

# XENON1T Computing Model

Marco Selvi (INFN Bologna) for the XENON Collaboration

... with special thanks to Luca Grandi (UChicago), Luca Scotto Lavina (LPNHE Paris) & Alfio Rizzo (Columbia),

and to the LNGS Computing Team !



### **XENON** collaboration



M. Selvi: XENON1T Computing Model.

CCR Workshop, May 22nd 2017, LNGS



### Dark Matter exists



M. Selvi: XENON1T Computing Model.



### XENON1T in Hall B @ LNGS





# Dual-phase TPC

- **Immediate scintillation light S1 S**1 **S**2 PMT Array . Ionization electrons drift to the top of the TPC Gas Xe proportional S Anode Strong field extracts electrons to gas phase ٠ • proportional amplification  $\rightarrow$  charge signal S2 Gate Grid Drift Time Nuclear Recoil (WIMP) **X**, **Y** position  $\rightarrow$  S2 hit pattern ٠ **Z position**  $\rightarrow$  electron drift time • **S**1 **S**2 Liquid Xe **Energy**  $\rightarrow$  S1, S2 integral ٠ Electronic/Nuclear recoil discrimination  $\rightarrow$  S2/S1 Drift direct S Field • WIMPs (NR), background (mostly ER) Drift Time Cathode Electronic Recoil ( $\gamma$ ,  $\beta$ ) PMT Array 248 PMTs in the TPC ٠
  - + 84 in the Muon Veto



### A typical waveform



M. Selvi: XENON1T Computing Model.

CCR Workshop, May 22nd 2017, LNGS

# First XENON1T results, arXiv:1705.06655





XENON1T computing

- XENON1T data taking for commissioning started on May 2016
- XENON1T science run started on Nov 2016
- Data consists in:
  - raw data from DAQ
  - processed data
  - Monte Carlo production
- Data rate for science runs: ~1 TB/day calibration runs: ~7 TB/day
- Total expected yearly rate: 1 PB/year (~300 TB for science runs)



### Computing resources

- Raw data temporary stored in a 50 TB local buffer located in the LNGS computing room.
- Automatic raw data transfer from LNGS to:
  European and US GRID storages
  - Backup facility with tapes (Stockholm)
- Raw data processed on US GRID (Open Science Grid)
- Processed data files made available to the entire Collaboration through the Analysis Facility at UChicago (Jupyter Hub infrastructure)
- MC simulation @ EGI (including CNAF) and OSG



### Local resources @ LNGS



### xe-transfer.lngs.infn.it (PROXMOX)

Access via LNGS VPN 1GB and 10GB connections VMs:

| 100 (xe-boxmgnt)    |
|---------------------|
| 102 (xe-offlinemon) |
| 103 (xe-mongodb)    |
| 104 (xe-mysql)      |
| 106 (xe-oasis)      |

### xe-service.lngs.infn.it (PROXMOX)

Access via LNGS VPN 1GB and 10GB connections Vms:

- will contain the wiki
- will act as a backup in case of issues with xe-transfer
- XENON1T has become part of the pool of experiments allowed to use LHCONE network to improve data transfer through Atlantic. We are working with the LNGS IT on its implementation. Nikhef and UChicago are already on board.
- Occasional, but very efficient use of the ULITE facility @LNGS, for test MC and data processing.



### Data management

Setup a distributed data management system using **Rucio** (data management system developed and used by ATLAS) and FTS at BNL. The product has been adapted to XENON1T needs by Stockholm group and UChicago IT.

- Rucio: File catalog service, subscription "rule" model for automatic data placement and deletion, etc.
- FTS: Reliable file transfer
- Currently 5 storage facilities have become Rucio endpoints (Nickhef, UChicago, CC-IN2P3 Lyon, Weizmann and LNGS).
   CNAF might become a Rucio endpoint if enough storage will be granted (minimum 200 TB !).
- A policy of at least 1 copy on tape and 1 copy on storage is enforced.





# Data flow for processing

- Both **real time** and **massive-reprocessing** happens on OSG. For massive reprocessing raw data copies in Europe are automatically and temporary pre-staged on UChicago Rucio End Point
- Demonstrated capability of processing through OSG in 4 days about 98% of raw data corresponding to ~40 days of background data plus few weeks of high rate calibration (Remaining 2% are outliers)
- We are testing the implementation of OSG glide in, **allowing OSG to make use of EGI CPUs**, allowing to extend the use of EGI to raw data processing as well (at the moment only used for MC)





### Monitoring automated FTS transfer

| Generaled at 6:30:03 PV (teC3.usatias.brilgov) | ٠ | Overview * Jobs * | Optimizer * Error reason | s ŝ | Statistics * Configuration * |   | Job id   |   |             |  |
|------------------------------------------------|---|-------------------|--------------------------|-----|------------------------------|---|----------|---|-------------|--|
| - Al -                                         | • | Source storage    |                          | +   | Destination storage          | 0 | 12 hours | 0 | Apply Reset |  |

