Lab Workbook Improving Area and Resource Utilization Lab

Improving Area and Resource Utilization Lab

Introduction
This lab introduces various techniques and directives which can be used in Vivado HLS to improve

design performance as well as area and resource utilization. The design under consideration performs
discrete cosine transformation (DCT) on an 8x8 block of data.

Objectives

After completing this lab, you will be able to:

e Add directives in your design

e Improve performance using PIPELINE directive

e Distinguish between DATAFLOW directive and Configuration Command functionality
e Apply memory partitions technigues to improve resource utilization

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 9 primary steps: You will validate the design in Vivado HLS command prompt, create
a new project using Vivado HLS GUI, synthesize the design, run RTL simulation, apply PIPELINE
directive to improve performance, improve the memory bandwidth by applying PARTITION directive,
apply DATAFLOW directive, apply INLINE directive, and finally apply RESHAPE directive.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:

Validate the Create a Synthesize Run RTL Apply
Design :> new project :> the design :> Simulation :> PIPELINE

directive

Step 6: Step 7: Step 8: Step 9:

Improve the Apply Apply Apply
Memory) |oarartow] = | mime | = RESHAPE

Bandwidth directive directive directive

v www.xilinx.com/university Zynqg 3-1
i‘ XI LINXJ Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Validate the Design from Command Line Step 1

1-1. Validate your design from Vivado HLS command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2016.4 >
Vivado HLS > Vivado HLS 2016.4 Command Prompt.

1-1-2. Inthe Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab3.

1-1-3. A self-checking program (dct_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. In the Vivado HLS Command Prompt, type make to
compile and execute the program.

c:\xupi\hls\labs\lab3>make
gce -ggdb -w -I/c/Xilinx/Uivado_HLS/2015.4/include -c¢ -o det.o det.c
gce -1lm -lstde++ det.o det_test.o -0 dect
Sdet
B MM M N
Results are good
B MM M N
c:\xupi\hls\labs\lab3>
Figure 1. Validating the design
Note that the source files (dct.c and dct_test.c are compiled, then dct executable program was
created, and then it was executed. The program tests the design and outputs Results are good
message.

1-1-4. Close the command prompt window by typing exit.

Create a New Project Step 2

2-1. Create a new project in Vivado HLS GUI targeting XC7Z020CLG484-1
(ZedBoard) or XC7Z010CLG400-1 (Zybo).

2-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2016.4 >
Vivado HLS > Vivado HLS 2016.4

2-1-2. Inthe Vivado HLS GUI, select File > New Project. The New Vivado HLS Project wizard opens.

2-1-3. Click Browse... button of the Location field and browse to c:\xup\hls\labs\lab3 and then click
OK.

2-1-4. For Project Name, type dct.prj

2-1-5. Click Next.

Zyng 3-2 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

2-1-6. In the Add/Remove Files for the source files, type dct as the function name (the provided source
file contains the function, to be synthesized, called dct).

2-1-7. Click the Add Files... button, select dct.c file from the c:\xup\hls\labs\lab3 folder, and then click
Open.

2-1-8. Click Next.

2-1-9. Inthe Add/Remove Files for the testbench, click the Add Files... button, select dct_test.c, in.dat,
out.golden.dat files from the c:\xup\hls\labs\lab3 folder and click Open.

2-1-10. Click Next.

2-1-11. In the Solution Configuration page, leave Solution Name field as solution1 and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank as it will take 1.25 as
the default value for ZedBoard and 1 for Zybo.

2-1-12. Click on Part’'s Browse button, and select the following filters, using the Parts Specify option, to
select xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo), and click OK:
Family: Zynq
Sub-Family: Zynq
Package: clg484 (ZedBoard) or clg400 (Zybo)
Speed Grade: -1

2-1-13. Click Finish.

2-1-14. Double-click on the dct.c under the source folder to open its content in the information pane.

78 void dct(short input[M], short output[N])

794

80

81 short buf 2d_in[DCT_SIZE][DCT SIZE];
82 short buf_2d out[DCT SIZE][DCT SIZE];
83

84 // Read input data. Fill the internal buffer.
85 read_data(input, buf_2d _in);

file]

87 dct_2d(buf_2d in, buf_2d out);

88

89 [/ Write out the results.

99 write data(buf_2d out, output);

911}

Figure 2. The design under consideration

The top-level function dct, is defined at line 78. It implements 2D DCT algorithm by first
processing each row of the input array via a 1D DCT then processing the columns of the resulting
array through the same 1D DCT. It calls read_data, dct_2d, and write_data functions.

The read_data function is defined at line 54 and consists of two loops — RD_Loop_Row and
RD_Loop_Col. The write_data function is defined at line 66 and consists of two loops to perform
writing the result. The dct_2d function, defined at line 23, calls dct_1d function and performs
transpose.

Finally, dct_1d function, defined at line 4, uses dct_coeff table and performs the required function
by implementing a basic iterative form of the 1D Type-Il DCT algorithm. Following figure shows

v www.xilinx.com/university Zynqg 3-3
(‘ XI LINXQ Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

the function hierarchy on the left-hand side, the loops in the order they are executes and the flow
of data on the right-hand side.

Hierarchy Loops Dataflow
RD_Loop_Row: l
RD_Loop_Col:
}
}
Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop: v
}
}

}
Xpose_Row_Outer_Loop:
Xpose_Row_Inner_Loop: Y
}
}
Col_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
}
}

+

Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop:
}

}
WR_Loop_Row:

WR_Loop_Col: .
}
}

Figure 3. Design hierarchy and dataflow

3

-

Synthesize the Design Step 3

3-1.

Synthesize the design with the defaults. View the synthesis results and
answer the question listed in the detailed section of this step.

3-1-1. Select Solution > Run C Synthesis > Active Solution or click on the ¥ button to start the
synthesis process.

