3D nuclear parton structure

Sergio Scopetta

Dipartimento di Fisica e Geologia, Università di Perugia

and INFN, Sezione di Perugia, Italy

Outline

The nucleus:

very interesting by itself;

• "a Lab for QCD fundamental studies"

Selected topics (based on R. Dupré, S,S. EPJA 52 (2016) 159):

1 - DVCS off nuclei (GPDs):
 Medium modification of the 3D nucleon structure - origin of the EMC effect
 nuclei as a Lab to study the parton structure of *bound* nucleon

2 - SIDIS off nuclei (TMDs): Neutron TMDs from SIDIS off light nuclei nuclei as a Lab to study the *free* nucleon

Prospects at the EIC

(issues concerning the onset of saturation scale and related to gluon TMDs, as well as in-medium

hadronization as a probe of confinement, motivating the EIC, discussed in other sessions and not addressed here...)

X

3D nuclear parton structure - p.3/33

EMC effect: explanations?

In general, with a few parameters any model explains the data: EMC effect = "Everyone's Model is Cool" (G. Miller)

Situation: basically not understood. Very unsatisfactory. We need to know the reaction mechanism of hard processes off nuclei and the degrees of freedom which are involved:

- the knowledge of nuclear parton distributions is crucial for the data analysis of heavy ions collisions;
- the partonic structure of the neutron is measured with nuclear targets and several QCD sum rules involve the neutron information (Bjorken SR, for example): importance of Nuclear Physics for QCD

Inclusive measurements cannot distinguish between models

One has to go beyond (R. Dupré and S.S., EPJA 52 (2016) 159)

SIDIS (TMDs)

Hard Exclusive Processes (GPDs)

EMC effect: way out?

Which of these transverse sections is more similar to that of a nucleus?

To answer, we should perform a *tomography...*

We can!

Deeply Virtual Compton Scattering & Generalized Parton Distributions (GPDs)

GPDS: Definition (X. Ji PRL 78 (97) 610)

For a $J = \frac{1}{2}$ target, in a hard-exclusive process, $(Q^2, \nu \rightarrow \infty)$ such as (coherent) DVCS:

the GPDs $H_q(x,\xi,\Delta^2)$ and $E_q(x,\xi,\Delta^2)$ are introduced:

 $\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \quad \gamma^{\mu} \quad \psi_q(\lambda n/2) | P \rangle = H_q(x,\xi,\Delta^2) \bar{U}(P') \gamma^{\mu} U(P)$ $+ \quad E_q(x,\xi,\Delta^2) \bar{U}(P') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2M} U(P) + \dots$

•
$$\Delta = P' - P, q^{\mu} = (q_0, \vec{q}), \text{ and } \bar{P} = (P + P')^{\mu}/2$$

$$x = k^+/P^+; \xi = \text{``skewness''} = -\Delta^+/(2\bar{P}^+)$$

$$x \leq -\xi \longrightarrow \text{GPDs}$$
 describe $antiquarks$;
 $-\xi \leq x \leq \xi \longrightarrow \text{GPDs}$ describe $q\bar{q} \ pairs$; $x \geq \xi \longrightarrow \text{GPDs}$ describe $quarks$

GPDs: constraints

when P' = P, i.e., $\Delta^2 = \xi = 0$, one recovers the usual PDFs:

 $H_q(x,\xi,\Delta^2) \Longrightarrow H_q(x,0,0) = q(x); \quad E_q(x,0,0) \text{ unknown}$

the x-integration yields the q-contribution to the Form Factors (ffs)

$$\begin{split} \int dx \, \int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \gamma^\mu \psi_q(\lambda n/2) | P \rangle &= \\ \int dx \, H_q(x,\xi,\Delta^2) \bar{U}(P') \gamma^\mu U(P) + \int dx \, E_q(x,\xi,\Delta^2) \bar{U}(P') \frac{\sigma^{\mu\nu} \Delta_\nu}{2M} U(P) + \dots \\ & \Longrightarrow \int dx \, H_q(x,\xi,\Delta^2) = F_1^q(\Delta^2) \qquad \int dx \, E_q(x,\xi,\Delta^2) = F_2^q(\Delta^2) \\ & \Longrightarrow \text{ Defining } \boxed{\tilde{G}_M^q = H_q + E_q} \text{ one has } \int dx \, \tilde{G}_M^q(x,\xi,\Delta^2) = G_M^q(\Delta^2) \end{split}$$

3D nuclear parton structure - p.7/33

GPDs: a unique tool...

not only 3D structure, at parton level; many other aspects, e.g., contribution to the solution to the "Spin Crisis" (J.Ashman et al., EMC collaboration, PLB 206, 364 (1988)), yielding parton total angular momentum...

