Summary of Parallel Sessions 2 and 5:

Nucleon and nuclear structure and hadronization Collective effects in nucleons and nuclei

Convenors: Gunar Schnell, Hrayr Matevosyan, Marta Ruspa, Yoshitaka Hatta

SIDIS program in EIC

• Flavour separation in collinear PDFs.

- Polarised PDFs.
- TMD (polarized) PDFs.

EIC extended kinematic coverage

Accessing TMDs in SIDIS

 Measurement of the <u>transverse momentum</u> of the produced hadron in SIDIS provides access to <u>TMD PDFs/FFs</u>.

• SIDIS Process with TM of hadron measured.

3

Accessing Parton Properties at EIC

Need the knowledge on PDFs and (in particular) FFs.

 Their extractions not necessarily independent, but naturally interlinked.

Masters of the Universe

A. Accardi

accardi@jlab.org

EICUG meeting, Trieste – 21 July 2017

27

towards "universal" (combined) fits

5+ years: new fitting methods

A. Accardi

More computing power, efficient implementations

- New fitting, analysis methods
- In traditonal fits:
 - Detailed χ^2 scans, refined statistical analysis
- Monte Carlo fitting methods:
- NNFF1.0 - **NNPDF**: bootstrap + neural network fit \rightarrow *Nocera's talk*
 - JAM: bootstrap + Iterative Monte Carlo (IMC) approach

 \rightarrow Sato, Ethier et al (since 2015) Large number of parameters, trustable uncertainty estimates

\Box Self organizing maps \rightarrow *Liuti et al.*

JAM 17

A. Accardi

First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis

J. J. Ethier,^{1,2} N. Sato,³ and W. Melnitchouk²

¹College of William and Mary, Williamsburg, Virginia 23187, USA ²Jefferson Lab, Newport News, Virginia 23606, USA ³University of Connecticut, Storrs, Connecticut 06269, USA

Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: May 18, 2017)

JAM 17

A. Accardi

Comparison with other recent FF sets: π^+ and K^+

Fit quality vs perturbative order: \boldsymbol{p}

_		LO	NLO	NNLO
Exp.	N_{dat}	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$
BELLE	29	0.10	0.31	0.50
BABAR	43	4.74	3.75	3.25
TASSO12	3	0.69	0.70	0.72
TASSO14	9	1.32	1.25	1.22
TASSO22	9	0.98	0.92	0.93
ТРС	20	1.04	1.10	1.08
TPC-UDS	_	_	_	_
TPC-C	_	_	_	_
TPC-B	_	_	_	_
TASSO30	2	0.25	0.19	0.18
TASSO34	6	0.82	0.81	0.78
TASSO44	_	_	_	_
TOPAZ	4	0.79	1.21	1.19
ALEPH	26	1.36	1.43	1.28
DELPHI	22	0.48	0.49	0.49
DELPHI-UDS	22	0.47	0.46	0.45
DELPHI-B	22	0.89	0.89	0.91
OPAL	_	_	_	—
SLD	36	0.66	0.65	0.64
SLD-UDS	36	0.77	0.76	0.78
SLD-C	36	1.22	1.22	1.21
SLD-B	35	1.12	1.29	1.33
TOTAL	360	1.31	1.23	1.17

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

Emanuele R. Nocera (Oxford)

July 21 2017 23 / 26

Fit quality vs perturbative order: p

Additional FF data from e+e-

R. Seidl

gain additional flavor sensitivity by looking at pairs of hadrons

Tagged Structure Functions

```
W. Cosyn
```

detect recoil proton from deuteron target to study neutron structure

JLab LDRD arXiv:1407.3236, arXiv:1409.5768

Tagged Structure Functions

W. Cosyn

detect recoil proton from deuteron target to study neutron structure

can also look at helicity distributions of neutron

Impact - summary

A. Accardi

- Tagged neutrons
 - Noticeable improvement for d-quarks u
 - Some effects on gluons

Tagging method to study meson structure K. Park

Tagged Deep Inelastic Scattering (TDIS)

Sullivan Process

.. provides reliable access to a meson target as t becomes space-like (the meson pole dominance of the process)

• Direct measure the mesonic-nucleon content

Hadronization

• The conjecture of <u>Confinement</u>:

NO free quarks or gluons have been directly observed: <u>only HADRONS</u>.