3-1-2. When synthesis is completed, several report files will become accessible and the Synthesis
Results will be displayed in the information pane.
Note that the Synthesis Report section in the Explorer view only shows dct_1d.rpt, dct_2d.rpt,
and dct.rpt entries. The read_data and write_data functions reports are not listed. This is
because these two functions are inlined. Verify this by scrolling up into the Vivado HLS Console
view.
INFO: fXFORM 2@3—6@21 Inlir_lin-g function 'r‘e-ad_data' into 'dct' (dct.c:85) automatically.
INFO: [XFORM 283-682] Inlining function 'write data' into 'dct' (dct.c:98) automatically.
INFO: [HLS 208-111] Finished Checking Synthesizability Time (s): cpu = 08:00:02 ; elapsed
INFO: [XFORM 283-682] Inlining function 'read data’' into "dct' (dct.c:85) automatically.
INFO: [XFORM 283-6082] Inlining function 'write data' into 'dct' (dct.c:98) automatically.
Figure 4. Inlining of read_data and write_data functions

Zynq 3-4 www.xilinx.com/university i' XILINX

xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

3-1-3. The Synthesis Report shows the performance and resource estimates as well as estimated
latency in the design. Note that the design is not optimized nor is pipelined.

Performance Estimates
= Timing (ns)

= Summary

Clock = Target Estimated Uncertainty

ap.ck 10.00 1.25

-1 Latency (clock cycles)
= Summary
Latency Interval

min max min max Type
39589 3959 3860 3960 none

= Detail
Instance
& Loop
Latency Initiation Interval
Loop Name min max [teration Latency achieved target Trip Count Pipelined
- RD_Loop_Row 144 144 18 - - 8 no
+ RD_Loop_Col 16 16 2 - - 8 no
- WE_Loop_Row 144 144 18 - - 8 no
+ WR _Loop Col 16 16 2 - - 8 no

Figure 5. Synthesis report

3-1-4. Using scroll bar on the right, scroll down into the report and answer the following question.

Question 1

Estimated clock period:
Worst case latency:
Number of DSP48E used:
Number of BRAMSs used:
Number of FFs used:
Number of LUTs used:

3-1-5. The report also shows the top-level interface signals generated by the tools.

v www.xilinx.com/university Zynqg 3-5
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Interface
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs dct return value
ap_rst in 1 ap_ctrl_hs dct return value
ap_start in 1 ap_ctrl_hs dct return value
ap_done out 1 ap_ctrl_hs dct return value
ap_idle out 1 ap_ctrl_hs dct return value
ap_ready out 1 ap_ctrl_hs dct return value
input_r_address0 out 6 ap_memory input_r array
input_r_cel out 1 ap_memory input_r array
input_r_qg0 in 16 ap_memory input_r array
output_r_address0 out 6 ap_memory output_r array
output_r_cel out 1 ap_memory output_r array
output_r_we0 out 1 ap_memory output_r array
output_r_d0 out 16 ap_memory output_r array

Figure 6. Generated interface signals

You can see ap_clk, ap_rst are automatically added. The ap_start, ap_done, ap_idle, and
ap_ready are top-level signals used as handshaking signals to indicate when the design is able to
accept next computation command (ap_idle), when the next computation is started (ap_start),
and when the computation is completed (ap_done). The top-level function has input and output
arrays, hence an ap_memory interface is generated for each of them.

3-1-6. Open dct_1d.rpt and dct_2d.rpt files either using the Explorer view or by using a hyperlink at the
bottom of the dct.rpt in the information view. The report for dct_2d clearly indicates that most of
this design cycles (3668) are spent doing the row and column DCTs. Also the dct_1d report
indicates that the latency is 209 clock cycles ((24+2)*8+1).

Run Co-Simulation Step 4

4-1. Run the Co-simulation, selecting Verilog. Verify that the simulation passes.

4-1-1. Select Solution > Run C/RTL Co-simulation or click on the ¥ button to open the dialog box so
the desired simulations can be run.

A C/RTL Co-simulation Dialog box will open.
4-1-2. Select the Verilog option, and click OK to run the Verilog simulation using XSIM simulator.

The RTL Co-simulation will run, generating and compiling several files, and then simulating the
design. In the console window you can see the progress and also a message that the test is
passed.

Zyng 3-6 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Cosimulation Report for "dct’

Result
Latency Interval
RTL Status min avg max min avg max
VHDL NA MNA NA MNA NA NA NA

Verilog Pass 3959 3939 3950 0 0 0

INFO: [Common 17-206] Exiting xsim at Thu Mar 02 09:44:49 2017...

INFO: [CDSIM 212-316] Starting C post checking ...
HEHE EEE HEE HEE

Results are good
HEHE EEE HEE HEE

INFO: [COSIM 212-188871 *** C/RTL co-simulation finished: PASS ***
Finished C/RTL cosimulation.

Figure 7. RTL Co-Simulation results

Apply PIPELINE Directive Step 5

5-1.

5-1-1.

5-1-2.

5-1-3.

5-1-4.

5-1-5.

5-1-6.

5-1-7.

5-1-8.

Create a new solution by copying the previous solution settings. Apply the
PIPELINE directive to DCT_Inner_Loop, Xpose_Row_Inner_Loop,
Xpose_Col_Inner_Loop, RD_Loop_Col, and WR_Loop_Col. Generate the
solution and analyze the output.

Select Project > New Solution or click on (ta) from the tools bar buttons.

A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solutionl
selected).

Make sure that the dct.c source is opened in the information pane and click on the Directive tab.

Select DCT_Inner_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

A pop-up menu shows up listing various directives. Select PIPELINE directive.

Leave Il (Initiation Interval) blank as Vivado HLS will try for an II=1, one new input every clock
cycle.

Click OK.

Similarly, apply the PIPELINE directive to Xpose_Row_Inner_Loop and
Xpose_Col_Inner_Loop of the dct_2d function, and RD_Loop_Col of the read_data function,
and WR_Loop_Col of the write_data function. At this point, the Directive tab should look like as
follows.

(' XI LINX www.xilinx.com/university Zynq 3-7

Xup@xilinx.com
© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab

Lab Workbook

4 @ dct 1d
=1 dct_coeff_table
4§ DCT_Quter_Loop
4 %' DCT_Inner_Loop
% HLS PIPELINE
4 @ dct 2d
=[] row_outbuf

=1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop

4 %" Xpose_Row_Quter_Loop

% HLS PIPELINE

a Xpose_Row_Inner_Loop

%" Col_DCT_Loop

4 " Xpose_Col_Outer_Loop

% HLS PIPELINE

4 ' Xpose_Col_Inner_Loop

4 0 read_data
4 5" RD_Loop_Row

4 %' RD_Loop_Col
% HLS PIPELINE

4 @ write data
4" WR_Loop_Row'

4 " WR_Loop_Col
% HLS PIPELINE

4 @ dct

Figure 8. PIPELINE directive applied

5-1-9. Click on the Synthesis button.

