Opportunities for the Extraction Of TMD Fragmentation Functions

Electron Ion Collider User Group Meeting 2017

J. Osvaldo Gonzalez-Hernandez
University of Turin
&
INFN

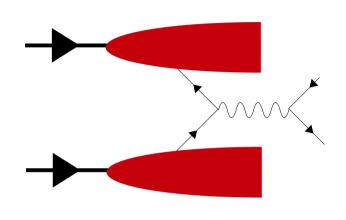
Drell Yan e+e-Fragmentation **PDFs Functions**

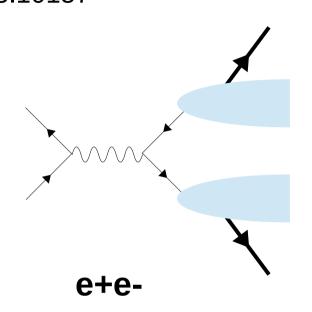
SIDIS

Global Fits?

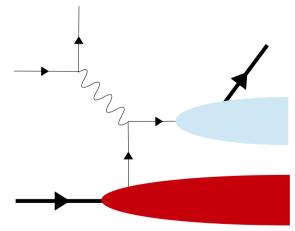
A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, A. Signori arXiv:1703.10157

Drell Yan





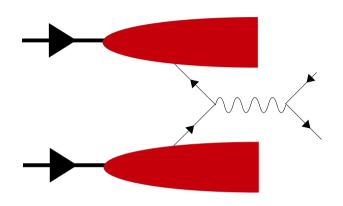
PDFs



Fragmentation Functions

SIDIS

Drell Yan



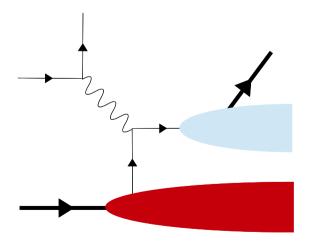
Under control, high precision phenomenology:

See for example: arXiv:1706.01473 Ignazio Scimemi, Alexey Vladimirov

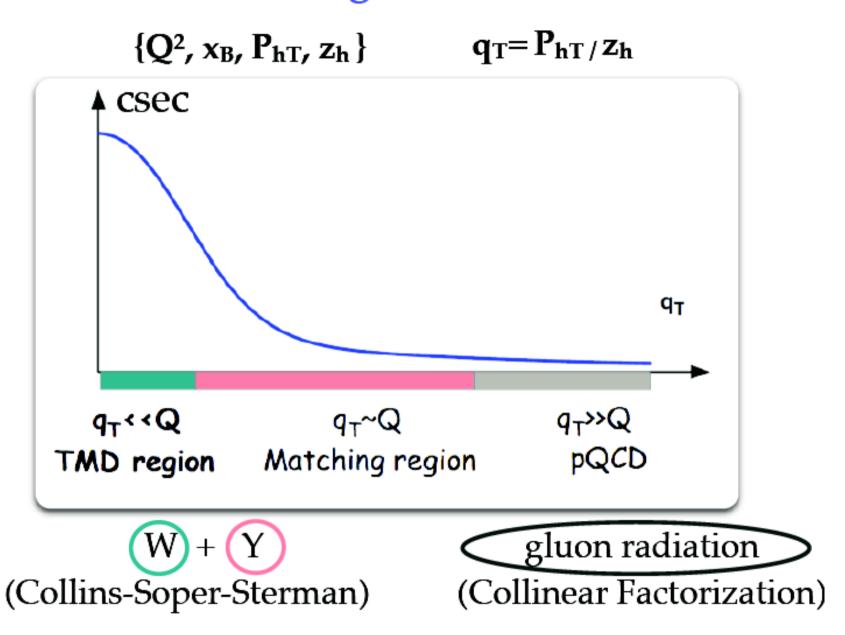
Must still address some issues.

