

eSTARlight An event generator for the EIC

Michael R. Lomnitz

Postdoctoral fellow, Nuclear Science Division Lawrence Berkeley National Laboratory

EIC UG 2017, Trieste Italy

Outline

- Motivation
- STARlight: our predecessor
- Photo-nuclear interaction in eSTARlight:
 - $\gamma p \rightarrow V.M. + p$ vector meson production
 - Comparison to data
 - Extension to γA
- Vector meson production at an EIC
- Estimating rates
- Caveats and outlook
- Summary

Diffraction at an EIC

- How are the quarks and gluons distributed within the nucleon? What about nucleus?
- Initial state geometry is necessary input for hydro:
 - Initial state (IS) geometry → final state collectivity
 - Collective phenomena has been observed in p-p and p-A collisions

- Diffractive processes (no color exchange) can probe:
 - Target remains intact: *Coherent* (small |t|) probes average gluon density and their spatial distribution
 - Target break up: *Incoherent* (large |t|) is sensitive to fluctuations in IS

H. Mäntysaari, QM17 parallel session 5.2

Electron-ion collisions

Some important kinematic quantities to consider in electron-ion collisions:

• Resolving power

$$Q^{2} = -q^{2} = -(k_{\mu} - k'_{\mu})^{2}$$
$$= 2E_{e}E'_{e}(1 - \cos \theta_{e})$$

- Momentum of struck quark
- Measure of $y = \frac{pq}{pk} = 1 \frac{E'_e}{E_e} \cos^2\left(\frac{\theta_e}{2}\right)$ inelasticity

$$s = 4E_p E_e$$

Inclusive: Detect scattered lepton.

$$e+p/A \rightarrow e' + X$$

 $x = \frac{Q^2}{2pq} = \frac{Q^2}{sy}$

Semi-inclusive: Detect scattered lepton in coincidence with identified hadrons/jets.

$$e+p/A \rightarrow e' + h + X$$

Exclusive: Detect scattered lepton, id'd hadrons/jets and target fragments.

Our predecessor - STARlight

Widely used M.C. in ultra-peripheral collisions (UPCs). Choice of channels mostly driven by experimental accessibility

Photonuclear: Photon-Pomeron (yP) final states

- Light vector mesons: ρ , ω , ϕ , ρ '> $\pi\pi\pi\pi$,
- Heavy vector mesons (VM): J/ψ, ψ', Y(1S), Y(2S),
 Y(3S)
- VM follows photon polarization (along beam)
 - Correct angular distributions
- p_T distributions include (optionally) 2-site interference
- General photonuclear interactions, via DPMJET interface
- Direct π⁺π⁻

γγ final states

- Lepton pairs e⁺e⁻,μ⁺μ⁻,τ⁺τ⁻
- Single mesons: η , η , $f_0(980)$, $f_2(1270)$, $f_{2'}(1525)$, η_c
 - "Simple" decays in STARlight ensure correct angular distribution
 - "Complex" final states decayed via PYTHIA 8
- $\rho^0 \rho^0$
- Heavy axions

STARlight versus data

CMS - arXiv:1605.06966 ALICE - PRL**113** 232504 (2014) ALTAS - QM17, M. Dyndal

STAR - DIS16

- Good track record proven by many experiments and collision energies in UPC collision
- Confidence in description of nucleus targets: helpful in eSTARlight given the lack of eA data

Electro-nuclear interactions

$$\sigma(e+X\to e+X+V.M.) = \int dQ^2 \int dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma},Q^2)}{dE_{\gamma}dQ^2} \sigma_{\gamma X}(W,Q^2)$$

Photon flux

Photonuclear cross section

$$= \int dQ 2 \int dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma}, Q^2)}{dE_{\gamma}dQ 2} \left(\frac{1}{1 + Q^2/M_v^2} \right)^n \sigma_{\gamma X}(W)$$

- Differential x-section sampled to produce events:
 - Rejection sampling used to draw from distributions
 - Two look up tables used to speed up event generation:
 - 1. Draw E_{ν} and Q^2 pair from $f(E_{\nu}, Q^2)$ to construct e- γ vertex
 - 2. Sample $\sigma_{VX}(W)$ with input photon and desired V.M. state