5-1-10. When the synthesis is completed, select Project > Compare Reports... or click on 5 to

compare the two solutions.

5-1-11. Select Solution1 and Solution2 from the Available Reports, click on the Add>> button, and then

click OK.

5-1-12. Observe that the latency reduced from 3959 to 1851 clock cycles (ZedBoard) and from 3959 to

1855 (Zybo).

Zynq 3-8

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Improving Area and Resource Utilization Lab

Performance Estimates Performance Estimates
= Timing (ns) = Timing (ns)
Clock solution? solutionl Clock solution? solutionl
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 7.68 6.38 Estimated 6.60 6.38
=1 Latency (clock cycles) - Latency (clock cycles)
solution2 solutionl solution2 solutionl
Latency min 1851 3959 Latency min 1855 3959
max 1851 3959 max 1835 3859
Interval min 1852 3860 Interval min 1856 3960
max 1852 3960 max 1836 3860
(a) ZedBoard (b) Zybo

Figure 9. Performance comparison after pipelining

5-1-13. Scroll down in the comparison report to view the resources utilization. Observe that the FFs
and/or LUTs utilization increased whereas BRAM and DSP48E remained same.

Utilization Estimates Utilization Estimates
solution2 solutionl solution2 solutionl
BRAM_18K 5 5 BRAM 18K 5 5
DSP48E 1 1 DSP48E 1 1
FF 256 272 FF 290 272
LT 437 353 LUT 461 353
(a) ZedBoard (b) Zybo

Figure 10. Resources utilization after pipelining

5-2. Open the Analysis perspective and determine where most of the clock
cycles are spend, i.e. where the large latencies are.

5-2-1. Click on the Analysis perspective button.

5-2-2. In the Module Hierarchy, select the dct entry and observe the RD_Loop_Row_RD _ Loop_Col and
WR_Loop_Row_WR_Loop_Col entries. These are two nested loops flattened and given the new
names formed by appending inner loop name to the ouer loop name. You can also verify this by
looking in the Console view message.

INFO: [HLS 200-10] Checking synthesizability ...

INFO: [XFORM 203-602] Inlining function 'read_data' into 'dct' (dct.c:85) automatically.
INFO: [XFORM 283-6@2] Inlining function 'write_data' into 'dct' (dct.c:9@) automatically.
INFO: [HLS 200-111] Finished Checking Synthesizability Time (s): cpu = ©08:00:02 ; elapsed = 00:00:08 . Memory (MB):
INFO: [XFORM 203-602] Inlining function 'read_data' into 'dct' (dct.c:85) automatically.

INFO: [XFORM 283-6@2] Inlining function 'write_data' into 'dct' (dct.c:9@) automatically.

INFO: [HLS 288-111] Finished Pre-synthesis Time (s): cpu = @0:00:03 ; elapsed = 80:80:09 . Memory (MB): peak = 117.
INFO: [XFORM 203-541] Flattening a loop nest "Xpose_Row_Outer_Loop’ (dct.c:38:1) in function "dct_2d'.

INFO: [XFORM 203-5417 Flattening a loop nest "Xpose_Col_Outer_Loop' (dct.c:49:1) in function "dct_2d'.

WARMTMG: [XFORM 2@83-542] Cannot flatten a loop nest 'DCT_Outer loop' (dct.c:13:67) in function 'dct_1d' :

WARMNING: [XFORM 203-542] the outer loop is not a perfect loop because there is nontrivial logic in the loop latch.
INFO: [XFORM 203-5417 Flattening a loop nest 'RD_Loop_Row' (dct.c:59:67) in function 'dct’.

INFO: [XFORM 283-541] Flattening a loop nest "WR_Loop Row' (dct.c:71:67) in function 'dct’.

Figure 11. The console view content indicating loops flattening

v www.xilinx.com/university Zynqg 3-9
i‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

% Module Hierarchy f 5 = O

BRAM DSP FF LUT Latency Interval Pipeline type i

4| @ dct 5 1 256 457 1851 1852 none =
4 o dct 2d 3 1 195 319 1718 1718 none

@ dct 0 1 117 122 97 a7 none N

&7 Performance Profile 2 | Resource Profile F B = O

Pipelined Latency Initiation Interval Iteration Latency

4 @ dct - 1851 1852 -
@ RD_Loop_Row RD_Loop_Col vyes 64 1 2
e WR_Loop_Row_WR_Loop_Col yes o4 1 2

(a) ZedBoard

% Module Hierarchy +# = = O

BRAM DSP FF LUT Latency Interval Pipeline type i

4|® dct 5 1 290 491 1855 1856 none 3
a o dct 2d 3 1 215 321 1720 1720 none

® dct_ 0 1 117 122 97 a7 none -

£ Performance Profile 2 |- Resource Profile H B = 0O

Pipelined Latency Initiation Interval Iteration Latency

4 @ dct - 1855 1856 -
e RD_Loop_Row_RD_Loop_Col yes 65 1 3
e WR_Loop_Row_WR_Loop_Caol yes 65 1 3

(b) Zybo

Figure 12. The performance profile at the dct function level

5-2-3. In the Module Hierarchy tab, expand dct > dct_2d. Notice that the most of the latency occurs is
in dct_2d function.

5-2-4. In the Module Hierarchy tab, notice that there still hierarchy exists in the dct_2d module. Expand
dct >dct_2d > dct 12d, and select the dct_1d entry.

£ Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 5 1 256 457 1851 1852 none
4 ® dct2d 3 1 195 319 1718 1718 none
1 117 122 97 97 none
£° Performance Profile 22 . | . Resource Profile cE =

Pipelined Latency Initiation Interval Iteration Latency Trip cour

4 o dct_1d?2 - a7 97 - -
4 @ DCT_QOuter_Loop no 96 - 12
e DCT_Inner_Loop yes 9 1 3 8 (@)
ZedBoard
Zyng 3-10 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

£ Module Hierarchy =

BRAM DSP FF LUT Latency Interval Pipeline type i

4 o dct 5 1 290 461 1855 1856 none =
4 o dct_2d 3 1 215 321 1720 1720 none

@ dct 1d2]0 1 117 122 97 97 none -

£F pPerformance Profile 2 . | . Resource Profile =

Pipelined Latency Initiation Interval [teration Latency Trip count

4 o dct 1d2 - a7 97 - -
4 @ DCT_Outer_Loop no 96 - 12
@ DCT_Inner_Loc yes 9 1 3
(b) Zybo

Figure 13. The dct_1d function performance profile

5-2-5. In the Performance Profile tab, select the DCT_Inner_Loop entry, right-click on the node_60
(write) block in the C3 state in the Performance view, and select Goto Source. Notice that line 19
is highlighted which is preventing the flattening of the DCT_Outer_Loop.