Delicate kinematics of available multidimensional data

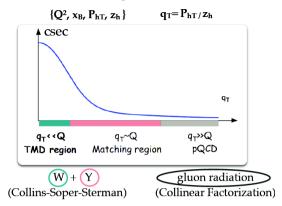
The matching between low and large transverse momentum



The Matching Problem in SIDIS



The Matching Problem in SIDIS



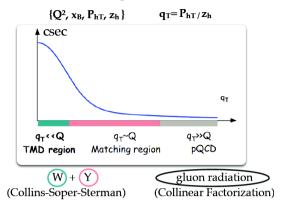
Works for SIDIS at high enough, $Q^2 > 10 \text{ GeV}^2$, energy flow (integration over z_h)

Nadolsky, Stump, Yuan

DOI: 10.1103/PhysRevD.64.059903

However, information about z-dependence gets washed out. Also, integration over z mixes TMD and collinear factorization effects.

The Matching Problem in SIDIS



Works for SIDIS at high enough, $Q^2 > 10 \text{ GeV}^2$, energy flow (integration over z_h)

Nadolsky, Stump, Yuan

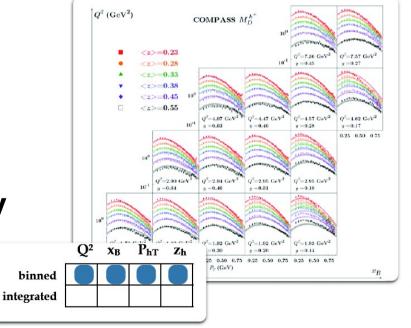
DOI: 10.1103/PhysRevD.64.059903

However, information about z-dependence gets washed out. Also, integration over z mixes TMD and collinear

factorization effects.

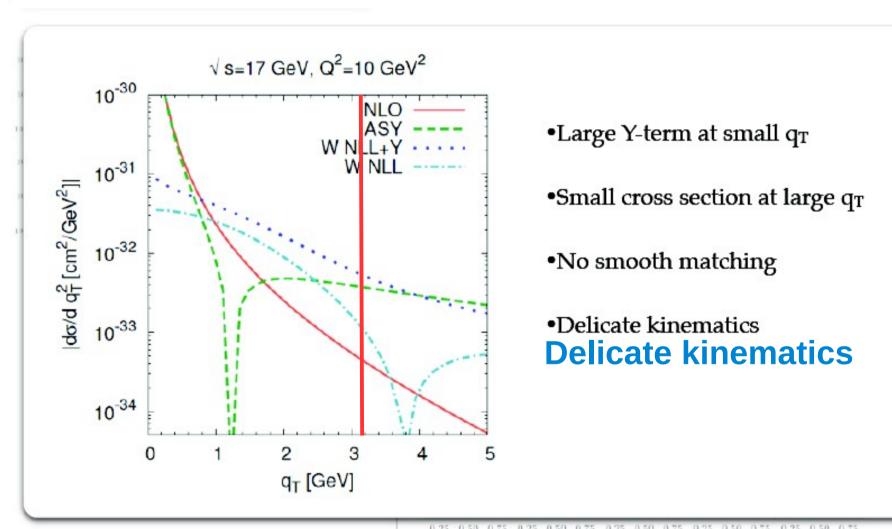
Multidimensional data are ideal.

Can CSS be successfully Implemented?



M. Anselmino, M. Boglione, J.O.G.H., S. Melis, A. Prokudin: Published in JHEP 1404 (2014) 005

Large qT corrections are hard to implement.



M. Boglione, J. Collins, L. Gamberg, JOGH, T. C. Rogers, and N. Sato, Phys. Lett. B766, 245 (2017), 1611.10329.

Source of Errors?

Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} \;=\; \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_q \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \, \boldsymbol{b}_\perp; Q) \, \tilde{f}_{q/P}(x, \boldsymbol{b}_\perp; Q) \right\}$$

+ large q_T corrections + power suppressed terms

Perturbation Theory

Factorization

(Re)Calculation of large qT SIDIS cross section

Work in progress:

J.O.G.H., T. Rogers, N. Sato, A. Signori, B. Wang

$$F_{UU} = \sum_{q} \mathcal{H}_q \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \, \boldsymbol{b}_\perp; Q) \, \tilde{f}_{q/P}(x, \boldsymbol{b}_\perp; Q) \right\}$$

+ large q_T corrections + power suppressed terms

Perturbation Theory

Source of Errors?