... but also an experimental challenge:

Hard exclusive process \longrightarrow small σ ;

Difficult extraction:

Competition with the **BH** process! (σ asymmetries measured).

$$d\sigma \propto |T_{\mathbf{DVCS}}|^2 + |T_{\mathbf{BH}}|^2 + 2 \Re\{T_{\mathbf{DVCS}}T^*_{\mathbf{BH}}\}$$

Nevertheless, for the proton, we have results:

(Guidal et al., Rep. Prog. Phys. 2013...

Dupré, Guidal, Niccolai, Vanderhaeghen arXiv:1704.07330 [hep-ph])

Nuclei: why?

ONE of the reasons is understood by studying coherent DVCS in I.A.:

In a symmetric frame ($\bar{p}=(p+p')/2$) :

$$k^+ = (x+\xi)\bar{P}^+ = (x'+\xi')\bar{p}^+ ,$$

$$(k+\Delta)^+ = (x-\xi)\bar{P}^+ = (x'-\xi')\bar{p}^+ ,$$

one has, for a given GPD

$$GPD_q(x,\xi,\Delta^2) \simeq \int \frac{dz^-}{4\pi} e^{ix\bar{P}^+z^-}{}_A \langle P'S' | \hat{O}^{\mu}_q | PS \rangle_A |_{z^+=0,z_{\perp}=0}$$

Nuclei: why?

ONE of the reasons is understood by studying coherent DVCS in I.A.:

In a symmetric frame ($\bar{p}=(p+p')/2$) :

$$k^{+} = (x+\xi)\bar{P}^{+} = (x'+\xi')\bar{p}^{+} ,$$

$$(k+\Delta)^{+} = (x-\xi)\bar{P}^{+} = (x'-\xi')\bar{p}^{+} ,$$

one has, for a given GPD

$$GPD_{q}(x,\xi,\Delta^{2}) \simeq \int \frac{dz^{-}}{4\pi} e^{ix\bar{P}^{+}z^{-}}{}_{A} \langle P'S' | \hat{O}^{\mu}_{q} | PS \rangle_{A} |_{z^{+}=0,z_{\perp}=0} .$$

By properly inserting complete sets of states for the interacting nucleon and the recoiling system :

Nuclei: why?

ONE of the reasons is understood by studying coherent DVCS in I.A.:

In a symmetric frame ($\bar{p}=(p+p^\prime)/2$) :

$$k^{+} = (x+\xi)\bar{P}^{+} = (x'+\xi')\bar{p}^{+} ,$$

$$(k+\Delta)^{+} = (x-\xi)\bar{P}^{+} = (x'-\xi')\bar{p}^{+} ,$$

one has, for a given GPD

$$GPD_{q}(x,\xi,\Delta^{2}) = \int \frac{dz^{-}}{4\pi} e^{ix'\bar{p}^{+}z^{-}} \langle P'S'| \sum_{\vec{P}'_{R},S'_{R},\vec{p}',s'} \{|P'_{R}S'_{R}\rangle|p's'\rangle\} \langle P'_{R}S'_{R}|$$
$$\langle p's'| \hat{O}^{\mu}_{q} \sum_{\vec{P}_{R},S_{R},\vec{p},s} \{|P_{R}S_{R}\rangle|ps\rangle\} \{\langle P_{R}S_{R}|\langle ps|\} |PS\rangle,$$

and, since $\{\langle P_R S_R | \langle ps | \} | PS \rangle = \langle P_R S_R, ps | PS \rangle (2\pi)^3 \delta^3 (\vec{P} - \vec{P}_R - \vec{p}) \delta_{S,S_R s}$

Why nuclei?