Current Module : dct > dect 2d > dct 1d2
| Operation\Controls..| co | c1 | ¢2 | ec3 | ca |
1 i 21 read(read)
2 i 2 read(read)
3 HEDCT Outer Loop
4 k(phi mux)
5 tmp (icmp)
5] k 1(+)
7 tmp 15 (+)
8-... BDCT Inner Loop
19 tmp 3 (+)
20 node &0 (write)
Performance | Resource
] Properties | & Warnings | [¢] C Source 3
File: Ch\xup\hls\labs\lab3\dct.c
16 int coeff = (int)dct_coeff_table[k][n];
17 tmp += src[n] * coeff;
18}
19 dst[k] = DESCALE(tmp, CONST_BITS);
20 }
21}
Figure 14. Understanding what is preventing DCT_Outer_Loop flattening

5-2-6. Switch to the Synthesis perspective.

5-3. Create a new solution by copying the previous solution settings. Apply
fine-grain parallelism of performing multiply and add operations of the
inner loop of dct_1d using PIPELINE directive by moving the PIPELINE
directive from inner loop to the outer loop of dct_1d. Generate the solution
and analyze the output.

(' XILINX www.xilinx.com/university Zyng 3-11

Xup@xilinx.com
© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

5-3-1. Select Project > New Solution.
5-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

5-3-3. Select PIPELINE directive of DCT_Inner_Loop of the dct_1d function in the Directive pane,
right-click on it and select Remove Directive.

5-3-4. Select DCT_Outer_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

5-3-5. A pop-up menu shows up listing various directives. Select PIPELINE directive.

5-3-6. Click OK.

@ dct_1d

=1 dct_coeff_table

%" DCT_Outer_Loop
% HLS PIPELINE
%' DCT Inner_Loop

Figure 15. PIPELINE directive applied to DCT_Outer_Loop

By pipelining an outer loop, all inner loops will be unrolled automatically (if legal), so there is no
need to explicitly apply an UNROLL directive to DCT_Inner_Loop. Simply move the pipeline to
the outer loop: the nested loop will still be pipelined but the operations in the inner-loop body will
operate concurrently.

5-3-7. Click on the Synthesis button.

5-3-8. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.

5-3-9. Select Solution2 and Solution3 from the Available Reports, click on the Add>> button, and then
click OK.

5-3-10. Observe that the latency reduced from 1851 to 875 clock cycles for ZedBoard (1855 to 879 for
Zybo).

Zyng 3-12 www.xilinx.com/university v
Xup@xilinx.com (A XI I—INXm

© copyright 2016 Xilinx

Lab Workbook

Improving Area and Resource Utilization Lab

Performance Estimates

=l Timing (ns)
Clock solution3 solution2
ap_clk Target 10.00 10.00

Estimated 940 7.68
-l Latency (clock cycles)

solutiond solution2

Latency min 875 1851

max 875 1851
Interval min 876 1852

max 876 1852

(a) ZedBoard

Performance Estimates

-1 Timing (ns)
Clock solution3 solution?
ap_clk Target 8.00 8.00
Estimated 9.40 6.60

=l Latency (clock cycles)

solution3 solution2

Latency min 879 1855
max 879 1855
Interval min 880 1856
max 880 1856

(b) Zybo

Figure 16. Performance comparison after pipelining

5-3-11. Scroll down in the comparison report to view the resources utilization. Observe that the utilization
of all resources (except BRAM) increased. Since the DCT_Inner_Loop was unrolled, the parallel

computation requires 8 DSP48E.

Utilization Estimates

solution3 solution2
BRAM_18K 5 5
DSP48E 8 1
FF 678 256
LUT 518 457

(a) ZedBoard

Utilization Estimates

solutiond solution2
BRAM_18K 5 5
DSP48E 8 1

712 290

522 461

(b) Zybo

Figure 17. Resources utilization after pipelining

5-3-12. Open dct_1d report and observe that the pipeline initiation interval (Il) is four (4) cycles, not one
(1) as might be hoped and there are now 8 BRAMs being used for the coefficient table.

Looking closely at the synthesis log, notice that the coefficient table was automatically partitioned,
resulting in 8 separate ROMs: this helped reduce the latency by keeping the unrolled computation
loop fed, however the input arrays to the dct_1d function were not automatically partitioned.

The reason the Il is four (4) rather than the eight (8) one might expect, is because Vivado HLS
automatically uses dual-port RAMs, when beneficial to scheduling operations.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

Zynqg 3-13

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Performance Estimates
= Timing (ns)
E Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 9.40 1.25
= Latency (clock cycles)
E Summary
Latency Interval

min max min max Type
36 36 36 36 none

= Detail
= Instance
= Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- DCT_Outer_Loop 34 34 7 4 1 8 yes
Utilization Estimates
- Summary
MName BRAM_18K DSP48E FF LUT
DsP - 8 - -
Expression - - 0 128
FIFO - - - -
Instance - - - -
Memory 0 - 119 16
Multiplexer - - - 21
Register - - 420 -
Total 0 8 539 165
Available 280 220 106400 53200
Utilization (%) 0 3 ~0 ~0

Figure 18. Increased resource utilization of dct_1d

INFO: [XFORM 283-502] Unrolling all sub-loops inside loop 'DCT_Outer_loop' (dct.c:13) in function 'dct_1d' for pipelining.
INFO: [XFORM 283-501] Unrolling loop 'DCT Inner loop' (dct.c:15) in function 'dct 1d' completely.

INFO: [XFORM 203-182] [Partitioning array 'dct coeff table' in dimension 2 automatically.|

INFO: [XFORM 283-602] Inlining function 'read_data' into 'dct' (dct.c:85) automatically.