#### Details for srm://tbn18.nikhef.nl $\rightarrow$ gsiftp://gridftp.grid.uchicago.edu



#### First Previous 1 2 3 4 5 6 7 8 9 10 11 12 13 Next Last

| Timestamp               | Decision | Running | Queue | Success rate<br>(last lmin) | Throughput  | ENA         | Diff | Explanation                                                              |
|-------------------------|----------|---------|-------|-----------------------------|-------------|-------------|------|--------------------------------------------------------------------------|
| 2017-03-<br>02T00:29:49 | 11       | 12      | 32382 | 100.00%                     | 25.404 MB/s | 63.950 MB/8 | -1   | Good link efficiency, throughput deterioration                           |
| 2017-03-<br>02T00:28:44 | 12       | 13      | 32389 | 100.00%                     | 40.042 MB/s | 68.233 MB/s | -1   | Good link efficiency, throughput deterioration                           |
| 2017-03-<br>02700:27:38 | 13       | 14      | 32399 | 100.00%                     | 53.257 MB/s | 71.365 MB/s | -1   | Good link efficiency, throughput deterioration                           |
| 2017-03-<br>02T00:26:34 | 14       | 11      | 32410 | 100.00%                     | 42.797 MB/s | 73.377 MB/s | ٥    | Good link efficiency, throughput deterioration, avg. filesize decreasing |



### Monte Carlo workflow

- Implemented using **Pegasus** workflow manager to handle running jobs and errors
- Submit to OSG or EGI sites using a switch at runtime

mc\_process.py --flavor G4 --config optPhot --source-macro
run\_optPhot\_fullvolume.mac --batch-size 10000 --events 1000
--mc-version v0.1.7 --pax-version v6.2.1 --grid-type osg



### Monte Carlo workflow





### Monte Carlo workflow



CCR Workshop, May 22nd 2017, LNGS



# **Computing Resources and Requests**

### Pledge of the current year (2017)

| Experiment Name | Wher                   | re | CPU [HS06] | DISK [TB] | TAPE [TB] |
|-----------------|------------------------|----|------------|-----------|-----------|
| XENON           | Tier1                  |    | 700        | 110       | 0         |
|                 | Elsewhere              |    | 6160       | 945       | 1000      |
|                 | Nikhef                 |    | 120        | 200       |           |
|                 | Lyon                   |    | 740        | 225       |           |
|                 | Sto <mark>kholm</mark> |    |            | 100       | 1000      |
|                 | WIS                    |    | 500        | 80        |           |
|                 | US OSG                 |    | 1000       | 250       |           |
|                 | US Midway              |    | 3800       | 90        |           |

### Proposed 2018 Pledges

| Experiment<br>Name | Where     |  | CPL | J [HS06]      | DISK [TB] |               | TAPE [TB] |               |
|--------------------|-----------|--|-----|---------------|-----------|---------------|-----------|---------------|
|                    |           |  | Δ   | New<br>pledge | Δ         | New<br>pledge | Δ         | New<br>Pledge |
|                    | Tier1     |  | 300 | 1000          | 90        | 200           | 1000      | 1000          |
|                    | Elsewhere |  |     |               |           |               |           |               |



# Future needs and new ideas

- More CPUs: we want to integrate the data processing between OSG and EGI. Need skilled manpower (CNAF?) to work together with the Uchicago IT. So far CNAF is used for MC only.
- More disk: use also CNAF as a storage point for the real data (so far, only MC).
- Tapes: we have a full copy of the data in Stockholm. INFN asked to have an additional clone in Italy -> we ask 1000 TB / y at CNAF (if possible also from 2017)

New ideas:

- GPUs used in the (near) future for
  - Bayesian MC to reconstruct the physics and detector model from calibration
  - Position reconstruction (Neural network, machine learning)
  - Optical simulation (CHROMA in addition to GEANT4)
- XENONnT in 2019 : a factor x3 x4 larger than XENON1T



### Summary

- XENON1T data taking and processing is going on:
  - GRID nodes storage capacities increasing as from requests according to needs
  - Rucio services is working in stable conditions
- Transfer speeds between EU sites and US can vary greatly, under investigation
- Xenon has been formally accepted into the LHCONE (Large Hadron Collider Open Network Environment) networking organization (peering for LNGS into LHCONE in progress)
- We (INFN) would like to be more involved in the near future in the Computing business. Support from CNAF ?



### Summary

- XENON1T data taking and processing is going on:
  - GRID nodes storage capacities increasing as from requests according to needs
  - Rucio services is working in stable conditions
- Transfer speeds between EU sites and US can vary greatly, under investigation
- Xenon has been formally accepted into the LHCONE (Large Hadron Collider Open Network Environment) networking organization (peering for LNGS into LHCONE in progress)
- We (INFN) would like to be more involved in the near future in the Computing business. Support from CNAF ?

### First XENON1T results out last week. A great effort also on the computing side !