Unpolarized SIDIS cross section (current region)

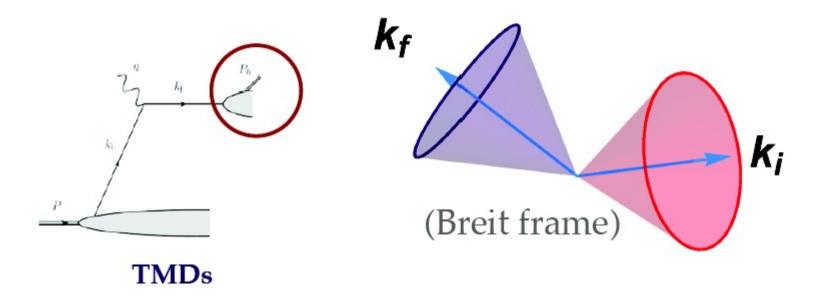
$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} \;=\; \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}\,s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \, \boldsymbol{b}_{\perp}; Q) \, \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

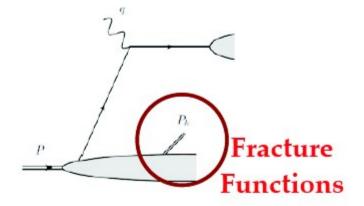
+ large q_T corrections + power suppressed terms

Factorization

Which Region?

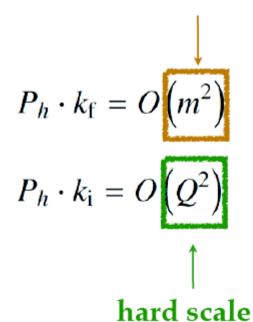


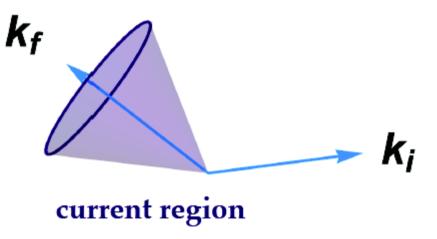
factorization theorems for different leading regions