INFO: [XFORM 203-602] Inlining function ‘'write_data' into 'dct’ (dct.c:98) automatically.

Figure 19. Automatic partitioning of dct_coeff_table
su. Lo suu aug
INFO: [HLS 208-18] -- Implementing module 'dct_1d2’
INFO: [HLS 200-10] ------- - - oo oo mm oo oo
INFO: [SCHED 204-11] Starting scheduling ...
INFO: [SCHED 204-51] Pipelining loop 'DCT_OQuter Loop®.
IARNTNG: [SCHED 204-69] Unable to schedule 'load' operation ('src_load 5', dct.c:17) on array 'src' due to limited memory ports
NFO: [SCHED 284-61] Pipelining result: Target II: 1, Final II: 4, Depth: 7.
IARNING: [SCHED 284-211] Estimated clock period (9.4ns) exceeds the target (target clock period: 1@ns, clock uncertainty: 1.25ns,
WARNING: [SCHED 2@4-21] The critical path consists of the following:
‘mul’ operation ("tmp_7_7', dct.c:17) (3.36 ns)
‘add’ operation ("tmp7', dct.c:19) (3.82 ns)
‘add’ operation ("tmp6', dct.c:19) (3.82 ns)

Figure 20. Initiation interval of 4

Zyng 3-14 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

5-4. Perform design analysis by switching to the Analysis perspective and
looking at the dct_1d performance view.

5-4-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_1d
entry.

5-4-2. Expand, if necessary, the Profile tab entries and notice that the DCT_Outer_Loop is now
pipelined and there is no DCT_Inner_Loop entry.

tz| Module Hierarchy B3 = 4
BRAM DSP FF LUT Latency Interval Pipeline type
4 ® dct 5 8 678 518 875 876 none
4 @ dct 2d 3 8 617 379 742 742 none
® dct 1d2} 0 8 539 165 36 36 none
£F Performance Profile 2 | . Resource Profile =

Pipelined Latency Initiation Interval [teration Latency Trip count

4 @ dct 1d2 - 36 36 - -
@ DCT_Outer_Loop ves 34 4 7 8
(a) ZedBoard
Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type i
4 ® dct 5 8 712 522 879 880 none =
4 ® dct 2d 3 8 637 381 744 744 none

® dct 1d2|0 8 539 165 36 36 none T
EF performance Profile 2 “._| . Resource Profile ¥ = = 8

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 o dct_1d2 - 36 36 - -
e DCT_Outer_Loop yes 34 4 7 8
(b) Zybo

Figure 21. DCT_Outer_Loop flattening

5-4-3. Select the dct_1d entry in the Module Hierarchy tab and observe that the DCT_Outer_Loop
spans over eight states in the Performance view.

v Xilinx.com/universit Zyng 3-15
£ XILINX e /
© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Current Module det > det 2d > det 142

| Oneration\Control s | co | c1 |l 2 | 3|l ca |l o5 | c6 | cz |

i 21 read(read)
i 2 read(read)
16 (])

18 (1)
200(1)
22(1)
24 (
26 (

1)
1)
28 (1)
Outer Loop

0o s Wh =
s}

1... ¥DCT

Performance Resource

Figure 22. The Performance view of the DCT_Outer_Loop function

5-4-4. Select the Resource tab, expand the Memory Ports entry and observe that the memory accesses
on BRAM src are being used to the maximum in every clock cycle. (At most a BRAM can be dual-
port and both ports are being used). This is a good indication the design may be bandwidth

limited by the memory resource.

Current Module det > det 2d > det 1d2

|Resource\Control Sten] c0 | c1 | c2 | 3 | ca | o5 | ca | ¢z
1 EI/0 Ports
2 i 2 read
3 i 21 read
4 src (p0) read read read read
5 src(pl) read read read read
6 dst (p0) write
7 EMemory Ports
8 dct coeff tabl... read
9 dct coeff tabl... read
10 src (p0) read read read read
11 src(pl) read read read read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write
1... ¥ExXpressions

Performance |Resource

Figure 23. The Resource tab

5-4-5. Switch to the Synthesis perspective.

Zyng 3-16 www.xilinx.com/university
Xup@xilinx.com

© copyright 2016 Xilinx

& XILINX.

Lab Workbook Improving Area and Resource Utilization Lab

Improve Memory Bandwidth Step 6

6-1. Create a new solution by copying the previous solution (Solution3) settings.
Apply ARRAY_PARTITION directive to buf_2d_in of dct (since the
bottleneck was on src port of the dct_1d function, which was passed via
in_block of the dct_2d function, which in turn was passed via buf_2d_in of
the dct function) and col_inbuf of dct_2d. Generate the solution.

6-1-1. Select Project > New Solution to create a new solution.
6-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution3 selected).

6-1-3. With dct.c open, select buf_2d_in array of the dct function in the Directive pane, right-click on it
and select Insert Directive...

The buf_2d_in array is selected since the bottleneck was on src port of the dct_1d function, which
was passed via in_block of the dct_2d function, which in turn was passed via buf_2d_in of the dct
function).

6-1-4. A pop-up menu shows up listing various directives. Select ARRAY_PARTITION directive.
6-1-5. Make sure that the type is complete. Enter 2 in the dimension field and click OK.

Vivado HLS Directive Editor

w—

Type
Directive: | ARRAY_PARTITION v

Destination
Source File

Q) Directive File

Options
variable (required): buf_2d_in

type (optional): frcomplete >

factor (optional):

dimension (optional): 2

Figure 24. Applying ARRAY_PARTITION directive to memory buffer
6-1-6. Similarly, apply the ARRAY_PARTITION directive with dimension of 2 to the col_inbuf array.

6-1-7. Click on the Synthesis button.

v www.xilinx.com/university Zynq 3-17
(‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

6-1-8. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.

6-1-9. Select Solution3 and Solution4 from the Available Reports, and click on the Add>> button.

6-1-10. Observe that the latency reduced from 875 to 509 clock cycles for ZedBoard (878 to 512 for
Zybo).

Performance Estimates Performance Estimates

= Timing (ns) =l Timing (ns)
Clock solutiond solution3 Clock solutiond4 solution3
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 10.79 9.40 Estimated = 9.40 9.40
= Latency (clock cycles) = Latency (clock cycles)
solutiond solution3 solutiond solution3
Latency min 509 875 Latency min 513 879
max 509 875 max 513 879
Interval min 510 876 Interval min 514 880
max 510 876 max 514 880
(a) ZedBoard (b) Zybo

Figure 25. Performance comparison after array partitioning

6-1-11. Scroll down in the comparison report to view the resources utilization. Observe the increase in
the FF resource utilization (almost double).

