

Neutral-Current Weak Interactions at an EIC

Yuxiang Zhao (SBU, now at INFN Sezione Di Trieste)

Abhay Deshpande (SBU), Krishna Kumar(SBU), Seamus Riordan (SBU, now at ANL), Jin Huang(BNL)

EIC user meeting 2017 at Trieste, Italy

Outline

- Introduction of electroweak interactions in electron scatterings
- •Electroweak physics study at an EIC
 - **O**Nucleon spin structure
 - **The weak mixing angle sin**² Θ_w
- •Summary

Discovery of Parity Violation

Symmetries play a central role in physics. Parity, Time Reversal, Charge Conjugation, ..., were naturally assumed to be conserved until

T.D. Lee and C.N. Yang first suggested parity violation. Awarded Nobel Prize 1957 after experimental confirmation.

"for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles"

C. S. Wu led the experiment confirmed parity violation in nuclear β -decay

Glashow-Weinberg-Salam (GWS) theory yields the unification of electroweak interaction and predicts Z boson

Tsung-Dao Lee

Chen-Ning Yang

Chien-Shiung Wu

Electro-weak interactions

Spin-1/2 particles carry two types of couplings: Axial and Vector **Axial:** difference of strength for left/right handed states **Vector:** Average of the two

 $-iQ\gamma^{\mu}$

 $W^{\pm} = -i \frac{g}{\sqrt{2}} \gamma^{\mu} \frac{1}{2} \left(1 - \gamma^5\right)$

$$\overline{f}$$

 W
 \overline{v}_{f}

 $\frac{f}{f}$ No difference for left/right particle Vector coupling = Q

Only interact with left-handed fermions

 $Z^{0} - i \frac{g}{\cos \theta_{W}} \gamma^{\mu} \frac{1}{2} \left(g_{V}^{e} - g_{A}^{e} \gamma^{5} \right) \xrightarrow{Z^{0}} \overline{f} \qquad \text{Interact with both left and right handed fermions}$ $\overline{f} \qquad g_{A}^{e} = -\frac{1}{2} \qquad g_{V}^{e} = -\frac{1}{2} + 2\sin^{2}\theta_{W} = -0.036$

Parity Violating in Electron Scatterings --- Neutral current

In context of SM Tree level...

To detect PV : long. pol. Electron + unpol. Nucl.

Parity Violating in Electron Scattering --- Neutral current

In context of SM Tree level...

To detect PV : long. pol. Electron + unpol. Nucl.

$$A_{PV} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

Flavor Decompositions --- an example for polarized case

With pure γ exchange in inclusive DIS:

$$g_1^P = \frac{1}{2} \left(\frac{4}{9} (\Delta u + \Delta \bar{u}) + \frac{1}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$
$$g_1^n = \frac{1}{2} \left(\frac{1}{9} (\Delta u + \Delta \bar{u}) + \frac{4}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$

- Assumption: SU(3) flavor symmetry
- \checkmark Additional inputs from β -decay of neutron and hyperons

 $\Delta u + \Delta d - 2 \Delta s$ $\Delta u + \Delta d$

 ✓ SIDIS measurements also provide information with quark flavors, fragmentation process is involved, current/target fragmentation? Kaon SIDIS?

Electroweak interactions in DIS region at an EIC can have new inputs...

Hmm ... No third kind of nucleon ... No...

EIC offers new opportunities with weak neutral currents

Anselmino, Efremov, Leader, Ji ...

Phys. Rep. 216 (1995) $\frac{\mathrm{d}^2 \sigma_{nc}^{\ell N}}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{1}{2m_N (4\pi)^2} \frac{E'}{E} \times |M_\gamma + M_Z|^2$ $\frac{\mathrm{d}^2 \sigma_{nc}^{\ell N}}{\mathrm{d}x \,\mathrm{d}y}(\lambda, S = S_L) = 4\pi m_N E y \frac{\alpha^2}{O^4} \sum_i \eta^i C^i$ $\times \left\{ 2xy F_{1}^{i} + \frac{2}{v} \left(1 - y - \frac{xym_{N}}{2E} \right) (F_{2}^{i} + g_{3}^{i}) \right\}$ $-2\lambda x \left(1-\frac{y}{2}\right) F_{3}^{i}-2\lambda x \left(2-y-\frac{xym_{N}}{E}\right) g_{1}^{i}$ $+4\lambda \frac{x^2 m_N}{E} g_2^i - \frac{2}{v} \left(1 + \frac{x m_N}{E}\right) \left(1 - y - \frac{x y m_N}{2E}\right) g_4^i$ $+2xy\left(1+\frac{xm_N}{E}\right)g_5^i$

