
Il calcolo per KM3NeT

Agnese Martini INFN LNF arca&orca

The KM3NeT infrastructure (I)

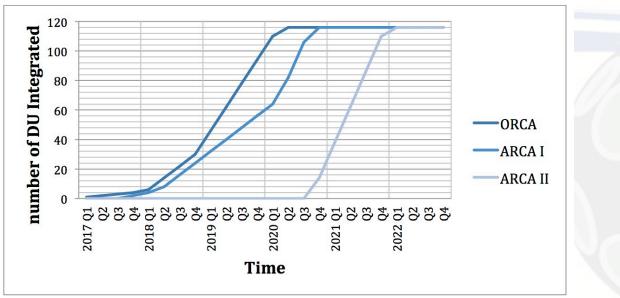
- The KM3NeT research infrastructure will comprise a deep-sea neutrino telescope (ARCA) and the neutrino-mass-hierarchy detector ORCA at different sites and nodes for instrumentation for measurements of earth and sea science (ESS) communities.
- The cable(s) to shore and the shore infrastructure will be constructed and operated by the KM3NeT collaboration.

The KM3NeT infrastructure (II)

Both the detection units of ARCA/ ORCA and the ESS nodes are connected via a deep-sea cable network to shore.

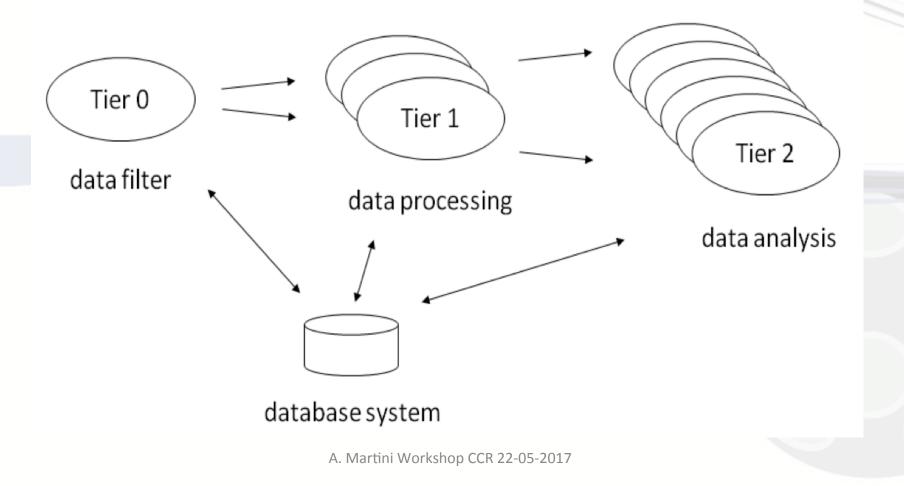
Note that KM3NeT will be constructed at multiple sites (France (FR), Italy (IT) and Greece (GR)) as a distributed infrastructure. The set-up shown in Figure will be installed at each of the sites.

to European science data backbones


The detector

- The ARCA/ORCA will consist of building blocks (BB) containing 115 detection units (vertical structures supporting 18 optical modules each).
- Each optical module holds 31 3-inch photomultipliers together with readout electronics and instrumentation within a glass sphere. One building block thus contains approximately 65,000 photomultipliers.
- Each installation site will contain an integer number of building blocks.
- The data transmitted from the detector to the shore station include the PMT signals (time-over-threshold and timing), calibration and monitoring data.

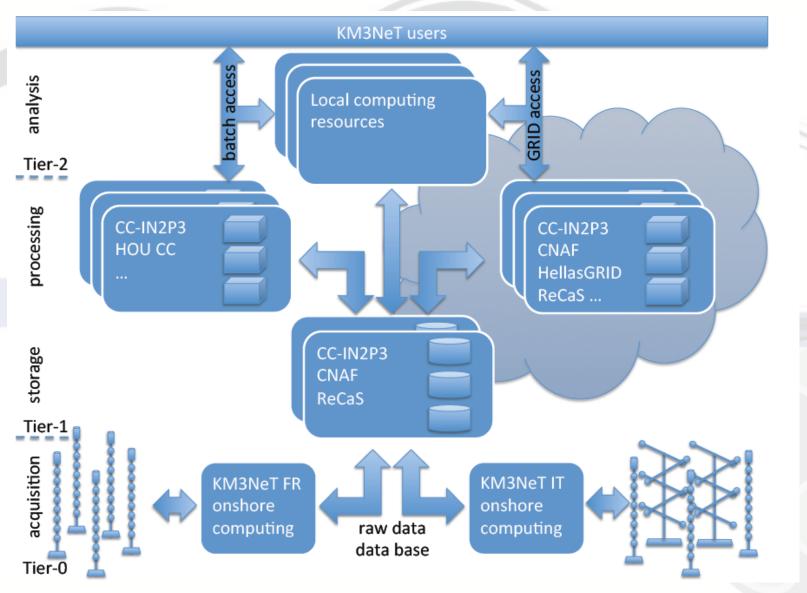
Phase	Detector Layout	No. of DUs
Phase 1	approx. ¼ BB	31 DUs
Phase 2	2 BB ARCA/ 1 BB ORCA	345 DUs
Final Phase	6 building blocks	690 DUs
Reference	1 building block	115 DUs