Effective Photon flux $f(E_v, Q^2)$

Reduced photonuclear cross section

Photon flux

- Using equivalent photon approach (EPA):
 - Electric field radially outwards from e and Lorentz contracted in target (p,A) frame => Looks like a pancake in transverse direction
 - Magnetic field circles around beam axis
- Perpendicular fields resemble EM radiation: treat each source as dressed by photons

• Include necessary corrections to account for the virtuality of the exchanged photon¹:

$$n = \frac{d^2 N(E_{\gamma}, Q^2)}{d(Q^2) dE_{\gamma}} = \frac{\alpha}{\pi} \frac{1}{E_{\gamma} |Q^2|} \left[1 - \frac{E_{\gamma}}{E_e} + \frac{1}{2} \left(\frac{E_{\gamma}}{E_e} \right)^2 - \left(1 - \frac{E_{\gamma}}{E_e} \right) \left| \frac{Q_{min}^2}{Q^2} \right| \right]$$

And the available q² range:

$$Q_{\min}^2 = \frac{m_e^2 E_{\gamma}^2}{E_e(E_e - E_{\gamma})} \le Q^2 \le 4E_e(E_e - E_{\gamma})$$

1: Phys.Rept. 15 181-281 (1975)

Photonuclear Cross Section

$$\sigma_{\gamma p}(W, Q^2) = \left(\frac{1}{1 + Q^2/M_v^2}\right)^n \sigma_{\gamma p}(W)$$

• Interactions are done, mostly, with parameterization from HERA¹ for $\gamma p \rightarrow Vp$ in terms of the γp center of mass energy $W_{\nu p}$.

$$\sigma_{\gamma p}(W) = \sigma_P \cdot W^{\epsilon} + \sigma_M \cdot W^{\eta}$$
Pomeron Meson exchange exchange

- Only ρ and ω can be produced via meson exchange ($\sigma_M > 0$)
- For the J/ ψ , ψ ' and Y states the power law is supplemented with factor to account for the near-threshold decrease in cross section

$$\sigma_{\gamma p}(W) = \sigma_P \cdot \left[1 - \frac{(m_p + m_{VM})}{W^2} \right]^2 \cdot W^{\epsilon}$$

The n is also obtained from fits to data²

Vector Meson	σ_P	ϵ	σ_{M}	η
$ ho^0 \& ho'$	$5.0\mu\mathrm{b}$	0.22	26.0 μb	1.23
ω	$0.55\mu\mathrm{b}$	0.22	$18.0\mu\mathrm{b}$	1.92
ϕ	$0.34\mu\mathrm{b}$	0.22	_	_
J/ψ	4.06 nb	0.65	_	_
$\psi(2S)$	0.674 nb	0.65	_	_
Υ(1S)	6.4 pb	0.74	_	_
Υ(2S)	2.9 pb	0.74	_	_
Υ(2S)	2.1 pb	0.74	_	_

^{1:} S.R.Klein, et. al., Computer Physics Communications 212 0010-4655 (2017)

²: Phys.Lett.B377:259-272(1996), JHEP 1005:032(2010), Nucl.Phys.B695:3-37(2004)

HERA comparison to data: $\sigma(\gamma^* + p \rightarrow V.M. + p)$

• Gamma-proton cross-sections obtained following same procedure in experiment:

$$\sigma_{\gamma p} = \frac{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)} \sigma_{\gamma p}(E_{\gamma}, Q^2)}{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)}}$$

• σ_{vp} measured at HERA is well described by eSTARlight over a broad Q² range

ф: Phys.Lett.B377:259-272(1996)

ρ: JHEP 1005:032(2010)

J/ψ: Nucl.Phys.B695:3-37(2004)

Coherent Photonuclear Cross Section $\sigma(\gamma A \rightarrow VA)$

• Extrapolate photonuclear cross section from γp to γA using Quantum Glauber calculation to take into account the nuclear form factor:

$$\sigma_{tot}(VA) = \int d^2b \left[2 \cdot \left(1 - e^{-\sigma_{tot}(Vp)T_{AA}(b)/2} \right) \right]$$

