

Recent developments in MAPS detectors. The upgrade of the ALICE Inner Tracking System

Paolo Camerini Università degli Studi di Trieste & INFN

on behalf of the ALICE collaboration

Outline

- Introduction to Monolithic Active Pixel Sensors
- Motivations, requirements and design goals for the upgrade of the ALICE tracker (ITS-Upgrade)
- Development and characteristics of the
 - ITS-Upgrade and of the ALPIDE chip
- Characterization for the chips and modules prototypes.
- Final considerations

TRACKING IN HIGH ENERGY PHYSICS

Trackers in High Energy Physics experiments are required to

- provide high momentum resolution (often to low pT and in high track density)
- provide high resolution measurements of impact parameter and secondary vertices
- > operate in very harsh environment and with high efficiency
- handle high rates of data

This imposes very tight requirements \rightarrow

HEP trackers requirements

- minimal material budget
- low power
- high granularity
- high rates handling capability
- low noise
- ~100 efficiency
- radiation hard

Silicon detectors standard choice for HEP trackers

TRACKING IN HIGH ENERGY PHYSICS

Pixel detectors

- o usually **inner layers** of trackers
- **Hybrid pixel** detectors instrument all major LHC detectors

Hibrid pixel detectors

Separate sensor and ASIC

 ▶ each pixel connected to a readout channel in the ASIC → flip chip + bump bonding and wire bonding

Pros

- Fast
- radiation hard (full depletion, high voltage)
- high S/N
- fully depleted sensor
- complex read out electronics possible (zero suppression)
- optimize sensor and read-out chip independently

Cons

- o complex assembly
- o 'thick'
- o granularity and power limitations
- o costly

MONOLITHIC ACTIVE PIXEL SENSORS (MAPS)

- ➢ Goal: overcome hyrid pixels limitations
- Method: readout and sensor in a single chip

Monolithic Active Pixel Sensors (MAPS)

- Sensor and readout integrated on same substrate
- CMOS image sensors industrially developed for photographic applications.
- Sistematically developed as particle detectors since ~2000

Advantages of CMOS Monolithic Active Pixel Sensors

- □ Thin sensors (50 um)
- **\Box** High Granularity (<30x30 μ m², ALICE)
- Ease of assembly
- Low power
- Low noise
- □ Commercial process, cheap

Monolithic

Hemperek (U. Bonn)

MONOLITHIC ACTIVE PIXEL SENSORS (MAPS)

Standard CMOS monolithic active pixel sensors: principles of operation

- **low resistivity** epi layer typically ~**15um** thick (only nMOS transistors)
- depleted region @ sensor diode very limited; C~10fF [Deputch, NIMA 465 (2001) 92–100]
- mips realease ~60 e-/um [Bischel, Rev. Mod. Phys. 60 (1988) 663]
- charge collection @ electrode after random walk (thermal diffusion)
- **slow** process (~100 ns)
 - lonizing particle large charge clusters N+ N+ N+ Nwell collection N+ electrode Pwell with circuitry Pwell with circuitry P+-type epitaxial layer diffusion p-substrate Snoeys, NIMA 765 (2014) Only small depletion layer

LIMITATIONS

- Iow radiation tolerance (slow thermal diffusion in epi)
- small S/N
- slow readout (no complex circuitry)

Not suited to HEP environments...

FIRST TRACKERS BASED ON MAPS

Availability of new processes and novel solutions \rightarrow Full MAPS vertex detectors developed:

STAR @ RHIC (ULTIMATE* chip), ALICE@LHC (ALPIDE chip)

* based on MIMOSA-26/22AHR

Upgrade of the STAR HFT first CMOS MAPS vertex detector at a collider

STAR HFT: first CMOS MAPS tracker

Parameter	ULTIMATE chip	ITS-UPGRADE Requirements	
Chip size	20.7 μm X 20.7 μm	15 mm x 30 mm	
Chip thickness	50 µm	50 µm	
Spatial resolution	~4 µm	~5 µm	
Detection efficiency	>99%	> 99 %	
Fake hit rate	10 ⁻⁴ pixel ⁻¹ event ⁻¹	10 ⁻⁶ pixel ⁻¹ event ⁻¹	
Integration time	190 µs	< 30 µs	
Power density	150 mW cm-2	< 100 mW cm ⁻²	
TID radiation hardness	150 krad	2700 krad	
NIEL radiation hardness	3x10 ¹² 1MeV n _{eq} /cm ²	1.7×10 ¹³ MeV n _{eq} /cm ²	