 Hadronization: describes the process where colored quarks and gluons form colourless hadrons (in deep inelastic scattering).

Fragmentation Functions

The non-perturbative, universal functions encoding parton hadronization are the: <u>Fragmentation Functions (FF)</u>.

$$\frac{1}{\sigma}\frac{d}{dz}\sigma(e^-e^+ \to hX) = \sum_i \mathcal{C}_i(z,Q^2) \otimes D_i^h(z,Q^2)$$

Unpolarized FF is the number density for parton i to produce hadron h with LC momentum fraction z.

z is the light-cone mom. fraction of the parton carried by the hadron

$$z = \frac{p^-}{k^-} \approx z_h = \frac{2E_h}{Q}$$
 $a^{\pm} = \frac{1}{\sqrt{2}}(a^0 \pm a^3)$

Modelling Hadronization

- Need to understand the non-perturbative mechanism of hadron formation.
- ➡ To include the TM dependence and polarization.
- Connection between the one hadron and dihadron FFs.
- Implementation in MC generators (PYTHIA, etc).

TMD PDFs with Two-Hadron FFs

 Measuring <u>two-hadron</u> semi-inclusive DIS: an additional method for accessing TMD PDFs.

SIDIS Process with TM of hadrons measured.

5

R. Seidl

Di-hadron mass dependence

Similar analysis in same hemisphere and mass – combined z binning. Important input for IFF based transversity global analysis

Quark-jet Model

 Recursive framework for quark hadronization based on Field-Feynman model.

Q'

A. Kotzinian

 Description of arbitrary quark polarization via spin density matrix formalism.

0

- Encode spin transfer via 8 TMD quark-to-quark elementary TMD FFs.
- Extraction of the complete set of one- and two-hadron polarized FFs for pions.

Quark-jet: Spin Transfer

$$\langle \mathbf{s}_1 \rangle = \frac{\boldsymbol{\beta}(z, \mathbf{p}_\perp; \mathbf{s})}{\alpha(z, \mathbf{p}_\perp; \mathbf{s})}$$

		Final quark polarization					
		U	L	т			
quark polarization	U	$D(z,p_{\perp}^2)$		$-\frac{\mathbf{k}_T \times \hat{\mathbf{z}}}{\mathcal{M}} D_T^{\perp}(\mathbf{z}, \mathbf{p}_{\perp}^2)$			
	L		$s_L G_L(\mathbf{z},\mathbf{p}_{\perp}^2)$	$s_L \frac{\mathbf{k}_T}{\mathcal{M}} G_T(\mathbf{z}, \mathbf{p}_\perp^2)$,		
Initial	т	$-\frac{\left(\mathbf{k}_{T}\times\mathbf{s}_{T}\right)\cdot\hat{\mathbf{z}}}{\mathcal{M}}H^{\perp}(\mathbf{z},\mathbf{p}_{\perp}^{2})$	$\frac{\mathbf{k}_T \cdot \mathbf{s}_T}{\mathcal{M}} H_L^{\perp}(\mathbf{z}, \mathbf{p}_{\perp}^2)$	$\frac{\mathbf{s}_{T}H_{T}(\mathbf{z},\mathbf{p}_{\perp}^{2})+}{\frac{\mathbf{k}_{T}}{\mathcal{M}}\frac{(\mathbf{k}_{T}\cdot\mathbf{s}_{T})}{\mathcal{M}}H_{T}^{\perp}(\mathbf{z},\mathbf{p}_{\perp}^{2})}$			

$$\alpha(z, \mathbf{p}_{\perp}; \mathbf{s}) = D(z, \mathbf{p}_{\perp}^{2}) - \frac{1}{M} (\mathbf{k}_{T} \times \mathbf{s}_{T}) \cdot \hat{\mathbf{z}} H^{\perp}(z, \mathbf{p}_{\perp}^{2})$$