Utilization Estimates Utilization Estimates
solutiond solution3 solutiond solution3
BRAM_18K 3 5 BRAM_18K 3 5
DSP48E] 8 DSP48E] 8
FF 1204 678 FF 1285 712
LUT 625 518 LUT 629 522
(a) ZedBoard (b) Zybo

Figure 26. Resources utilization after array partitioning

6-1-12. Expand the Loop entry in the dct.rpt entry and observe that the Pipeline Il is now 1.

6-2. Perform resource analysis by switching to the Analysis perspective and
looking at the dct resources profile view.

6-2-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct entry.

6-2-2. Select the Resource Profile tab.

Zyng 3-18 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

6-2-3. Expand the Memories and Expressions entries and observe that the most of the resources are
consumed by instances. The buf_2d_in array is partitioned into multiple memories and most of
the operations are done in addition and comparison.

t Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 @ dct 3 8 1204 625 509 510 none
» @ dct_2d 2 3 884 445 374 374 none
® read_data 0] 28 54 66 66 none
£" Performance Profile || . Resource Profile i3 cE =
BRAM DSP FF LUT Bits PO BitsP1 Bits P2 Banks/Deptl
4 @ dct 3 8 1204 625
» 82 /O Ports(2) 32
+ T2 Instances(2) 2 8 912 499
4 Memories(2) 1 256 16 144 9
4 buf 2d_out U 1 0 0 16 1
4 buf 2d_in6 U 0 32 2 16 1
4 buf 2d_in.5.U 0 32 2 16 1
¢ buf 2d_in4 U 0 32 2 16 1
4 buf 2d_in.3.U 0 32 2 16 1
4 buf 2d_in_7.U 0 32 2 16 1
4 buf 2d_in.2 U 0 32 2 16 1
¢ buf 2d_in_.1.U 0 32 2 16 1
4 buf 2d_in0U 0 32 2 16 1
- 'Y, Expressions(9) 0 0 0 42 36 41 8
: s Registers(11) 36 36
1w Channels(0) 0 0 0 0 0
- Multiplexers(32) 0 0 68 63 0
(a) ZedBoard
i: XILINXS www.xilinx.com/university Zyng 3-19

Xup@xilinx.com
© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook
£ Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type i
4 @ dct 3 1285 629 513 514 none =
» @ dct_2d 2 048 447 376 376 none
@ read data 0 38 55 67 67 none -
£" Performance Profile || . Resource Profile i3 cE =
BRAM DSP FF LUT Bits PO Bits P1 Bits P2 Banks/Depth
4 @ dct 3 8 1285 629
» 82 /O Ports(2) 32
- T2 Instances(2) 2 8 986 502
4 w8 Memories(9) 1 256 16 144 9
4 buf 2d_out U 1 0 0 16 1
4 buf_2d_in_6.L 0 32 2 16 1
4 buf 2d_in 5L 0 32 2 16 1
4 buf 2d_in4 L0 32 2 16 1
4 buf 2d_in_3.L 0 32 2 16 1
4 buf 2d_in_7_L 0 32 2 16 1
4 buf 2d_in_2_ L 0 32 2 16 1
4 buf 2d_in_1.L 0 32 2 16 1
4 buf 2d_in. 0L 0 32 2 16 1
- Y, Expressions(9) 0 0 0 42 36 41 8
- i Registers(15) 43 43
1w Channels(0) 0 0 0 0 0
- Multiplexers(33) 0 0 69 69 0

(b) Zybo

Figure 27. Resource profile after partitioning buffers

6-2-4. Switch to the Synthesis perspective.

Apply DATAFLOW Directive

Step 7

7-1. Create a new solution by copying the previous solution (Solution4) settings.
Apply the DATAFLOW directive to improve the throughput. Generate the
solution and analyze the output.

7-1-1. Select Project > New Solution.

7-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution4 selected).

7-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

7-1-4. Select function dct in the directives pane, right-click on it and select Insert Directive...

7-1-5. Select DATAFLOW directive to improve the throughput.

Zynq 3-20

www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook

Improving Area and Resource Utilization Lab

7-1-6. Click on the Synthesis button.

7-1-7. When the synthesis is completed, the synthesis report is automatically opened.

7-1-8. Observe that dataflow type pipeline throughput is listed in the Performance Estimates.

Performance Estimates

-1 Timing (ns)
= Summary

Clock
ap_clk

Target
10.00

Estimated
10.79

Uncertainty
1.25

-1 Latency (clock cycles)

= Summary

Latency
min
508

max
508

(a) ZedBoard

Interval
min
375

max
375

Type
dataflow

Performance Estimates
-l Timing (ns)
= Summary

Clock
ap_clk

Target
8.00

Estimated
9.40

Uncertainty
1.00

-I Latency (clock cycles)

= Summary
Latency
min
512

(b) Zybo

max
512

Figure 28. Performance estimate after DATAFLOW directive applied

min
377

Interval

max
377

Type
dataflow

0 The Dataflow pipeline throughput indicates the number of clock cycles between each set of
inputs reads (interval parameter). If this value is less than the design latency it indicates the
design can start processing new inputs before the currents input data are output.

0 Note that the dataflow is only supported for the functions and loops at the top-level, not those
which are down through the design hierarchy. Only loops and functions exposed at the top-
level of the design will get benefit from dataflow optimization.

7-1-9. Scrolling down into the Area Estimates, observe that the number of BRAM_18K required at the
top-level has increased from 3 to 4.