Power counting and kinematics of the current region

small masses

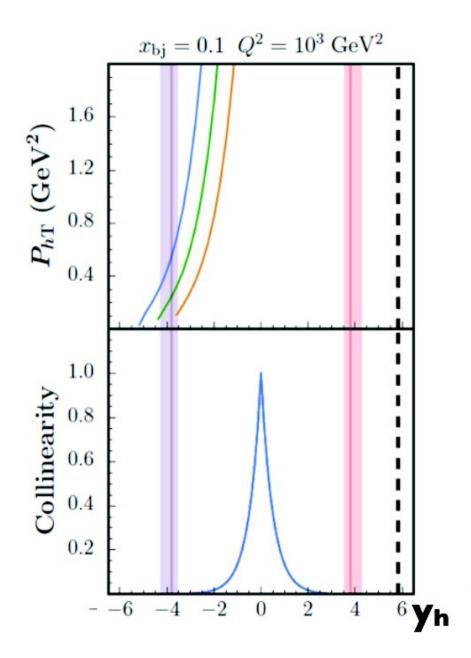




require small values

for
$$R \equiv \frac{P_h \cdot k_f}{P_h \cdot k_i}$$

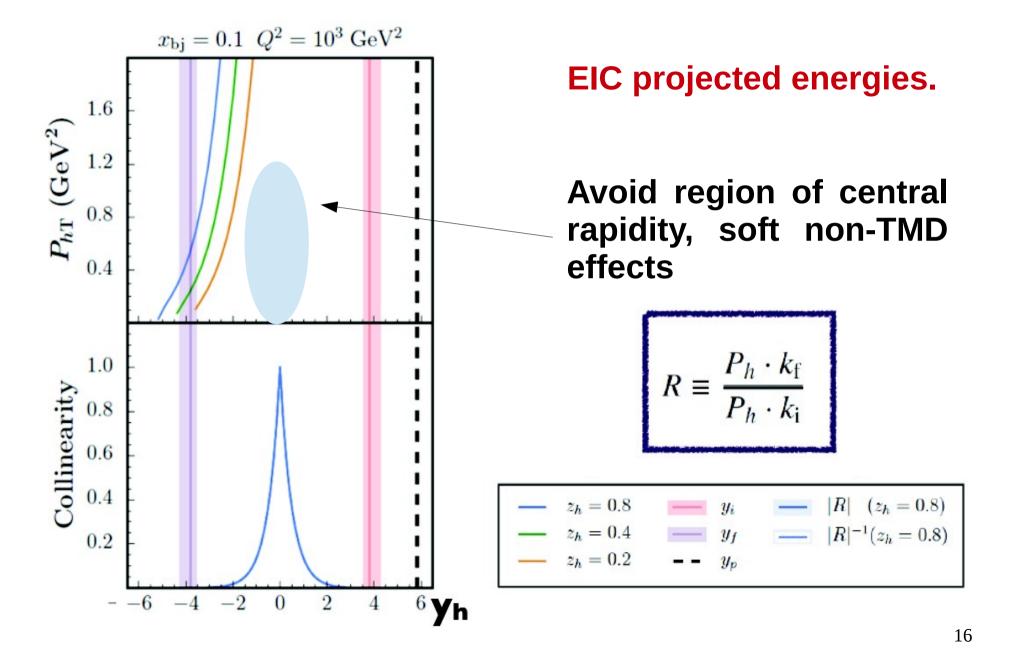
notice quark momenta have to be estimated

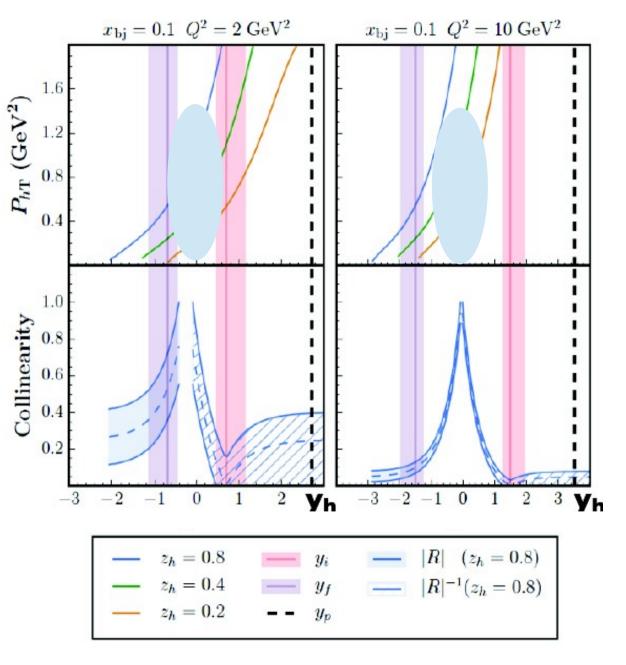


$$y_h \equiv \frac{1}{2} \log \frac{P_h^+}{P_h^-}$$

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

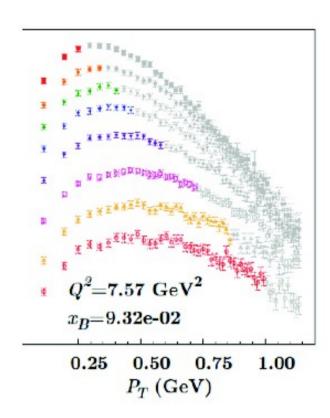
$$z_h = 0.8$$
 y_i $|R|$ $(z_h = 0.8)$ $z_h = 0.4$ y_f $|R|^{-1}(z_h = 0.8)$ $z_h = 0.2$ y_p





Available data is likely to receive contributions from non-TMD physics.

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$



precise implementation of the R criterion on data is work in progress

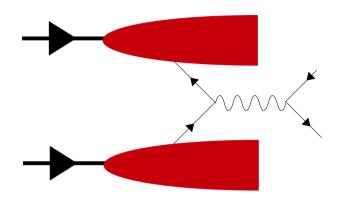
a better set of variables?