The detector status

- Status Italian Seafloor Network: down since 16th of April for power failure. After investigations The network will be powered off until a ROV inspection that we are investigating the possibilities
- Status of the French seafloor Network: A repair operation of the cable that connects the infrastructure is currently ongoing. The fault was located in a joint close to the node and the repair should be completed in the next few weeks.
- 2 DU are being prepared for deployment in France this summer.
- DOM/DU integration: The overall integration of DOM's and DU's is not affected by any of the network problems and will be pursued without delay.

The KM3NeT Computing Model

The KM3NeT computing model (data distribution and data processing system) is based on the LHC computing model. The general concept consists of a hierarchical data processing system, commonly referred to as Tier structure


Data processing steps at the different tiers

Tier	Computing Facility	Processing steps	Access
Tier-0	at detector site	triggering, online- calibration, quasi- online reconstruction	direct access, direct processing
Tier-1	computing centers	calibration and reconstruction, simulation	direct access, batch processing and/or grid access
Tier-2	local computing clusters	simulation and analysis	varying

Computing centres and pools provide resources for the KM3NeT

Tier	Computing Facility	Main Task	Access
Tier-0	at detector site	online processing	direct access, direct processing
Tier-1	CC-IN2P3	general offline processing and central data storage	direct access, batch processing and grid access
	CNAF	general offline processing and central data storage	grid access
	ReCaS	general offline processing, interim data storage	grid access
	HellasGrid	reconstruction of data	grid access
	HOU computing cluster	simulation processing	direct access, batch processing
Tier-2	local computing clusters	simulation and analysis	varying

Detailed Computing Model

Data distribution

- The raw data must be transferred from TierOs (detector sites) to Tier1s: CC-IN2P3 and CNAF. The 2 storages must be mirrored.
- The data resulting from all the processing tasks have to be transferred to the Tier1s

The main task is to implement an efficient data distribution and mirroring system between these 2 centers that implement different data transfer protocol

- iRODS (Integrated Rule-Oriented Data System) at CC-IN2P3
- GridFTP (File Transfer Protocol for grid computing) at CNAF

Detector Deployment (DUs at beginning of the year)

yearDetector LayoutNo. of DUs20184 Dus ORCA6 DUs2 Dus ARCA2 Dus ARCA20190,3 building block ORCA65DUs0,25 building block ARCA0,25 building block ARCA20201building block ORCA170 DUs1/2 building block ARCA260 DUs1,3 building block ARCA345 DUs20221 building block ARCA			
2 Dus ARCA20190,3 building block ORCA 0,25 building block ARCA65DUs20201building block ORCA 1/2 building block ARCA170 DUs20211 building block ORCA 1,3 building block ARCA260 DUs20221 building block ORCA 3 building block ARCA345 DUs	year	Detector Layout	No. of DUs
20190,3 building block ORCA 0,25 building block ARCA65DUs20201building block ORCA 1/2 building block ARCA170 DUs20211 building block ORCA 1,3 building block ARCA260 DUs20221 building block ORCA 345 DUs345 DUs	2018	4 Dus ORCA	6 DUs
0,25 building block ARCA20201building block ORCA170 DUs1/2 building block ARCA170 DUs20211 building block ORCA260 DUs1,3 building block ARCA1,3 building block ARCA20221 building block ORCA345 DUs		2 Dus ARCA	
20201building block ORCA170 DUs1/2 building block ARCA1/2 building block ARCA20211 building block ORCA260 DUs1,3 building block ARCA1,3 building block ARCA20221 building block ORCA345 DUs	2019	0,3 building block ORCA	65DUs
1/2 building block ARCA20211 building block ORCA260 DUs1,3 building block ARCA20221 building block ARCA20221 building block ORCA345 DUs		0,25 building block ARCA	
20211 building block ORCA 1,3 building block ARCA260 DUs20221 building block ORCA345 DUs	2020	1building block ORCA	170 DUs
1,3 building block ARCA20221 building block ORCA345 DUs		1/2 building block ARCA	
20221 building block ORCA345 DUs	2021	1 building block ORCA	260 DUs
5		1,3 building block ARCA	
2 building block ARCA	2022	1 building block ORCA	345 DUs
		2 building block ARCA	