a convolution formula can be obtained (S.S. PRC 70, 015205 (2004)):

$$H_q^A(x,\xi,\Delta^2) \simeq \sum_N \int \frac{d\bar{z}}{\bar{z}} h_N^A(\bar{z},\xi,\Delta^2) H_q^N\left(\frac{x}{\bar{z}},\frac{\xi}{\bar{z}},\Delta^2\right)$$

in terms of $H_q^N(x', \xi', \Delta^2)$, the GPD of the free nucleon N, and of the light-cone off-diagonal momentum distribution:

$$h_N^A(z,\xi,\Delta^2) = \int dE dec{p} P_N^A(ec{p},ec{p}+ec{\Delta},E) \delta\left(ar{z}-rac{ar{p}^+}{ar{P}^+}
ight)$$

where $P_N^A(\vec{p}, \vec{p} + \vec{\Delta}, E)$, is the one-body off-diagonal spectral function for the nucleon N in the nucleus,

$$P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E) = \frac{1}{(2\pi)^3} \frac{1}{2} \sum_M \sum_{R,s} \langle \vec{P}' M | (\vec{P} - \vec{p}) S_R, (\vec{p} + \vec{\Delta}) s \rangle$$

$$\times \quad \langle (\vec{P} - \vec{p}) S_R, \vec{ps} | \vec{P} M \rangle \, \delta(E - E_{min} - E_R^*) \, .$$

Why nuclei?

The obtained expressions have the correct limits:

the x-integral gives the f.f. $F_q^A(\Delta^2)$ in I.A.:

$$\int dx H_q^A(x,\xi,\Delta^2) = F_q^N(\Delta^2) \int dE d\vec{p} P_N^A(\vec{p},\vec{p}+\vec{\Delta},E) = F_q^A(\Delta^2)$$

forward limit (standard DIS): $q^{A}(x) \simeq \sum_{N} \int_{x}^{1} \frac{d\tilde{z}}{\tilde{z}} f_{N}^{A}(\tilde{z}) q^{N}\left(\frac{x}{\tilde{z}}\right)$ with the light-cone momentum distribution: $f_{N}^{A}(\tilde{z}) = \int dE d\vec{p} P_{N}^{A}(\vec{p}, E) \delta\left(\tilde{z} - \frac{p^{+}}{P^{+}}\right) ,$

which is strongly peaked around $A\tilde{z} = 1$:

Since $z - z' = -x_B(1 - z)/(1 - x_B)$, $\xi \simeq x_B/(2 - x_B)$ can be tuned to have z - z' larger than the width of the narrow nuclear light-cone momentum distribution $f_N^A(\bar{z} = (z + z')/2)$: in this case IA predicts a *vanishing* GPD, at *small* x_B .

If DVCS were observed at this kinematics, exotic effects beyond IA, non-nucleonic degrees of freedom, would be pointed out (Berger, Cano, Diehl and Pire, PRL 87 (2001) 142302)

Similar effect predicted in DIS at $x_B > 1$, where DIS data are not accurate enough.

Nuclei and DVCS tomography

In impact parameter space, GPDs are *densities*:

Coherent DVCS: nuclear tomography;

Incoherent DVCS: tomography of bound nucleons: realization of the EMC effect

 b_{ν}

Large energy gap between the photons and the slow-recoiling systems: very different detection systems required at the same time... Very difficult...

 \boldsymbol{p}

x P

 $\Rightarrow b_x$

 \boldsymbol{k}_{\perp}

... But possible! Just released from CLAS!

(M. Hattawy et al. arXiv:1707.03361v1 [nucl-ex])

Coherent data (incoherent will follow) of DVCS off ⁴He:

- ⁴He: J = 0, I = 0, easy formal description (1 chiral-even twist-2 GPD); but a true nucleus (deeply bound, dense...)
- ٩
- Next generation of experiments (ALERT run-group), just approved (A-rate), will distinguish models: precisely what is needed to understand nuclei at parton level!

Good prospects for the EIC at low x_B , easy recoil detection...

Nuclear GPDs: ³He calculations

- ${}^{3}\vec{H}e$ used as an effective polarized neutron target; isoscalar systems, e.g. 2 H and 4 He, not suitable to extract the neutron E_{q} in coherent experiments;
- Our results, for ³He: (S.S. PRC 2004, 2009; M. Rinaldi and S.S., PRC 2012, 2013)
 - * I.A. calculation of H_3, E_3, \tilde{H}_3 , within AV18;
 - * extraction procedure of the neutron information, able to take into account all the nuclear effects encoded in an IA analysis;
 - * Interesting features: sensitivity of the results to nuclear dynamics: binding effects bigger than in DIS; different potentials give different results
 - * control on conventional nuclear effects, possible evidence of exotic ones; possible relativistic (LF) extension...
 - * No data; no proposals at JLAB... difficult to detect slow recoils using a polarized target...

BUT

at the EIC beams of polarized light nuclei will operate! ${}^{3}\vec{H}e$ can be used!