Generalized vector dominance model and optical theorem used to obtain the photo-nuclear cross section

$$\sigma(\gamma A \to VA) = \left. \frac{d\sigma(\gamma A \to VA)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} dt |F(t)|^2$$

- There are two modes in eSTARlight to calculate the cross sections:
 - Assuming a narrow resonance for the vector mesons, in which case: $t_{min} = (M_V^2/4k\gamma)^2$
 - Convoluting the spectrum with a Breit-Wigner shape. The difference can be substantial (\sim 5% reduction in cross section ρ^0 in heavy-ion collisions)

EIC prediction: $\sigma(e+X\rightarrow e+V.M.+X)$

- eSTARlight can be used to estimate e+X \rightarrow e+X+V.M. cross sections for:
 - Different center of mass energies (accelerator facilities)
 - Different V.M. species
 - Different collision systems (X = p, Au, etc.)
 - Arbitrary virtuality Q²
- Heavy-ions provide considerable production (larger CM energy) at the cost of Q² due to kinematic reach
- Still have considerable production $Q^2 > 1$ GeV \rightarrow electrons sufficiently scattered away from beam for exclusive measurements

	JLEIC (JLAB)	eRHIC (BNL)	HERA (DESY)
electron e [GeV]	5	10	27.5
proton p [GeV]	60	250	920
	²⁰⁸ Pb ⁸²⁺	¹⁹⁷ Au ⁷⁹⁺	n/a
Heavy-Ion A [GeV/n]	40	100	n/a

Table 1: EIC energies from whitepaper *A. Accardi et. al., Eur. Phys. J. A, 52 9(2016)*. HERA energies for comparison.

Event generation

- Coherent or incoherent(pending) final states
 - Coherent: couples to nucleus as a whole
 - p_T distribution of Pomeron determined by nuclear form factor
 - Incoherent: couples to a single nucleon in the nucleus
 - p_T distribution of Pomeron determined by proton form factor (same as proton targets)
- Generates final states for input to GEANT to simulate detector response.
- Track outgoing electron and target(pending) for semi-inclusive and exclusive measurements
- Simple decays handled by eSTARlight. Can couple to PYTHIA for more complex decays
 - Can put requirements on decay product η, p_T

H1 data corrected for exp. resolution and background subtraction JHEP05(2010)032

Event generation and distributions eRHIC

- Vector meson production occurs over a large rapidity window (roughly matches photon energy).
- ρ peak at y = -4.5 due to photon-meson exchange (mostly near threshold). Not present in φ (production only occurs through photon-pomeron exchange)
- Color curves illustrate V.M.'s with both daughters within a given pseudo-rapidity (η) range.
- Mid-rapidity detectors would sample between ~50% ($|\eta|$ <5) and <5% ($|\eta|$ <1) of production:
 - eSTARlight kinematics can inform detector design

2/21/17 M. Lomnitz, EIC-UG Meeting

14

Event generation and distributions JLEIC

- Generally lower production at JLEIC relative to eRHIC (different scales).
- Mid-rapidity detectors sample a larger fraction of produced vector-mesons (relative to eRHIC)
- Color curves illustrate V.M.'s with both daughters within a given pseudorapidity (η) range.
- Mid-rapidity detectors would sample between ~55% ($|\eta|$ <5) and <10% ($|\eta|$ <1) of production:
 - eSTARlight kinematics can inform detector design

2/21/17 M. Lomnitz, EIC-UG Meeting 15

Estimating rates for an EIC

eRHIC¹:

electrons*: 10 GeV

protons: 250 GeV

¹⁹⁷Au⁷⁹⁺: 100 GeV/n

	σ (e + X \rightarrow e + V.M. + X)		Rates (L _{int} = 10 fb ⁻¹ /A)	
V.M.	X = p	X = Au	X = p	X = Au
ρ	4.68 µb	1.4 mb	46.8 x 10 ⁹	71×10^9
ф	211 nb	80 µb	2.1×10^9	4 x 10 ⁹
J/ψ*	7.8 nb	2.3 µb	78×10^6	120 x 10 ⁶
Y(1S)*	11.3 pb	3.5 nb	113×10^3	180×10^3

