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EIC: Ideal facility for studying QCD
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Polarization
Understanding	hadron	structure	cannot
be	done	without	understanding	spin:
• polarized	electrons and
• polarized protons/light	ions	

Transverse and longitudinal 
polarization of light ions (p, d, 3He):
• 3D imaging in space and momentum
• spin-orbit correlations

Broad range in A from hydrogen to 
uranium isotopes: 
• 3D imaging in space and momentum
• hadronization in the nuclear medium
• EMC effect for gluons
• gluon saturation
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EIC: Ideal facility for studying QCD
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High luminosity: 

high precision 
• for various measurements
• in various configurations

Various beam energy: 

broad Q2 range for 
• studying evolution to	Q2 of	

~1000	GeV2

• disentangling non-
perturbative and 
perturbative regimes 

• overlap with existing 
experiments

overlap	with	existing	measurements

include	non-perturbative,	perturbative,	and	transition	regimes
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TMD program in EIC White Paper
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EIC: The Next QCD Frontier

Eur.Phys.J. A52 (2016) no.9, 268

Ultimate measurement of TMDs for quarks
• high luminosity

• high-precision measurement
• multi-dimensional analysis (x, Q2, ϕS, z, Pt, ϕh)

• broad x coverage 0.01 < x < 0.9 
• broad Q2 range disentangling non-perturbative / 

perturbative regimes

First measurement of TMDs for sea quarks

First measurement of TMDs for gluons

Systematic study of QCD factorization
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Ultimate measurement of TMDs
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Selected analysis requirements

High-precision analysis tools: 
• high-precision MCEG
• radiative correction library
• multi-dimensional analysis

RSIDIS from JLab 12GeV

Long-lived data repositories
• COMPASS, HERMES, JLab, RHIC
• document analysis publicly for analysis and theory development (RIVET)
• combined global analysis (e.g., HERA fit), possibly on event level

Understanding of hadronization
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pioneering work by H. Matevosyan: 
mPYTHIA
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Describing the hadronization process
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String	breakup String	drawing

LUND	String	Model	for	hadronization (1977	– )

• simple	but	powerful	phenomenological	model	
• no	(promising)	new	hadronization models	in	last	40	

years
• ToDo

• review	
• connect	with	modern	QCD,	including	TMD	and	

spin	effects	
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String e�ects: PLB261 (1991) (OPAL Collaboration)
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3 Jets events: QQ̄ and gluon jets. Jets are projected into a plane
Â: angle of a given particle relative to the quark jet with the highest
energy
ÂA: angle between highest energetic jet and gluon jet
ÂC : angle between quark jets
Only events with ÂA = ÂC are kept
Particle flow asymmetry is observed æ evidence of string e�ects

evidence	of	string	effects
particle	flow	asymmetry	at	OPAL



LDRD project at Jefferson Lab
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NP	– QCD	factorization	theorem

• interpret	collision	experiments	using	
QCD	factorization	theorem

• development	driven	by	John	Collins	
(2009	J.	J.	Sakurai	Prize)

• Novel	way	to	study	confinement:	QCD	
factorization	theorem	for	TMDs

HEP	– Monte	Carlo	Event	Generator

• describe	collision	processes	by	a	
combination	of	theory	and	
phenomenological	models

• Pythia,	development	led	by	LUND	
group	(Leif	Lönnblad),	recognized	by	
2012	J.	J.	Sakurai	Prize	(for	T.	Sjöstrand)

LDRD	goal

Pythia	MCEGCorrelation	functions	
of	TMD	factorization
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TheoristsExperimentalists

LDRD personnel (FY17) 
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Joosten Collins

Melnitchouk

JLab

Rogers	Diefenthaler

PrestelLönnblad

Pythia

Sato	

co-PI co-PIPI

Other	

Ethier
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Monte Carlo Event Generator (MCEG)
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MCEG:	
• faithful	representation	of	QCD	

dynamics
• based	on	QCD	factorization	and	

evolution	equations

Algorithm	of	general-purpose	MCEG:
• generate	kinematics	according	to	

fixed-order	matrix	elements	and	a	
PDF

• parton shower	model	for	
resummation of	soft	gluons	and	
parton-parton scatterings	