Our codes available for interested colleagues

DVCS off ⁴He

- CLAS data demonstrate that measurements are possible, separating coherent and incoherent channels;
- Realistic microscopic calculations are necessary. A collaboration has started with Sara Fucini (Perugia, graduating student), Michele Viviani (INFN Pisa).
- Coherent channel in IA:

=

we are working on a); b) is feasible; c) is really challenging

Many other issues...

x-moments of GPDs (ffs of energy momentum tensor): information on spatial distribution of energy, momentum and forces experienced by the partons.
Predicted an *A* dependence stronger than in IA (not seen at HERMES);
M. Polyakov, PLB 555, 57 (2003); H.C. Kim et al. PLB 718, 625 (2012)...

γ* (q)

N (p)

ss

hard

A-1

φ (q-Δ)

 $N(p'=p+\Delta)$

A (P'=P+ Δ)

Gluon GPDs in nuclei

Exclusive ϕ - electroproduction, unique source of information, studied by ALERT, waiting for EIC...

A (P)

Deuteron: an issue aside.

Extraction of the neutron information; access to a new class of distribution (J = 1) Studied by different collaborations (by ALERT too, coherent and incoherent DVCS) theory: Cano and Pire EPJA 19,423 (2004); Taneja et al. PRD 86,036008 (2012)...

nuclear 3D in momentum space

Related issues widely discussed in other sessions:

- From the gluon unintegrated PDF to the onset of CGC: anticipated in nuclei (at higher x_B with respect to free nucelon), motivating the EIC and discussed in other sessions;
- In-medium hadronization as a fundamental test of confinement;
- From in-medium transverse momentum broadening or jet broadening, access to the quark transport parameter, sensitive to the gluon PDF as $x_B \rightarrow 0$;

In general: importance of luminosity and polarization: great help expected from EIC

Here: extraction of neutron TMDs from nuclear data. In the following, some details for the Sivers and Collins functions

TMDS: Single Spin Asymmetries - 1

 $\vec{A}(e,e'h)X: \text{Unpolarized beam and T-polarized target} \rightarrow \sigma_{UT}$ $d^{6}\sigma \equiv \frac{d^{6}\sigma}{dxdydzd\phi_{S}d^{2}P_{h\perp}}$ $x = \frac{Q^{2}}{2P \cdot q} \quad y = \frac{P \cdot q}{P \cdot l} \quad z = \frac{P \cdot h}{P \cdot q} \quad \hat{q} = -\hat{e}_{z}$

The number of emitted hadrons at a given ϕ_h depends on the orientation of \vec{S}_{\perp} ! In SSAs 2 different mechanisms can be experimentally distinguished

$$A_{UT}^{Sivers(Collins)} = \frac{\int d\phi_S d^2 P_{h\perp} \sin(\phi_h - (+)\phi_S) d^6 \sigma_{UT}}{\int d\phi_S d^2 P_{h\perp} d^6 \sigma_{UU}}$$
$$d^6 \sigma_{UT} = \frac{1}{2} (d^6 \sigma_{U\uparrow} - d^6 \sigma_{U\downarrow}) \qquad d^6 \sigma_{UU} = \frac{1}{2} (d^6 \sigma_{U\uparrow} + d^6 \sigma_{U\downarrow})$$

with

SSAs - 2

SSAs in terms of parton distributions and fragmentation functions:

$$A_{UT}^{Sivers} = N^{Sivers}/D \qquad A_{UT}^{Collins} = N^{Collins}/D$$

$$N^{Sivers} \propto \sum_{q} e_{q}^{2} \int d^{2} \kappa_{T} d^{2} \mathbf{k}_{T} \delta^{2} (\mathbf{k}_{T} + \mathbf{q}_{T} - \kappa_{T}) \frac{\hat{\mathbf{P}_{h\perp} \cdot \mathbf{k}_{T}}}{\mathbf{M}} f_{1T}^{\perp q}(x, \mathbf{k}_{T}^{2}) D_{1}^{q,h}(z, (z\kappa_{T})^{2})$$

$$N^{Collins} \propto \sum_{q} e_{q}^{2} \int d^{2} \kappa_{T} d^{2} \mathbf{k}_{T} \delta^{2} (\mathbf{k}_{T} + \mathbf{q}_{T} - \kappa_{T}) \frac{\hat{\mathbf{P}_{h\perp} \cdot \kappa_{T}}}{\mathbf{M}_{h}} h_{1}^{q}(x, \mathbf{k}_{T}^{2}) H_{1}^{\perp q,h}(z, (z\kappa_{T})^{2})$$

$$D \propto \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q,h}(z)$$

LARGE A^{Sivers} measured in $\vec{p}(e, e'\pi)x$ HERMES PRL 94, 012002 (2005)
 SMALL A^{Sivers} measured in $\vec{D}(e, e'\pi)x$; COMPASS PRL 94, 202002 (2005)

A strong flavor dependence

Importance of the neutron for flavor decomposition!