ALICE TRACKER UPGRADE MOTIVATIONS

Major upgrade of ALICE forseen during Long Shutdown 2 (2019/20)

Expected Run3&4 Pb-Pb luminosity 6x10²⁷ cm⁻²s⁻¹ (10nb⁻¹ integrated, factor 100 gain in statistics wrt Run1-2)

Physics Goal: Study of Quark Gluon Plasma properties via high-precision measurements of rare probes

- identification of secondary vertex of short lived particles @ low p_T
- large minimum bias data sample needed (no hardware trigger possible)

ITS UPGRADE KEY REQUIREMENTS

10

 p_{T} (Gev/c)

0

10⁻¹

>60% efficiency at 100 MeV/c

1

Improve impact parameter resolution

- Get closer to IP: 1st layer 39 mm \rightarrow 23 mm (new beam pipe)
- Reduce material budget: $1.14\% X_0 \rightarrow 0.3\% X_0$ (Inner Barrel stave) Constraints on chip thickness, power density, support structures
- \circ Reduce pixel size: 50 μm x 425 μm → O(30 μm x 30 μm)

Improve low pT resolution and tracking efficiency

- Pixel, drift, strip detectors \rightarrow pixel detector
- 6 layers \rightarrow 7 pixel layers

Improve readout to exploit increased luminosity

 Interactions readout rate (2x LHC expected interaction rate): Pb-Pb ~100kHz, minimum bias

Capability of fast insertion and removal during end of year shutdown

possibility to replace non-functioning detector modules

Expected radiation load (10 yrs + safety factor, innermost layer): TID: ~ 2.7 Mrad; NIEL: ~1.7x10¹³ 1MeV n_{eq} / cm²

ITS UPGRADE KEY REQUIREMENTS

Improve impact parameter resolution

- Get closer to IP: 1st layer 39 mm \rightarrow 23 mm (new beam pipe)
- Reduce material budget: $1.14\% X_0 \rightarrow 0.3\% X_0$ (Inner Barrel stave) Constraints on chip thickness, power density, support structures
- Reduce pixel size: 50 μ m x 425 μ m \rightarrow O(30 μ m x 30 μ m)

Improve low pT resolution and tracking efficiency

- Pixel, drift, strip detectors → pixel detector
- 6 layers \rightarrow 7 pixel layers

Improve readout to exploit increased luminosity

 Interactions readout rate (2x LHC expected interaction rate): Pb-Pb ~100kHz, minimum bias

Capability of fast insertion and removal during end of year shutdown
possibility to replace non-functioning detector modules

Expected radiation load (10 yrs + safety factor, innermost layer): TID: ~ 2.7 Mrad; NIEL: ~1.7x10¹³ 1MeV n_{eq} / cm²

ALPIDE CHIP DEVELOPMENT

ALPIDE: THE MONOLITHIC ACTIVE PIXEL SENSOR

Pixel Sensor produced using TowerJazz 180 nm CMOS Imaging Process

- Deep p-well shielding n-well allows in-pixel PMOS
 - complex in-pixel circuitry without charge loss
 - Key to enable low-power read-out.
- High Resistivity (>1 kΩ·cm) p-type epitaxial layer (25 µm) on p-type substrate;
- Small n-well diode (2 mm diameter) => low capacitance(~2fF), higher gain and speed (low power)
- Possibility of (moderate) reverse biasing to increase depleted region
 - → Smaller clusters -> more charge collected by seed pixel
 - \rightarrow Lower input capacitance (\rightarrow better S/N ratio)
 - → Short collection time
 - → Better (non ionizing) radiation tolerance
- Gate oxide 3 nm thick (better TID tolerance)