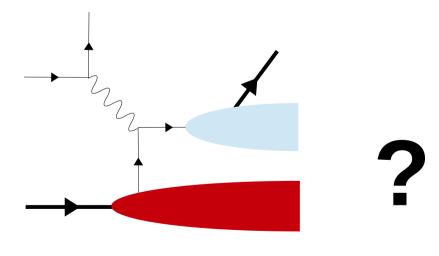
$$\{Q^2, x_B, P_{hT}, z_h\}$$

$$q_T = P_{hT}/z_h$$
 y_h

*ONLY AN EXAMPLE

Drell Yan

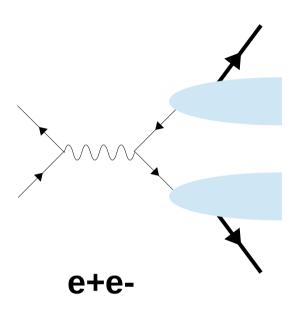




SIDIS

Recently, BELLE, BaBar, BES III Collins asymmetries.

No modern unpolarized measurements are available.

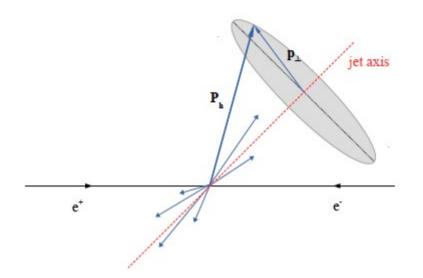


Recently, BELLE, BaBar, BES III Collins asymmetries.

No modern unpolarized measurements are available.

TASSO, MARK II available for **e+e-** → **X h**

- **pT** distributions
- different energies
- integrated over **z**



Boglione, JOGH, R. Taghavi Phys.Lett. B772 (2017) 78 arXiv:1704.08882 P_h jet axis

TASSO, MARK II available for **e+e-** → **X h**

- · pT distribut
- **pT** distributionsdifferent energies
- integrated over **z**

Big Limitation

New analysis:

how much information about the **unpolarized TMD FF** can we get from these data sets?

Use this...

Assuming factorization

$$D_{h/q}(z, p_{\perp}) = d_{h/q}(z) h_d(p_{\perp})$$

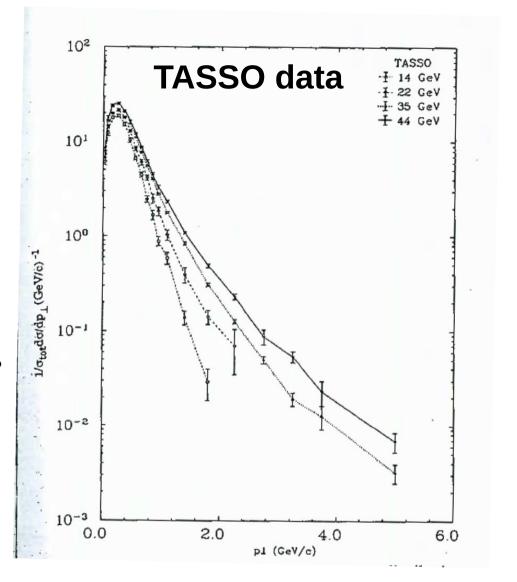
QCD picture

$\tilde{D}_{h/q}(z,\boldsymbol{b}_{\perp};Q) = \sum_{j} \left[\left(\tilde{C}_{j/q} \otimes \frac{d_{h/j}}{z^2} \right) e^{\Gamma_{D}(Q)} \right] \, \exp \left\{ g_{j/P}(x,b_{\perp}) + g_{K}(b_{\perp}) \log \left(\frac{Q}{Q_0} \right) \right\}$

To get information about this

Things to investigate:

- appropriate functional form for ${\bf g}$
- scale evolution regulated by \mathbf{g}_{κ}



$$\tilde{D}_{h/q}(z, \boldsymbol{b}_{\perp}; Q) = \sum_{j} \left[\left(\tilde{C}_{j/q} \otimes \frac{d_{h/j}}{z^2} \right) e^{\Gamma_D(Q)} \right] \exp \left\{ g_{j/P}(x, b_{\perp}) + g_K(b_{\perp}) \log \left(\frac{Q}{Q_0} \right) \right\}$$

$$\exp\left\{g_{j/P}(x,b_{\perp}) + g_K(b_{\perp})\log\left(\frac{Q}{Q_0}\right)\right\}$$