The neutron information from ³He

³He is the ideal target to study the polarized neutron:

... But the bound nucleons in 3 He are moving!

Dynamical nuclear effects in inclusive DIS (${}^{3}\vec{H}e(e,e')X$) were evaluated with a realistic spin-dependent spectral function for ${}^{3}\vec{H}e$, $P_{\sigma,\sigma'}(\vec{p}, E)$. It was found that the formula

$$A_{n} \simeq \frac{1}{p_{n}f_{n}} \left(A_{3}^{exp} - 2p_{p}f_{p}A_{p}^{exp} \right), \quad (Ciofi \ degli \ Atti \ et \ al., PRC48(1993)R968)$$
$$(f_{p}, f_{n} \quad dilution factors)$$

can be safely used \longrightarrow widely used by experimental collaborations. The nuclear effects are hidden in the "effective polarizations"

 $p_p = -0.023$ (*Av*18) $p_n = 0.878$ (*Av*18) Valid also in SIDIS, proven in IA (S.S., PRD 75, 054005 (2007)). FSI?

FSI: Generalized Eikonal Approximation (GEA)

L. Kaptari, A. Del Dotto, E. Pace, G. Salmè, S.S., PRC 89 (2014) 035206

FSI: distorted spin-dependent spectral function of ³He

L. Kaptari, A. Del Dotto, E. Pace, G. Salmè, S.S., PRC 89 (2014) 035206

Relevant part of the (GEA-distorted) spin dependent spectral function:

$$\begin{aligned} \mathcal{P}_{||}^{IA(FSI)} &= \mathcal{O}_{\frac{1}{2}\frac{1}{2}}^{IA(FSI)} - \mathcal{O}_{-\frac{1}{2}-\frac{1}{2}}^{IA(FSI)}; \quad \text{with:} \\ \mathcal{O}_{\lambda\lambda'}^{IA(FSI)}(p_N, E) &= \sum_{\epsilon_{A-1}^*} \rho\left(\epsilon_{A-1}^*\right) \ \langle S_A, \mathbf{P}_{\mathbf{A}} | (\hat{S}_{Gl}) \{ \Phi_{\epsilon_{A-1}^*}, \lambda', \mathbf{p}_N \} \rangle \\ &\quad \langle (\hat{S}_{Gl}) \{ \Phi_{\epsilon_{A-1}^*}, \lambda, \mathbf{p}_N \} | S_A, \mathbf{P}_{\mathbf{A}} \rangle \delta\left(E - B_A - \epsilon_{A-1}^* \right). \end{aligned}$$

Glauber operator: $\hat{S}_{Gl}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \prod_{i=2,3} \left[1 - \theta(z_i - z_1) \Gamma(\mathbf{b}_1 - \mathbf{b}_i, z_1 - z_i) \right]$ (generalized) profile function: $\Gamma(\mathbf{b}_{1i}, z_{1i}) = \frac{(1 - i\alpha) \sigma_{eff}(z_{1i})}{4 \pi b_0^2} \exp \left[-\frac{\mathbf{b}_{1i}^2}{2 b_0^2} \right]$,

GEA (Γ depends also on the longitudinal distance z_{1i} !) very succesfull in q.e. semi-inclusive and exclusive processes off ³He see, e.g., Alvioli, Ciofi & Kaptari PRC 81 (2010) 02100

A hadronization model is necessary to define $\sigma_{eff}(z_{1i})$ Ciofi, Kaptari, Kopeliovich, EPJA 19, 145 (2004)

Good news from GEA studies of FSI!