1 Building block = 115 DUs

Overview on computing requirements at T1s per year

per year	size (TB)	computing time (HS06.h)	computing resources (HS06)
One Building			
Block	1000	350 M	40 k
2018	250	25 M	3 k
2019	750	350 M	40 k
2020	500	150 M	20 k
2021	2000	700 M	80 k
2022	3000	700 M	80 k

arca&orca

Detailed expectations of necessary storage and computing time for **one building block** (per processing and per year)

processing stage	size per proc. (TB)	time per proc. (HS06.h)	Size per period (TB)	time per year (HS06.h)	periodicity (year)
Raw Data					
Raw Filtered Data	300	-	300	-	1
Monitoring and Minimum Bias					
Data	150	-	150	-	1
Experimental Data Processing					
Calibration (incl. Raw Data)	750	24 M	1500	48 M	2
Reconstructed Data	150	119 M	300	238 M	2
DST	75	30 M	150	60 M	2
Simulation Data Processing					
Air showers	100	14 M	50	7 M	0.5
atm. Myons	50	1 M	25	638 k	0.5
neutrinos	2	22 k	20	220 k	10
total:	827	188 M	995	353 M	
First building block deployed					

First building block deployed in 2 years

A. Martini Workshop CCR 22-05-2017

Networking

phase	connection	average data transfer (MB/s)	peak data transfer (MB/s)
Building Block:			
	Tier-0 to Tier-1	25	125
	Tier-1 to Tier-1	50	500
	Tier-1 to Tier-2	10	50
Final Phase:			
	Tier-0 to Tier-1	200	1000
	Tier-1 to Tier-1	500	5000
	Tier-1 to Tier-2	100	500

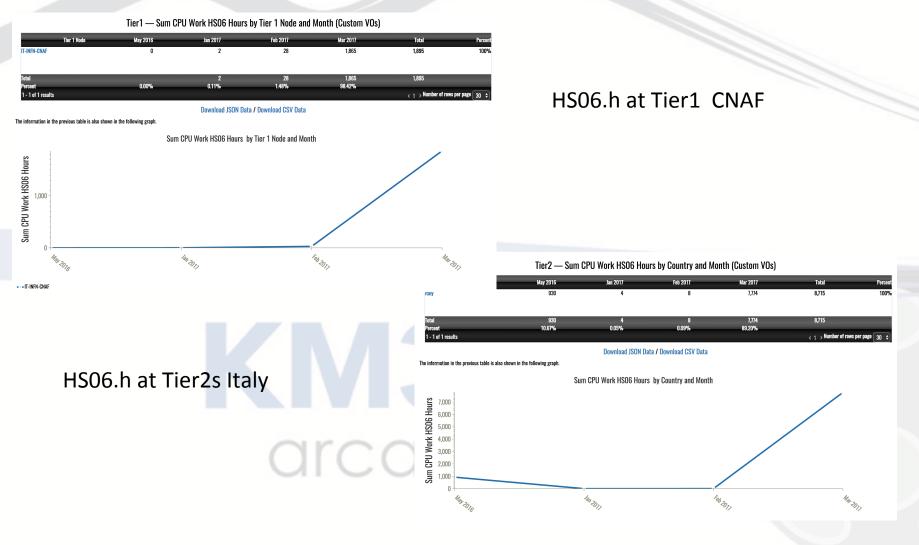
Rough estimate of the required bandwidth. Note that the connection from Tier-1 to Tier-2 has the largest fluctuation, driven by the analyses of data (i.e. by users)