ALPIDE: THE MONOLITHIC ACTIVE PIXEL SENSOR

1024 columns

Main features

In pixel

- Amplification
- Discrimination
- Multi event buffer

In matrix

- zero suppression (priority encoding)
- Triggered or continuous readout (global shutter)
- Connects directly to 5-m away off-detector electronics via high speed link

No free running clock over matrix. No activity if there are no hits. Very low power front end (<40 mW/cm²)

512 rows

ALPIDE: THE MONOLITHIC ACTIVE PIXEL SENSOR

- o Charge created in epitaxial layer is collected
- Signal is shaped and compared to threshold
- Signal is strobed into an in-pixel memory (Global shutter latches the discriminated hits in next available register)
- Hit pixels are read out asynchronously (priority encoding)
- Test pulse charge injection circuitry
- Global threshold for discrimination: binary output

ALPIDE CHARACTERIZATION

 Extensive chip qualification campaign of laboratory and test beam measurements performed on irradiated and non irradiated sensors.

- Studies performed at various **dose rates** and various **doses**
- At doses up to 500 krad the chip remains fully functional without degradation of performance (Safety factor ~50 for Outer Barrel, Safety factor ~2 for Inner Barrel)
- At **dose rates >20 times** larger than max expected in experiment, no effect of TID observed on digital and analog supply currents up to 320krad
- Single Event Upset and Single Event Latchup cross section measured using proton and heavy ion beams(wide range of LET)
- SEU and SEL cross sections **not** considered to be a **risk** for the operatonal stability of the ITS

ALPIDE PROTOTYPES: TESTS AND QUALIFICATION

- Negligible chip-to-chip fluctuations
- Sufficient operational margin after 10x lifetime NIEL dose
- efficiency >99% up to ~200 electrons threshold
- fake-hit rate < 10^{-10} /pixel/event (10^{-6} required) \rightarrow Big operational margin (only 10 masked pixels)
- NIEL irradiated chips show no significant degradation of operation margins

Large margin for efficiency > 99% even after irradiation

ALPIDE PROTOTYPES: TESTS AND QUALIFICATION

- Negligible chip-to-chip fluctuations
- Sufficient operational margin after 10x lifetime NIEL dose
- Resolution of about **5µm** @ threshold of 200 electrons
- NIEL irradiated chips show no significant degradation of operation margins

Inner Tracking System Upgrade layout

2 outer layers (90 staves)

2 middle layers (54 staves)

Outer Barrel (OB)

3 inner layers (48 staves)

Inner Barrel (IB)

7-layer barrel geometry equipped with Monolithic Active Pixel Sensors

- 12.5 Gigapixels
- ~24000 pixel chips
- binary readout
- ~ 10 m² active area

η coverage: |η| ≤ 1.22

IB **Radius** (mm) ~ **23**, 31, 39 IB stave **length** (mm): ~290

OB **Radius** (mm): ~196, 245, 344, **393** Middle layers stave **length** (mm): ~900 Outer layers, stave **length** (mm): ~1500

ITS-Upgrade hybrid integrated circuit

X-ray (55Fe) image of IB HIC

FPC to Chip interconnection

IB HIC cross section scheme

Low mass Hybrid Integrated Circuits (HIC)

- IB-HIC: 9 master chips (50 um);
- OB-HIC: 2x7 (1 master, 6 slaves) chips (100um)
- IB (OB): double sided Al(Cu)/polyamide Flexible Printed Circuits (FPC)
- Interconnection based on flip chip and wire bonding technology

Serial Outputs (1200 Mbps)

ITS-Upgrade hibrid integrated circuit

Low mass Hybrid Integrated Circuits (HIC)

- IB-HIC: 9 master chips (50 um);
- OB-HIC: 2x7 (1 master, 6 slaves) chips (100um)
- IB (OB): double sided Al(Cu)/polyamide Flexible Printed Circuits (FPC)
- Interconnection based on flip chip and wire bonding technology

FPC to Chip interconnection

IB HIC cross section scheme

ITS-upgrade staves layout

ITS-upgrade staves layout

HIC, STAVE, MECHANICS, ASSEMBLY PRODUCTION

HICS AND STAVES PROTOTYPES CHARACTERIZATION

HICs and Staves prototypes

- HICs were characterized in different conditions, operation modes and readout rates
- No significant difference in performance found between standalone chip and chip mounted on HIC
- No significant difference in performance found between HICs and HICs mounted on staves.
- All performances comparable to standalone ALPIDE chip