• hadronize all	outgoing	partons
including	the	remnants	according	
to	a	model	

• decay	unstable	hadrons	

12



MCEG in HEP and NP
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MCEG

Com-
paring	to	
theory

Detector	
Design

Analysis
Proto-
typing

Validate	
against
theory	

advances

Simulate
experi-
ments

Investi-
gate	
theory	

advances

General-purpose	MCEG:	HERWIG,	Pythia,	SHERPA

experiment theory

Lesson	from	HEP:	
high-precision	QCD	
measurements	require	
high-precision	MCEGs	
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DIRE parton shower
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Parton	shower:	
numerical,	fully	differential	solution	of	evolution	equation	by	iterating	parton decay

DIRE:
• Fundamental	goal:	compare	directly	to	analytical	approaches,	e.g.,	the	one	by	Collins-

Soper-Sterman
• Unique	verification:	implemented	in	both	Pythia	and	Sherpa
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Measurements in NP and HEP
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High	energy	physics	(HEP)
• investigation	of	the	elemental	constituents	of	

matter	and	energy	and	their	interactions	
• observables	of	perturbative	QCD
• perturbative	QCD	calculations	up	to	NNLO
• assuming		the	knowledge	of	the	hadron	

structure	/	PDFs	at	low	energies

Nuclear	physics	(NP)
• investigation	of	nucleon	and	nuclear	

structure	and	associated	dynamics
• observables	of	non-perturbative	QCD
• non-perturbative	quark-gluon	dynamics	

parameterized	in	PDFs	and	FFs

HEPNP
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Connection between NP and HEP
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HEPNP

NP in	HEP:	non-perturbative	QCD,	in	particular	hadronization
• background	suppression,	relevant	for	any	analysis	and	also	for	the	

new	physics searches
• reducing	systematic	uncertainties,	e.g.,	 of	non-perturbative	QCD	

models
• high-precision	measurements,	e.g.,	improving	the	knowledge	on	

the	coupling	constants	by	studying	the	pT spectra

HEP	in	NP:
• combine	MCEG	approaches	with	first	principle	QCD	calculations	to	

proceed	with	QCD	studies	of	non-perturbative	structure
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NP and HP
Section
Early	state	of	our	project
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Work plan
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FY17 FY18 FY19

Hadronization plugin
• user	model	for	

one	phenomenon
• rest	from	Pythia8

Spin-dependent	hadronization

Publication:	Hadronization in	NP	and	HEP
• comparison	Pythia8-TMD	factorization
• language	dictionary
• Pythia8	with	spin-independent	TMDs

Publication:	DIS	in	Pythia8

Publication:	LUND	validation +	TMD	observables

• Incorporate	model	of	trans-
verse	spin	effects	(see	Xavier	
Artru’s talk)	into	Pythia8	

• Anna	Martin	and	Albi	Kerbizi
will	join	project	in	FY18
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Pythia8: Simulating HERA collider results
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preliminary



Pythia8: Simulating HERA fixed-target results
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Pythia8: Simulating HERA fixed-target results
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Validation of LUND string model
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FF analysis from Pythia8 (preliminary)
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Study of Hadronization in NP and HEP
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Urgent	requirement
• MCEG	for	TMDs
• Understanding	of	hadronization process

Unique	approach Connection	between	hadronization
phenomena	in	NP and	HEP.

By	doing	so:
• NP	Improve	theoretical	framework	for	TMDs.
• HEP	Improve	hadronization models.

LDRD:	
started	in	FY17
at	JLab

Pythia	MCEG	
LUND	string	model

Connection	between	NP and	HEP
Correlation	functions	
of	TMD	factorization
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