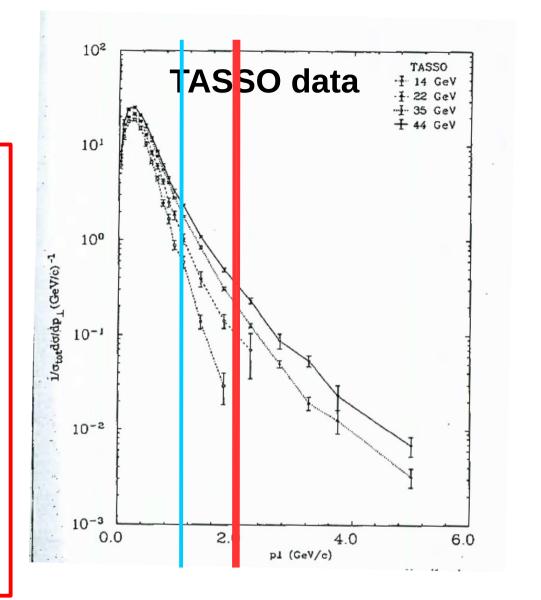
Identify region where TMD Effects dominate:

For fully differential cross sections, matching region is Expected to be at

$$p_{\perp} \sim zQ$$

Use experimental **<z>** to make an estimate

$$p_{\perp} \sim 2 \, \text{GeV}$$



We looked at a restricted range:

$$p_{\perp} < 1 \text{ GeV}$$

Power law to model transverse momentum dependence

$$D_{h/q}(z,p_\perp) = d_{h/q}(z) \; h_d(p_\perp)$$

$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^2 + M^2)^{\alpha}}$$

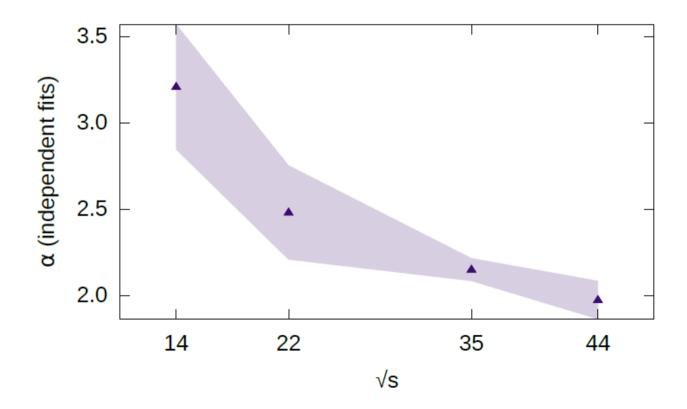


Boglione, JOGH, Taghavi

Phys.Lett. B772 (2017) 78-86

Power law parameters follow a logarithmic trend

$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^2 + M^2)^{\alpha}}$$



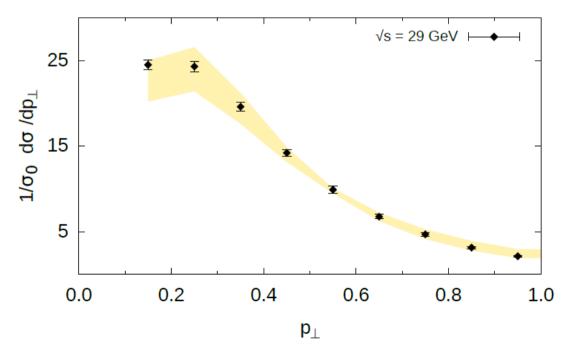
Boglione, JOGH, Taghavi

Phys.Lett. B772 (2017) 78-86

Power law parameters follow a logarithmic trend Consistent with MARK II data.