$$\beta_{L}(z, \mathbf{p}_{\perp}; \mathbf{s}) = s_{L} G_{L}(z, \mathbf{p}_{\perp}^{2}) - \frac{1}{M} (\mathbf{k}_{T} \cdot \mathbf{s}_{T}) H_{L}^{\perp}(z, \mathbf{p}_{\perp}^{2})$$

$$\beta_{\perp}(z, \mathbf{p}_{\perp}; \mathbf{s}) = -\frac{\mathbf{k}_{T}^{'}}{M} D_{T}^{\perp}(z, \mathbf{p}_{\perp}^{2}) + s_{L} \frac{\mathbf{k}_{T}}{M} G_{T}(z, \mathbf{p}_{\perp}^{2})$$

$$+ \mathbf{s}_{T} H_{T}(z, \mathbf{p}_{\perp}^{2}) + \frac{\mathbf{k}_{T}}{M^{2}} (\mathbf{s}_{T} \cdot \mathbf{k}_{T}) H_{T}^{\perp}(z, \mathbf{p}_{\perp}^{2})$$

Polarized quark to unpolarized hadron SF

$$F^{q \to h_1}\left(z, \mathbf{p}_{\perp}; \mathbf{s}\right) = F^{q \to q_1}\left(1 - z, -\mathbf{p}_{\perp}; \mathbf{s}_1 = 0, \mathbf{s}\right) = D(1 - z, \mathbf{p}_{\perp}^2) + \frac{1}{M}\left(\mathbf{k}_T \times \mathbf{s}_T\right) \cdot \hat{\mathbf{z}} H^{\perp}(1 - z, \mathbf{p}_{\perp}^2)$$

Quark-jet: Results

One hadron: Collins effect

Two hadron: Helicity-dependent DiFF

24

A. Kotzinian

Recursive quark fragmentation with spin

Complete description of hadronization in hard process:
 Quark Multiperipheral model satisfying LR symmetry.

Recursive model $q_A(k_A) \rightarrow h_1(p_1) + q_2(k_2),$ $q_2(k_2) \rightarrow h_2(p_2) + q_3(k_3),$... etc.

Symmetry under *quark Line Reversal* (or "Left-Right" symmetry)

Iteration of the string + ${}^{3}P_{0}$ mechanism

X. Artru

25

Synthesis of string and 3P0 inputs (pseudoscalar mesons only)

• Same λ also for 2h asymmetries

Parton Branching Solution for QCD Evolution Equations

- Consistent with "orthodox" solutions up to NNLO at high precision.
- Provides the complete final partonic state with k_T.
- Validation: vs DGLAP at NLO

 Determination of TMD for all flavours up to NLO: NO free parameters.

F. Hautmann

TMD evolution implemented in xFitter
 applicable for DIS processes.

Hadronization in Nuclear Medium

R. Dupre

29

Impact of EIC on nuclear PDFs

S. Fazio

An EIC at its highest energy provides a factor 10 larger reach in Q² and low-x compared to available data

Impact of EIC on nuclear PDFs

S. Fazio

An EIC at its highest energy provides a factor 10 larger reach in Q² and low-x compared to available data additional charm tagging will further help constraining gluon especially at high (gluon) x

Nuclear gluon densities via open charm

OPEN CHARM: A DIRECT PROBE OF GLUONS

- EIC:
 - Nuclei
 - CM Energy
 - Luminosity
 - Count rate reach to "high"-x
 - Small branching fractions
 - Particle ID, vertexing

C. Hyde

$$x_{\text{gluon}} = x' \ge \frac{4m_h^2 + Q^2}{W^2} \qquad W^2$$

EIC Users Group, Trieste Italy

18—22 July 2017

 $\gg Q^2$

with a higher energy realization of an EIC P. Zurita

19/22

MODELS RELATE TRACE ANOMALY TO $4 J/\Psi$ PRODUCTION NEAR THRESHOLD

e.g. D. Kharzeev, EPJ C9 459 (1999)

N. Feege

Photo-production of J/Ψ

J/Ψ and Y production near threshold at EIC