Utilization Estimates

= Summary

MName BRAM_18K DSP48E FF LUT
DSP -
Expression - 1] 19
FIFO -
Instance 2 8 946 561
Memory 2 - 512 32
Multiplexer - 8
Register - 8
Total 4 8 1466 620
Available 280 220 106400 53200
Utilization (%) 1 3 1 1

(a) ZedBoard

Utilization Estimates

- Summary
Name BRAM_18K
DSP -
Expression -
FIFO -
Instance 2
Memory 2
Multiplexer -
Register -
Total 4
Available 120
Utilization (%) 3
(b) Zybo

Figure 29. Resource estimate with DATAFLOW directive applied

DSP48E FF LUT
- 0 19
8 1027 565
- 512 32
- 8
- 8
8 1547 624
80 35200 17600
10 4 3

7-1-10. Look at the console view and notice that dct_coeff _table is automatically partitioned in dimension
2. The buf_2d_in and col_inbuf arrays are partitioned as we had applied the directive in the

& XILINX.

www.xilinx.com/university

Xup@xilinx.com

© copyright 2016 Xilinx

Zynqg 3-21

Improving Area and Resource Utilization Lab Lab Workbook

previous run. The dataflow is applied at the top-level which created channels between top-level
functions read_data, dct_2d, and write_data.

INFO: [XFORM 283-712] Applying dataflow to function 'dct' (dct.c:78), detected/extracted 3 process function(s):
'read data’
"det_2d’
'write_data’.
INFO: [XFORM 283-11] Balancing expressions in function 'dct 1d' (dct.c:4)...8 expression(s) balanced.
INFO: [HLS 200-111] Finished Pre-synthesis Time (s): cpu = ©9:00:01 ; elapsed = 90:00:06 . Memory (MB): peak =
TNFO: [XFORM 283-541] Flattening a loop nest 'WR_Loop_Row' (dct.c:71:67) in function 'write_data’.
INFO: [XFORM 283-541] Flattening a loop nest 'RD_Loop_Row' (dct.c:59:67) in function 'read_data'.
INFO: [XFORM 283-541] Flattening a loop nest 'Xpose_Row Outer_Loop' (dct.c:38:1) in function “dct_2d°.
INFO: [XFORM 283-5411] Flattening a loop nest 'Xpose_Col Outer_Loop' (dct.c:49:1) in function “dct_2d'.
INFO: [HLS 20@-111] Finished Architecture Synthesis Time (s): cpu = 808:00:82 ; elapsed = 99:89:86 . Memory (MB)
INFO: [HLS 20@-10] Starting hardware synthesis ...
INFO: [HLS 20@-1@] Synthesizing 'dct' ...

Figure 30. Console view of synthesis process after DATAFLOW directive applied

7-2. Perform performance analysis by switching to the Analysis perspective
and looking at the dct performance profile view.

7-2-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_2d
entry.

7-2-2. Select the Performance Profile tab.

Observe that most of the latency and interval (throughput) is caused by the dct_2d function. The
interval of the top-level function dct, is less than the sum of the intervals of the read_data, dct_2d,
and write_data functions indicating that they operate in parallel and dct_2d is the limiting factor.
From the Performance Profile tab it can be seen that dct_2d is not completely operating in
parallel as Row_DCT_Loop and Col DCT_Loop were not pipelined.

¥ Module Hierarchy # B T O
BRAM DSP FF LUT Latency Interval Pipeline type
4 ¥ dct 4 8 1466 620 508 375 dataflow
| ® dct_2d 2] 885 445 374 374 none
@ write_data 0 0 32 62 66 b6 none
® read_data 0 0 29 54 66 66 none
EF performance Profile 2 “._| . Resource Profile ¥ = = 8

Pipelined Latency Initiation Interval

4 @ dct_2d - 374 374
@ Row_DCT_Loop no 120 -
@ Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 64 1
e Col_DCT_Loop no 120 -
@ Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes 64 1

(a) ZedBoard

Zyng 3-22 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 ¥ dct 4 8 1547 624 512 377 dataflow
| ® dct_2d 2] 949 447 376 376 none
@ write_data 0 0 39 63 67 67 none
® read_data 0 0 39 55 67 67 none
EF performance Profile 2 “._| . Resource Profile ¥ = = 8

Pipelined Latency Initiation Interval

4 @ dct_2d - 376 376
@ Row_DCT_Loop no 120 -
@ Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 65 1
e Col_DCT_Loop no 120 -
@ Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes 65 1
(b) Zybo

Figure 31. Performance analysis after the DATAFLOW directive

One of the limitations of the dataflow optimization is that it only works on top-level loops and
functions. One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This however would unroll all the loops and can sometimes lead to a large area increase.
An alternative is to raise these loops up to the top-level of hierarchy, where dataflow optimization
can be applied, by removing the dct_2d hierarchy, i.e. inline the dct_2d function.

7-2-3. Switch to the Synthesis perspective.

Apply INLINE Directive Step 8

8-1. Create a new solution by copying the previous solution (Solution5) settings.
Apply INLINE directive to dct_2d. Generate the solution and analyze the
output.

8-1-1. Select Project > New Solution.

8-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution5 selected).

8-1-3. Select the function dct_2d in the directives pane, right-click on it and select Insert Directive...

8-1-4. A pop-up menu shows up listing various directives. Select INLINE directive.
The INLINE directive causes the function to which it is applied to be inlined: its hierarchy is
dissolved.

8-1-5. Click on the Synthesis button.

8-1-6. When the synthesis is completed, the synthesis report will be opened.

(' XILINX www.xilinx.com/university Zyng 3-23

- e Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

8-1-7. Observe that the latency reduced from 507 to 479 clock cycles for ZedBoard (513 to 499 clock
cycles for Zybo), and the Dataflow pipeline throughput drastically reduced from 374 to 106 clock
cycles (514 to 114 clock cycles for Zybo).

8-1-8. Examine the synthesis log to see what transformations were applied automatically.

0 The dct_1d function calls are now automatically inlined into the loops from which they are
called, which allows the loop nesting to be flattened automatically.

o0 Note also that the DSP48E usage has doubled (from 8 to 16). This is because, previously a
single instance of dct_1d was used to do both row and column processing; now that the row
and column loops are executing concurrently, this can no longer be the case and two copies
of dct_1d are required: Vivado HLS will seek to minimize the number of clocks, even if it
means increasing the area.