KM3NeT on the GRID VO Central Services

Service	Site
Authentication/authorization system VOMS	RECAS-NAPOLI
User Interface	RECAS-NAPOLI, HellasGrid-Okeanos, CNAF, Frascati
Logical File Catalog	RECAS-NAPOLI
Job submission and management system (WMS)	HellasGrid-Afroditi

- KM3NeT is starting on the GRID
- use case: CORSIKA simulation

 $\Box \Box$


GRID sites supporting the VO KM3NeT

Site name	Storage (TB)	CPU (not pledged)
HG-03-AUTH		440
HG-08-Okeanos	-	120
INFN-BARI		654
INFN-FRASCATI		2016
INFN-T1	200	25504
RECAS-NAPOLI	320	1500
UNINA-EGEE		64

arca&orca

A. Martini Workshop CCR 22-05-2017

HS06.h the last year

A. Martini Workshop CCR 22-05-2017

INFN for OBELICS 3.4

Activities in WP 3.4 (1/3)

• CORELib: COsmic Ray Event Library

- Background to many experiments
- Also a tuning benchmark
- Potentially useful to other communities
- Currently using CORSIKA as generator

Status of production

- Proton-induced showers:
 - HEMODELS: QGSJET01 with CHARM, QGSJET01 with TAULEP, QGSJET-II with TAULEP, EPOSLHC with TAULEP
 - o LEMODEL: GHEISHA
 - o about 21M Evts per HEMODEL
 - 7 energy bins (2×102GeV-103GeV+equally logarithmically spaced from 1TeV to 109GeV)
 - o power-law spectrum with -2 spectral index
 - o zenith angle from 0 to 89 degrees
- Nuclei-induced showers:
 - HEMODELS: QGSJET01 with CHARM, QGSJET01 with TAULEP, QGSJET-II with TAULEP, EPOS-LHC with TAULEP
 - o LEMODEL: GHEISHA
 - o about 21M Evts per HEMODEL
 - 7 energy bins (A×2×102GeV-A×103GeV+equally logarithmically spaced from A×1TeV to A×109GeV)
 - power-law spectrum with -2 spectral index
 - zenith angle from 0 to 89 degrees

INFN for OBELICS 3.4

Activities in WP 3.4 (1/3)

CORELib: COsmic Ray Event Library

Status of production

Num	per of events	5		on done with
10 ⁷			radiatior	iout Cherenkov າ
10 ⁷				
10 ⁶				
10 ⁵	High energy	Low energy	Option	
104	model	model		
10 ³			TAULEP	CHARM
10 ²	QGSJET01	GHEISHA		Х
	QGSJET01	GHEISHA	Х	
rC (QGSJETII- 04	GHEISHA	Х	
	EPOS LHC	GHEISHA	Х	
	10 ⁷ 10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴ 10 ³	107 107 106 106 105 High energy model 103 102 QGSJET01 QGSJETII- 04	107107106105High energy model104Model103102QGSJET01GHEISHAQGSJET01GHEISHAQGSJETII- 04	107and with radiation107107106103104High energy modelLow energy modelOption103103104103103103104GRSJET01105GHEISHA106X107GRSJETII- OH108GHEISHA109

INFN for OBELICS 3.4

Activities in WP 3.4 (2/3)

ROAst: ROot extension for Astronomy

Classes to access astronomical catalogues

Coordinate transformation

Moon position and motion

Generators of primary particles (neutrinos will be implemented, others will be supported only as placeholders)

Status

Catalogue name	Status				
UCAC4	Supported				
URAT1	Supported	LUNAR	LUNAR MOTION: DONE		
GSC-II (Guide Star Catalog)	Supported				
Fermi-LAT 3FGL	Supported				
TeVCat	Supported				
	Astronomical coordinate system	Geographical coordinate system	Time coordinate		
	Equatorial	N/A	N/A		
	Galactic	N/A	N/A		
	Horizontal	Lat-Long/UTM	Unix time/UTC/Local Sidereal		
	Eclyptic rectangular	N/A	N/A		

A. Martini Workshop CCR 22-05-2017

Summary

- The data distribution model of KM3NeT is based on the LHC computing model. The estimates of the required bandwidths and computing power are well within current standards. A high bandwidth Ethernet link to the shore station is necessary for data archival and remote operation of the infrastructure.
- KM3NeT-INFN already addressed requests to CCR
- KM3NET is already operative on GRID
- We are also active on Big Data future challenges, i.e. Asterics