CONSTRUCTION AND TEST OF A MAGNETIC FIELD CLOAK

EIC GENERIC DETECTOR R&D PROJECT ERD2

NILS FEEGE

Electron Ion Collider User Group Meeting 2017 Trieste, Italy, July 18 - 22, 2017

A MAGNETIC FIELD CLOAK MAKES A VOLUME INVISIBLE TO MAGNETIC FIELDS

2

'Invisibility Cloak'

'Magnetic Field Cloak'

Superconductor

Ferromagnet

Magnetic Field Cloak

$$\mu_2 = \frac{R_2^2 + R_1^2}{R_2^2 - R_1^2}$$

Fedor Gömöry et al. DOI: 10.1126/science.1218316

SUPERCONDUCTING CYLINDERS ⁵ DEFLECT MAGNETIC FIELDS

BEAM TEST AT BNL VAN DE GRAAFF ACCELERATOR

SUCCESSFULLY SHIELDING CHARGED ION BEAMS

2-layer superconductor shield

OUR 45-LAYER PROTOTYPE SHIELDS 99% OF 0.45 TESLA

TUNING MAGNETIC PERMEABILITY¹¹ OF FERROMAGNET CYLINDERS

 μ_2

MRI TEST SETUP AT ARGONNE¹² NATIONAL LABORATORY

CLOAK REDUCES FRONT FIELD¹³ DISTORTIONS BY 90% AT 0.45 T

CLOAKING EFFECT AT LARGER DISTANCE FROM THE PROTOTYPE

14

cloak

THANKS TO ALL OUR COLLABORATORS-¹⁵ MOSTLY UNDERGRADUATE STUDENTS!

We have demonstrated magnetic field cloaking at magnetic fields up to 0.45 T with

- 99% field shielding inside the cloak, and
- 90% reduced field distortions near the cloak.

A magnetic field cloak is a viable option for EIC.

arXiv:1707.02361

ADDITIONAL SLIDES

AT HIGH FIELDS, FIELD INSIDE¹⁹ **SHIELD INCREASES WITH TIME**

MAGNETIC PERMEABILITY DECREASES ²⁰ WITH INCREASING APPLIED FIELD

MEASUREMENT SETUP USING HELMHOLTZ COILS

FIELD DISTORTIONS ALONG LONGITUDINAL CLOAK AXIS

FIELD DISTORTIONS ALONG TRANSVERSE CLOAK AXIS

CLOAKING DEPENDENCE ON ALIGNMENT OF SUPERCONDUCTOR GAP

CLOAKING WITH DIFFERENT SUPERCONDUCTOR CYLINDERS

SHIELDING WITH DIFFERENT SUPERCONDUCTOR CYLINDERS