Effects of GEA-FSI (shown at $E_i = 8.8 \text{ GeV}$) in the dilution factors and in the effective polarizations compensate each other to a large extent: the usual extraction is safe!

$$A_n \approx \frac{1}{p_n^{FSI} f_n^{FSI}} \left(A_3^{exp} - 2p_p^{FSI} f_p^{FSI} A_p^{exp} \right) \approx \frac{1}{p_n f_n} \left(A_3^{exp} - 2p_p f_p A_p^{exp} \right)$$

A. Del Dotto, L. Kaptari, E. Pace, G. Salmè, S.S., arXiv:1704.06182 [nucl-th]

Conclusions

- Exciting time thanks to new data and accepted next-generation experiments at JLab...
- ... a prelude to "Great expectations" for the E-Ion-C
- "Ion" structure effects: not only relevant. Essential
- Easy to predict a growing interest and an important contribution from (low-energy) nuclear theorists

Backup : A few words about $P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E)$:

$$P_{N}^{3}(\vec{p},\vec{p}+\vec{\Delta},E) = \frac{1}{(2\pi)^{3}} \frac{1}{2} \sum_{M} \sum_{f,s} \langle \vec{P}'M | (\vec{P}-\vec{p})S_{f}, (\vec{p}+\vec{\Delta})s \rangle \\ \times \langle (\vec{P}-\vec{p})S_{f}, \vec{p}s | \vec{P}M \rangle \, \delta(E-E_{min}-E_{f}^{*}) \, .$$

- the two-body recoiling system can be either the deuteron or a scattering state;
- when a deeply bound nucleon, with high removal energy $E = E_{min} + E_f^*$, leaves the nucleus, the recoling system is left with high excitation energy E_f^* ;
 - the three-body bound state and the two-body bound or scattering state are evaluated within the same (Av18) interaction: the extension of the treatment to heavier nuclei would be extremely difficult

Incoherent DVCS off ⁴He in IA

3D nuclear parton structure - p.27/33

ElCug, Trieste, July 21^{st} , 2017

Nuclear effects - the binding

Spectral function substituted by a Momentum distribution

Nuclear effects - the binding

Nuclear effects are bigger than in the forward case: dependence on the binding

- In calculations using $n(\vec{p}, \vec{p} + \vec{\Delta})$ instead of $P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E)$, in addition to the IA, also the Closure approximation has been assumed;
- 5 % to 10 % binding effect between x = 0.4 and 0.7 much bigger than in the forward case;
- ٩

for A > 3, the evaluation of $P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E)$ is difficult - such an effect is not under control: Conventional nuclear effects can be mistaken for exotic ones;

for ³He it is possible : this makes it a unique target, even among the Few-Body systems.

3D nuclear parton structure - p.29/33

Example of nuclear effects - flavor dependence

Nuclear effects are bigger for the d flavor rather than for the u flavor:

 $R_q^{(0)}(x,\xi,\Delta^2)$ would be one if there were no nuclear effects;

This is a typical conventional, IA effect (spectral functions are different for p and n in ³He, not isoscalar!); if (not) found, clear indication on the reaction mechanism of DIS off nuclei.

Dependence on the NN interaction

Nuclear effects are bigger than in the forward case: dependence on the potential

Forward case: Calculations using the AV14 or AV18 interactions are indistinguishable

Non-forward case: Calculations using the AV14 and AV18 interactions do differ:

³He tomography (preliminary)

Analysis of the "*x*-dependent charge radius" of ³He. From GPDs in impact parameter space, this quantity, $\sqrt{b^2(x)}$, can be obtained from: $\langle b^2 \rangle(x) = \int d\vec{b}_{\perp} \ b_{\perp}^2(\rho_u(x, |\vec{b}_{\perp}|) + \rho_d(x, |\vec{b}_{\perp}|))$

reference line: $\sqrt{\langle b^2 \rangle}$ from the calculations of the ³He charge f.f. in IA. (see L.E. Marcucci et al. PRC 58 (1998)).

 $\sqrt{\langle r^2 \rangle}$ corresponding to the Av18 calculation is similar to $\sqrt{\langle b^2(x) \rangle}$ in the valence region.

FSI: the hadronization model

Hadronization model (Kopeliovich et al., NPA 2004) + σ_{eff} model for SIDIS (Ciofi & Kopeliovich, EPJA 2003) GEA + hadronization model succesfully applied to unpolarized SIDIS ${}^{2}H(e, e'p)X$ (Ciofi & Kaptari PRC 2011).

 $\sigma_{eff}(z) = \sigma_{tot}^{NN} + \sigma_{tot}^{\pi N} \left[n_M(z) + n_g(z) \right]$

The hadronization model is phenomenological: parameters are chosen to describe the scenario of JLab experiments (e.g., $\sigma_{NN}^{tot} = 40$ mb, $\sigma_{\pi N}^{tot} = 25$ mb, $\alpha = -0.5$ for both NN and πN ...).