With parity violation and Q² << Z² Inclusive electron measurements pol. electron & unpol. nucleon:

$$A_{beam} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} [g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V^e \frac{Y_-}{2Y_+} \frac{F_3^{\gamma Z}}{F_1^{\gamma}}]$$

unpol. electron & pol. nucleon:

$$A_{L} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} [g_{V}^{e} \frac{g_{5}^{\gamma Z}}{F_{1}^{\gamma}} + g_{A}^{e} \frac{Y_{-}}{Y_{+}} \frac{g_{1}^{\gamma Z}}{F_{1}^{\gamma}}]_{*}$$

New structure functions pol. electron & unpol. nucleon: unpol. electron & pol. nucleon: $A_{L} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \left[g_{V}^{e} \frac{g_{5}^{\gamma L}}{F_{1}^{\gamma}} + g_{A}^{e} \frac{Y_{-}}{Y_{+}} \frac{g_{1}^{\gamma L}}{F_{1}^{\gamma}}\right]$ $A_{beam} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} [g_A^e \frac{F_1^{\gamma L}}{F_1^{\gamma}} + g_V^e \frac{Y_-}{2Y_+} \frac{F_3^{\gamma L}}{F_1^{\gamma}}]$ $F_1^{\gamma Z} = \sum_f e_{q_f}(g_V)_{q_f}(q_f + \bar{q}_f)$ $g_1^{\gamma Z} = \sum_f e_{q_f}(g_V)_{q_f}(\Delta q_f + \Delta \bar{q}_f)$ $g_5^{\gamma Z} = \sum_f e_{q_f}(g_A)_{q_f}(\Delta q_f - \Delta \bar{q}_f)$ $F_3^{\gamma Z} = 2 \sum_f e_{q_f}(g_A)_{q_f}(q_f - \bar{q}_f)$

New and unique combinations of individual PDFs

New structure functions ---γ-Z interference structure functions

pol. electron & unpol. nucleon:	unpol. electron & pol. nucleon:
$A_{beam} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} [g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V^e \frac{Y}{2Y_+} \frac{F_3^{\gamma Z}}{F_1^{\gamma}}]$	$A_{L} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} [g_{V}^{e} \frac{g_{5}^{\gamma Z}}{F_{1}^{\gamma}} + g_{A}^{e} \frac{Y_{-}}{Y_{+}} \frac{g_{1}^{\gamma Z}}{F_{1}^{\gamma}}]$
$\begin{split} F_1^{p,\gamma Z} &\approx \frac{1}{9}(u+\bar{u}+d+\bar{d}+s+\bar{s}+c+\bar{c}) \\ F_1^{n,\gamma Z} &\approx \frac{1}{9}(u+\bar{u}+d+\bar{d}+s+\bar{s}+c+\bar{c}) \end{split}$	$\begin{array}{ll} g_{1}^{p,\gamma Z} &\approx & \displaystyle \frac{1}{9}(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} + \Delta c + \Delta \bar{c}) \\ g_{1}^{n,\gamma Z} &\approx & \displaystyle \frac{1}{9}(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} + \Delta c + \Delta \bar{c}) \end{array}$
$F_{3}^{p, \gamma Z} = \frac{2}{3}(u_{V} + c - \bar{c}) + \frac{1}{3}(d_{V} + s - \bar{s})$ $F_{3}^{n, \gamma Z} = \frac{2}{2}(d_{V} + s - \bar{s}) + \frac{1}{2}(u_{V} + c - \bar{c})$	$g_5^{p, \gamma Z} = \frac{1}{3} (\Delta u_V + \Delta c - \Delta \bar{c}) + \frac{1}{6} (\Delta d_V + \Delta s - \Delta \bar{s})$ $g_5^{n, \gamma Z} = \frac{1}{3} (\Delta d_V + \Delta s - \Delta \bar{s}) + \frac{1}{6} (\Delta u_V + \Delta c - \Delta \bar{c})$
5 5	10

W exchange in DIS region

PHYSICAL REVIEW D 88, 114025 (2013)

Prospects for charged current deep-inelastic scattering off polarized nucleons at a future electron-ion collider

Elke C. Aschenauer,* Thomas Burton,[†] and Marco Stratmann[‡] Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

Till Martini[§]

Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

Hubert Spiesberger

PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany (Received 23 September 2013; published 9 December 2013)

$$g_1^{W^-,p}(x) = \Delta u(x) + \Delta \bar{d}(x) + \Delta c(x) + \Delta \bar{s}(x),$$

$$g_5^{W^-,p}(x) = -\Delta u(x) + \Delta \bar{d}(x) - \Delta c(x) + \Delta \bar{s}(x)$$

 $g_1^{W^+,p}(x) = \Delta \bar{u}(x) + \Delta d(x) + \Delta \bar{c}(x) + \Delta s(x),$

$$g_5^{W^+,p}(x) = \Delta \bar{u}(x) - \Delta d(x) + \Delta \bar{c}(x) - \Delta s(x)$$

Parity-violating asymmetries in e-D collisions

- Deuteron has same amount of u and d in x>0.2 region
- APV ~ 20/3 sin² ⊕_w -1

APV(C)

0.244

0.242

0.24

0.238

Fundamental quantity in SM, constraints on new physics, such as new Z boson etc.