0 BRAM usage has increased once again (from 4 to 6), due to ping-pong buffering between
more dataflow processes.

INFO: [XFORM 283-712] Applying dataflow to function 'dct' (dct.c:78), detected/extracted 6 process function(s):
'read_data’
"Loop_Row_DCT_Loop_proc”
'Loop_Xpose_Row_Outer_Loop_proc'
"Loop_Col DCT Loop proc’
'Loop_Xpose_Col_Quter_Loop_proc'
'write_data’.
INFO: [XFORM 283-602]1 Inlining function 'dct_1d' into '"Loop_Row_DCT_loop_proc' (dct.c:33->dct.c:87) automatically.
INFO: | [XFORM 2683-602] Inlining function 'dct_1d' into '"Loop_Col DCT_Loop_proc’' (dct.c:44->dct.c:87) automatically.
INFO: [XFORM 203-11| Balancing expressions 1in tunction 'Loop Row DCT Loop proc’ (dct.c:13:61)...8 expression(s) balanced.
INFO: [XFORM 2@3-11] Balancing expressions in function 'Loop_Col_DCT_Loop_proc' (dct.c:13:61)...8 expression(s) balanced.

Figure 32. Console view after INLINE directive applied to dct_2d

8-1-9. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct entry.

Observe that the dct_2d entry is now replaced with dct_Loop_Row_DCT_Loop_proc,
dct_Loop_Xpose_Row_Outer_Loop_proc, dct_Loop_Col_DCT_Loop_proc, and
dct_Loop_Xpose_Col_Outer_Loop_proc since the dct_2d function is inlined. Also observe that all
the functions are operating in parallel, yielding the top-level function interval (throughput) of 106

clock cycles.
¥ Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 |F8 dct 6 16 2282 579 495 114 dataflow

@ Loop_Row_DCT_Loop_pr O 8 561 113 113 113 none
e Loop_Col_DCT_Loop_pr O 8 561 113 113 113 none
® write_data 0 0 32 62 66 66 none
e Loop_Xpose_Col_Outer O 0 30 64 bb b6 none
@ Loop_Xpose_Row_Outer 0 0 29 56 66 66 none
® read _data 0 0 29 54 bb b6 none

(a) ZedBoard

Zyng 3-24 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

£ Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 F dct 6 16 2405 583 499 114 dataflow
@ Loop_Row_DCT_Loop_pr O 8 603 113 113 113 none
e Loop_Col_DCT_Loop_pr O 8 603 113 113 113 none
® write_data 0 0 39 63 67 67 none
® read _data 0 0 39 55 67 67 none
@ Loop_Xpose_Row_Outer 0 0 41 57 67 67 none
e Loop_Xpose_Col_Outer O 0 40 65 67 67 none

(b) Zybo

Figure 33. Performance analysis after the INLINE directive

8-1-10. Switch to the Synthesis perspective.

Apply RESHAPE Directive Step 9

9-1.

Create a new solution by copying the previous solution (Solution6) settings.
Apply the RESHAPE directive. Generate the solution and understand the
output.

9-1-1. Select Project > New Solution.

9-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution6 selected).

9-1-3. Select PARTITION directive applied to the buf_2d_in array of the dct function in the Directive
pane, right-click, and select Modify Directive. Select ARRAY_RESHAPE directive, enter 2 as
the dimension, and click OK.

9-1-4. Similarly, change PARTITION directive applied to the col_inbuf array of the dct_2d function in
the Directive pane, to ARRAY_RESHAPE with the dimension of 2.

9-1-5. Assign the ARRAY_RESHAPE directive with dimension of 2 to the dct_coeff_table array.

v www.xilinx.com/university Zynqg 3-25
(‘ X”—INXQ Xup@xilinx.com

© copyright 2016 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

4 @ det_1d
“[1 dct_coeff table
I % HLS ARRAY_RESHAPE variable=dct_coeff_table complete dim=2 I
- %" DCT_Outer_Loop
4 @ dct_2d
9 HLS INLINE
=1 row_outbuf

1 col_outbuf
“[1 caol_inbuf
I% HLS ARRAY_RESHAPE variable=col_inbuf complete dim=2 I
%" Row_DCT_Loop
- %" Xpose_Row_Outer Loop
%" Col_DCT_Loop
- %" Xpose_Col_Outer_Loop
+ @ read_data
+ @ write_data
4 @ dct
90 HLS DATAFLOW
@ input
@ output
=1 buf_2d_in
|% HLS ARRAY RESHAPE variable=buf 2d_in complete dim=2 |
=[] buf_2d_out

Figure 34. RESHAPE directive applied

9-1-6. Click on the Synthesis button.

9-1-7. When the synthesis is completed, the synthesis report is automatically opened.

9-1-8. Observe that both latency (increased from 495 to 623 for ZedBoard and from 499 to 627 for
Zybo) and Dataflow pipeline throughput (increased from 114 to 131 for ZedBoard and 114 to 132
for Zybo) has regressed. The BRAM resource utilization increased from 6 to 22 for both
ZedBoard and Zybo.

0 Reviewing the synthesis log will provide some clues. There are warnings in the scheduling
phase for read_data stating that II=1 could not be achieved. In fact, read_data complains
about the conflict of read and write operations.

o0 The problem here is due to the fact that an update to a single element in a reshaped array
requires that the entire word be read, the single element updated and the entire word written
back: an array that has been reshaped requires a read-modify-write cycle (Vivado HLS does
not implement byte-masking on writes).

0 This operation negatively impacts the maximum write bandwidth for such an array.

9-1-9. Thus it can be seen the directives have to be applied carefully.

9-1-10. Close Vivado HLS by selecting File > Exit.

Zyng 3-26 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Conclusion

In this lab, you learned various techniques to improve the performance and balance resource utilization.
PIPELINE directive when applied to outer loop will automatically cause the inner loop to unroll. When a
loop is unrolled, resources utilization increases as operations are done concurrently. Partitioning memory
may improve performance but will increase BRAM utilization. When INLINE directive is applied to a
function, the lower level hierarchy is automatically dissolved. When DATAFLOW directive is applied, the
default memory buffers (of ping-pong type) are automatically inserted between the top-level functions and
loops. The RESHAPE directive will allow multiple accesses to BRAM, however, care should be taken if a
single element requires modification as it will result in read-modify-write operation for the entire word. The
Analysis perspective and console logs can provide insight on what is going on.

Answers

1. Answer the following questions for dct:

Estimated clock period: 6.38 ns
Worst case latency: 3959 clock cycles
Number of DSP48E used: 1
Number of BRAMSs used: 5
Number of FFs used: 272
Number of LUTSs used: 353
i: XILINXJ www.xilinx.com/university Zynq 3-27

Xup@xilinx.com
© copyright 2016 Xilinx