Noise/Average noise-- before mounting

HICS AND STAVES PROTOTYPES CHARACTERIZATION

IB stave tested in Pb-Pb run in NA61/SHINE experiment

- Hit densities: up to 30 hits/cm² (realistic Pb-Pb ALICE running conditions)
- No cooling, no substrate reverse-bias used.
- Fake hit rate < 10⁻¹⁰ hits/pixel/event (10 pixels masked)
- o Detection efficiency: >99%
- Performance comparable to standalone ALPIDE chip

IB HIC in NA61 setup

IB-HIC

ITS-UPGRADE

Parameter	Inner Barrel	Outer Barrel	ALPIDE
Silicon thickness	50µm	100µm	OK
Spatial resolution	5µm	10µm	~ 5µm
Chip dimension	15mm x 30mm		OK
Power density	< 300mW/cm ²	< 100mW/cm ²	< 40mW/cm ²
Event-time resolution	< 30µs		~ 2µs
Detection efficiency	> 99%		OK
Fake-hit rate *	< 10 ⁻⁶ /event/pixel		< 10 ⁻¹⁰ /event/pixeD
NIEL radiation tolerance **	1.7x10 ¹³ MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} /cm ²	ОК
TID radiation tolerance **	2.7Mrad	100krad	tested at 500krad

* revised numbers w.r.t. TDR

** including a safety factor of 10, revised numbers w.r.t. TDR

- The new tracker fulfills or even exceeds the requirements of the ALICE ITS upgrade
- ALPIDE represents a significant advancement for what concerns power density, fake-hit rate, readout speed, and radiation hardness
- Use of monolithic CMOS pixel sensors in more demanding environments requires greater radiation tolerance and better timing resolution

TOWARDS HIGHER PERFORMANCES

Diffusion in **undepleted** volume major **limitation** in high radiation environment

- Slow process
- Recombination, trapping
- -> severe charge loss in strongly irradiated silicon

Extended depletion volume allows **faster** and more **efficient** charge collection by drift (less charge loss, more charge in seed pixel, better S/N).

ALPIDE partial depletion extends the operability of MAPS

Recent developments: TowerJazz modified Process

- Add planar n-type layer (planar p-n junction)
- Significantly improves depletion under p-well with deep junction

Investigator: dedicated test chip within ALPIDE R&D

Investigator + modified process: tested within R&D of new radiation hard chips for ATLAS upgrade. Encouraging results up to 1×10^{15} 1MeV n_{eq}/cm² (NIEL) and 1Mrad (TID).

TJ MALTA and TJ MonoPix : new dedicated chips being submitted (ATLAS Upgrade)

Achieving these goals can be a major step towards radiation hard and fast CMOS sensors.

CONCLUSIONS - I

- The ALICE collaboration will perform a major detector upgrade during LS2 to improve readout and tracking capabilities for runs 3&4 at LHC.
- The ALICE Inner Tracking System Upgrade project has successfully completed the R&D phase. All requirements have been met or exceeded.
- The ITS Upgrade will be the largest existing pixel detector with an innovative monolithic pixel sensor with in pixel full CMOS circuitry.

- Detector production started Dec 2016 with the ALPIDE chip start of production.
- All sites are entering the production phase, expected to finish by the end of 2018.

CONCLUSIONS - II

- Several experiments have decided to instrument their detectors with MAPS (ALICE, S-Phenix, CBM, MPD...).
- ALPIDE, developed for the new ALICE tracker, represents a significant progress regarding power density, fake-hit rate, radiation hardness, readout speed, in the field of Monolithic Active Pixel Sensors.
- ALPIDE development important step towards the use of monolithic CMOS pixel sensors in future experiments. More demanding environments require further developments .

ALICE ITS Upgrade (and MFT) 10 m² – 12 G pixel

sPHENIX 0.2 m² – 251 M pixel

- Firsts tests with R&D chips and TJ modified process very promising.
- Strong R&D ongoing for development of chips for HL LHC (ATLAS ITK) and future experiments.