Parity-violating asymmetries in e-D collisions

- Deuteron has same amount of u and d in x>0.2 region
- APV ~ 20/3 sin² ⊕_w -1
- Fundamental quantity in SM, constraints on new $A_{beam} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} [g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V^e \frac{Y_-}{2Y_+} \frac{F_3^{\gamma Z}}{F_1^{\gamma}}]$

Simulations

DJANGOH generator simulates DIS processes including QED and QCD radiation

✓ Developed by Hubert Spiesberger and used at BNL for the EIC Charged Current study

• Electron-proton collisions to study new structure functions

The data is binned in (x, Q^2) two dimensions

✓ Doing Y dependent fit to extract projections on $F_1^{\gamma Z}$, $F_3^{\gamma Z}$, $g_1^{\gamma Z}$, $g_5^{\gamma Z}$

- $sin^2\Theta_w$ projections are from electron beam asymmetries in e-D collisions
- Highlights of the study:
 - ✓ Cuts:
 - **Q**²> 1 GeV², W_h >2 GeV, y>0.1, p cut for structure function studies
 - **Q**²<6400 GeV² and x>0.2 in addition for $sin^2\Theta_w$ studies
 - Unfolding for kinematical migration due to radiation and finite detector resolution

fsPHENIX

SPHENIX

EIC Day-1 Detector

15

Detector resolutions

Reference [1] ePHENIX letter of intent: http://arxiv.org/abs/1402.1209

Reference [2] sPHENIX pre-CDR design report: https://indico.bnl.gov/conferenceDisplay.py?confId=1483

Luminosity and polarization table (e-p collisions)

e-p collisions	10x100, 10x250, 15x100, 15x250
Run time luminosity	10 ³⁴ /cm ² /s
Detector efficiency	70%
Beam efficiency	70%
Beam time for running	2.5 years 5 months per year = 12.5 months
luminosity after all efficiencies	40 fb ⁻¹ per month
Integrated luminosity	500 fb ⁻¹
Proton (electron) beam polarization	70% (80%)

Luminosity and polarization table (e-D collisions)

e-D collisions	10x50,10x125,15x50,15x125,20x125 GeV/u
Run time luminosity (per nucleon)	10 ³⁴ /cm ² /s
Detector efficiency	70%
Beam efficiency	70%
Beam time for running	200 days
luminosity after all efficiencies	40 fb ⁻¹ per month
Integrated luminosity	267 fb ⁻¹
Electron beam polarization	80%

Unpolarized structure functions e-p collisions electron: longitudinally polarized proton: unpolarized Integrated luminosity: 500 fb⁻¹

$\delta A/A$ as a function of x

Unpol. SFs projections after unfolding

Polarized structure functions

- **De-p collisions**
- **De: unpolarized**
- **Dp: longitudinally polarized**
- Integrated luminosity: 500 fb⁻¹

$\delta A/A$ as a function of x

Pol. SFs projections after unfolding

Weak mixing angle

 P-D collisions
 Iongitudinally polarized
 Integrated luminosity: 267 fb⁻¹ (200 days)

$\delta A/A$ for e-D collisions

- A challenge for electron polarimeter
- Polarimetry ~1% at the beginning and then 0.5% for higher energy and higher luminosity
- R&D proposal : target at 1% in the first stage

World data of sin²O_w including EIC projections

Eur. Phys. J. A, 53 3 (2017) 55

- 200 days of dedicated run
- Can reach similar precision to SoLID measurement
- Interesting Q² region never
 been measured or planned

Summary

- •new unpolarized/polarized structure functions \Box Clean access to s and Δ s PDFs
- weak mixing angle
 - Reach relative high precision in an interesting Q² region
 - Dedicated 200 days of beam time
- Eur. Phys. J. A, 53 3 (2017) 55 for more details

Backups

Center-of-mass table

Beam energy configuration (e x p, GeV)	Center of Mass (GeV)
10 x 100	63
10 x 250	100
15 x 100	77
15 x 250	122
20 x 250	141