by various substeps:

(1) Prediction step, with O(N) complexity: positions, velocities and accelerations of
all particles are predicted using the following equations:

ri,pred = ri,0 + vi,0∆ti,0 +
1

2
ai,0∆t2

i,0 +
1

6
ȧi,0∆t3

i,0 +

+
1

24
äi,0∆t4

i,0 +
1

120

...
a i,0∆t5

i,0,

vi,pred = vi,0 + ai,0∆ti,0 +
1

2
ȧi,0∆t2

i,0 +
1

6
äi,0∆t3

i,0 +

+
1

24

...
a i,0∆t4

i,0,

ai,pred = ai,0 + ȧi,0∆ti,0 +
1

2
äi,0∆t2

i,0 +
1

6

...
a i,0∆t3

i,0.

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

Hermite’s step

(2) Evaluation step, with O(Nm) complexity: the accelerations of m ≤ N particles as
well as their first and second time derivatives are evaluated using the above
predicted data. The mutual interaction between the i-th particle and the
remaining N − 1 is described by the following relations:

ai,1 =
N∑
j=1
j 6=i

aij,1 =
N∑
j=1
j 6=i

mj
rij

r3
ij

,

ȧi,1 =
N∑
j=1
j 6=i

ȧij,1 =
N∑
j=1
j 6=i

(
mj

vij

r3
ij

− 3αijaij,1

)
,

äi,1 =
N∑
j=1
j 6=i

äij,1 =
N∑
j=1
j 6=i

(
mj

aij

r3
ij

− 6αȧij,1 − 3βijaij,1

)
,

where rij ≡ rj,pred − ri,pred , vij ≡ vj,pred − vi,pred , aij ≡ aj,pred − ai,pred ,
αij r

2
ij ≡ rij · vij , βij r2

ij ≡ v2
ij + rij · aij + α2

ij r
2
ij .

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

Hermite’s step
(3) Correction step with complexity O(m): positions and velocities of the mentioned

m particles to be updated are corrected using the above evaluated accelerations
and their time derivatives:

vi,corr = vi,0 +
∆ti,0

2

(
ai,1 + ai,0

)
−

∆t2
i,0

10

(
ȧi,1 − ȧi,0

)
+

+
∆t3

i,0

120

(
äi,1 + äi,0

)
,

ri,corr = ri,0 +
∆ti,0

2

(
vi,corr + vi,0

)
−

∆t2
i,0

10

(
ai,1 − ai,0

)
+

+
∆t3

i,0

120

(
ȧi,1 + ȧi,0

)
.

The individual time steps for m particles are, thus, updated, by mean of the so called
generalized Aarseth criterion (Nitadori & Makino 2008).

∆ti,1 = η

(
A(1)

A(p−2)

) 1
p−3

,

where η is linked to the accuracy required for the simulation, and

A(s) ≡
√∣∣a(s−1)

∣∣ ∣∣a(s+1)
∣∣+
∣∣a(s)

∣∣2.
David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

GPU load optimizations
Particles are sub-divided in several groups that share the same time step (to avoid
time synchronization among the N bodies).
Suppose that the stars to be updated are m (with m ≤ N), the GPUs to use are Ngpu
and that every GPU is capable to run Nthreads in parallel (full occupancy of the
device):
I every GPU handles N/Ngpu bodies;
I the simplest parallelization scheme of the forces calculation would be such to run

m threads per GPU and calculate the partial accelerations due to N/Ngpu bodies;
I such approach guarantees good load of the GPU if m ' Nthreads;
I significant degrading of performance if m� Nthreads.

The Bfactor variable:

I it’s a factor that multiplies the total
number of GPU blocks of threads by
using the formula:

BMAX =

[
N

Ngpu ∗ TpB

]
where TpB indicates the number of
GPU threads per block.

Figure 1: The effect of Bfactor optimization on the performance of a
GeForce GTX TITAN Black. Reproduced from Spera 2015.

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

Code scalability, speedup and efficiency

2 4 8 16 32 64 128 256
10-3

10-2

10-1

100

101

102

103

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

Number of GPUs

Ex
ec

ut
io

n
ti

me
 (

ho
ur

s)

10 days

1 day

1 hour

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

 S n

Number of GPUs

1 2 4 8 16 32 64 128 256
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1

 32 k
 65 k
 131 k
 262 k
 524 k
 1 M
 4 M
 8 M

Number of GPUs

e n

Benchmarking performed using IBM PLX
@CINECA (2 nVIDIA Tesla M2070 x node) from
R. Capuzzo-Dolcetta & M. Spera 2013:

I Top left: time needed to integrate N-body
systems (32k ≤ N ≤ 8M) over one time unit
as a function of NGPU ;

I Bottom left: speedup as a function of NGPU ;

I Top right: efficiency as a function of NGPU .

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

Introduction
HiGPUs N-body code

Performance results and code profiling

Code profiling
Index Section Used resource Notation

Each node determines the particles
to be updated and their indexes

1 indexes are stored in an array CPU (OpenMP) ∆tnext
named next containing m

integer elements
Each node copies to its GPUs
the array containing indexes

2 of m particles and the GPU ∆tpred
predictor step of N/NGPU stars

is executed
Each node computes the forces

3 (and their higher order derivatives) GPU ∆teval
of m particles due to N/NGPU bodies

Each node reduces the calculated
4 forces and derivatives GPU ∆tredu

of Bfactor blocks
5 Each node adjusts conveniently GPU ∆trepo

the reduced values
6 The CPUs receive the accelerations GPU → CPU ∆tDtoH

from the GPUs
The MPI Allreduce() functions

7 collect and reduce accelerations CPU(MPI) ∆tmpi

from all the computational nodes
8 Corrector step and time step CPU ∆tcorr

update for m particles
The reduced accelerations

(and derivatives) and the corrected
9 positions and velocities of m CPU → GPU ∆tHtoD

particles are passed to the GPUs
of each node

Table 1: The main sections of HiGPUs, which are performed at each time step.
The ”convenient adjustment” mentioned in the description of the 5th section
refers to the re-organization of the computed and reduced accelerations and
derivatives in one array only (instead of three) to improve the performance of the
subsequent data transfer from the GPU to the CPU.

Simulation with N = 220 (w 106) bodies

1 2 4 8 16 32
10-4

10-3

10-2

10-1

100

Re

la
ti

ve
 t

im
e

Number of nodes

 1
 2
 3
 4
 5
 6
 7
 8
 9

Figure 2: Relative (to the total) execution times of different parts of
HiGPUs. Reproduced from R. Capuzzo-Dolcetta & M. Spera 2013.

0 4 8 12 16 20 24 28 32
100

101

102

103

104

Figure 3: Times needed to complete the evaluation step, the
predictor step, the MPI communications, and other sections grouped
together. Reproduced from R. Capuzzo-Dolcetta & M. Spera 2013.

David Goz (goz@oats.inaf.it) - INAF Trieste HiGPUs N-body code

	Introduction
	HiGPUs N-body code
	Performance results and code profiling