JLEIC¹:

electrons: 5 GeV

protons: 60 GeV

²⁰⁸Pb⁸²⁺: 40 GeV/n

	σ (e + X \rightarrow e + V.M. + X)		Rates (L _{int} = 10 fb ⁻¹ /A)	
V.M.	X = p	X = Pb	X = p	X = Pb
ρ	3.1 µb	1.0 mb	31×10^9	48×10^9
ф	121 nb	55 μb	1.2×10^9	2.6×10^9
J/ψ**	2.2 nb	930 nb	22×10^6	45×10^6
Y(1S)**	2.0 pb	710 pb	20×10^3	34×10^3

Don't account for branching ratios

^{1:} EIC whitepaper: A. Accardi et. al., Eur. Phys. J. A, 52 9(2016)

^{*:} Latest design uses 21.5 GeV electron beam @ eRHIC. Rates need to be revisited

^{**:} Likely overestimated: Doesn't account for loss of longitudinal coherence

Estimating rates for an EIC ($Q^2 > 1 [GeV^2/c^2]$)

eRHIC¹:

electrons*: 10 GeV

protons: 250 GeV

¹⁹⁷Au⁷⁹⁺: 100 GeV/n

	σ (e + X \rightarrow e + V.M. + X)		Rates ($L_{int} = 10 \text{ fb}^{-1}/A$)	
V.M.	X = p	X = Au	X = p	X = Au
ρ	16 nb	5.1 µb	160×10^6	260×10^6
ф	1.7 nb	660 nb	17×10^6	34×10^6
J/ψ**	440 pb	150 nb	4 x 10 ⁶	7.7×10^6
Y(1S)**	1.7 pb	550 pb	17×10^3	28×10^3

JLEIC¹:

electrons: 5 GeV

protons: 60 GeV

²⁰⁸Pb⁸²⁺: 40 GeV/n

	σ (e + X \rightarrow e + V.M. + X)		Rates ($L_{int} = 10 \text{ fb}^{-1}/A$)	
V.M.	X = p	X = Pb	X = p	X = Pb
ρ	12 nb	4 μb	120×10^6	190 x 10 ⁶
ф	1.1 nb	490 nb	11×10^6	24×10^6
J/ψ**	150 pb	68 nb	1.5×10^6	3.3×10^6
Y(1S)**	330 fb	130 pb	3×10^3	6.3×10^3

• Q² restriction affects V.M. species to different degree: ρ (x10⁻³) vs. J/ ψ (x 10⁻¹ – 10⁻²)

Don't account for branching ratios

Some caveats:

- Classical vs. quantum Glauber calculation:
 - Quantum calculations predict dips but over estimate cross sections (factor 2)¹ for UPC ρ^0 photoproduction at RHIC and LHC.
 - Option for classical Glauber available.
- Assumes complete longitudinal coherence
 - Under investigation, should only affect near threshold (small y)

Next steps:

- No neutron skin:
 - Form factor in eSTARlight from electron-nucleus elastic scattering measurements → only probes the protons.
 - Shift in ρ coherent peak.
- Vet all angular distributions (also parametrization to data)
- Implement γ-γ interactions
- Production of exotic final states
- Include charge exchange interactions, i.e γ +p \rightarrow Z_c(4430)+n

1: J. High Energ. Phys. (2015) 2015: 95

2: arXiv:1611.05471 (2016)

Summary

- eSTARlight can simulate a wide variety of final states:
 - Evaluate feasibility (cross sections, rates, ...) of different physics topics to be studied
- Vector mesons are produced over a wide rapidity range, roughly corresponding to photon energies
 - Drive detector design by understanding final state kinematics
 - Detector covering +/- 2 units of η would sample ~20-25% of vector meson cross sections
 - Forward detector would sample high energy photons, while backward rapidity samples near threshold
- Generally high enough production rates for $Q^2 > 1$ GeV events
- High enough Y(1S) production at an EIC to allow limited studies $(Q^2 > 1 \text{ GeV rates are somewhat low})$
- Are the rates are large enough to study rare events (exotica)?

Thank you

Back – ups (or might get removed)

2/21/17 M. Lomnitz, EIC-UG Meeting 21