$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^2 + M^2)^{\alpha}}$$

COMPARISON TO MARK II



Boglione, JOGH, Taghavi

Phys.Lett. B772 (2017) 78-86

TMD

$$\mathcal{F}^{-1}\left\{\frac{d\sigma^h}{dz\,d^2\boldsymbol{p}_\perp}\right\}\propto \exp\left\{\left(\lambda_\Gamma(b_*)+g_K(b_\perp)\right)\log\left(\frac{Q}{Q_0}\right)\right\}\bigg|_{b_\perp\to z\,b_\perp}$$

$$\lambda_{\Gamma}(b_*) \equiv \frac{32}{27} \log \left(\log \frac{2e^{-\gamma_E}}{\Lambda_{QCD} b_*} \right)$$

MODEL
$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^2 + M^2)^{\alpha}}$$

$$\mathcal{F}^{-1}\left\{\frac{1}{\left(p_{\perp}^{2}+\mathrm{M}^{2}\right)^{\alpha}}\right\} \xrightarrow{\text{large }b_{\perp}} \frac{1}{2^{\alpha}\,\pi\,\Gamma(\alpha)}\left(\frac{b_{\perp}}{\mathrm{M}}\right)^{\alpha-1}\sqrt{\frac{\pi}{2}}\,\frac{e^{-b_{\perp}\mathrm{M}}}{\sqrt{b_{\perp}\mathrm{M}}}\left[1+O\left(\frac{1}{b_{\perp}\mathrm{M}}\right)\right]$$

TMD

$$\mathcal{F}^{-1}\left\{\frac{d\sigma^h}{dz\,d^2\boldsymbol{p}_\perp}\right\}\propto \exp\left\{\left(\lambda_\Gamma(b_*)+g_K(b_\perp)\right)\log\left(\frac{Q}{Q_0}\right)\right\}\bigg|_{b_\perp\to z\,b_\perp}$$

$$\lambda_{\Gamma}(b_*) \equiv \frac{32}{27} \log \left(\log \frac{2e^{-\gamma_E}}{\Lambda_{QCD} b_*} \right)$$

Logarithmic behavior of alpha may be interpreted as a consequence of the **Log** in the definition of the **TMD FF**.

$$\alpha = \alpha_0 + \tilde{\alpha} \log \left(\frac{Q}{Q_0}\right)$$

$$g_K(b_\perp) \xrightarrow{\text{large } b_\perp} \tilde{\alpha} \log(v b_\perp)$$

$$g_K(b_\perp) \stackrel{\text{large } b_\perp}{\longrightarrow} \tilde{\alpha} \log(\nu \, b_\perp)$$

TMD

There are caveats on this interpretation, while consistent with theoretical expectations, it's not the only possibility.

(loss of information through z-integration)

Logarithmic behavior of alpha may be interpreted as a consequence of the **Log** in the definition of the **TMD FF**.

$$\alpha = \alpha_0 + \tilde{\alpha} \log \left(\frac{Q}{Q_0} \right)$$

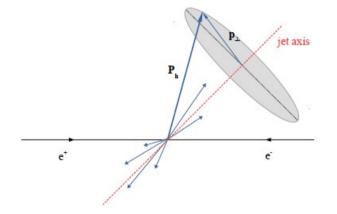
$$g_K(b_\perp) \xrightarrow{\text{large } b_\perp} \tilde{\alpha} \log(\nu b_\perp)$$

The lack of information about **z** hinders a full TMD extraction of the FF.

Future upcoming data by BELLE on unpolarized one-hadron production may allow for a combined analysis with TASSO and MARK II data.

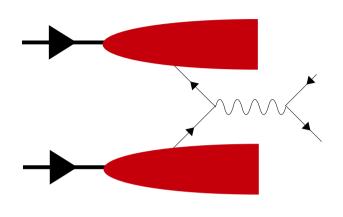
e+e-

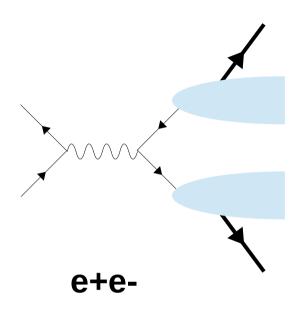
Phenomenological Test for factorization



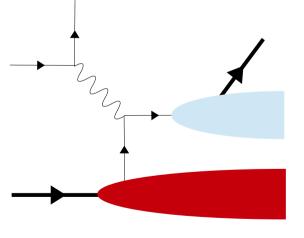
Extraction from data?

Drell Yan





Let's keep working, but let us be careful with interpretations



Fragmentation Functions

Final Remarks

Currently, we are attempting to do phenomenology within **full QCD picture**.

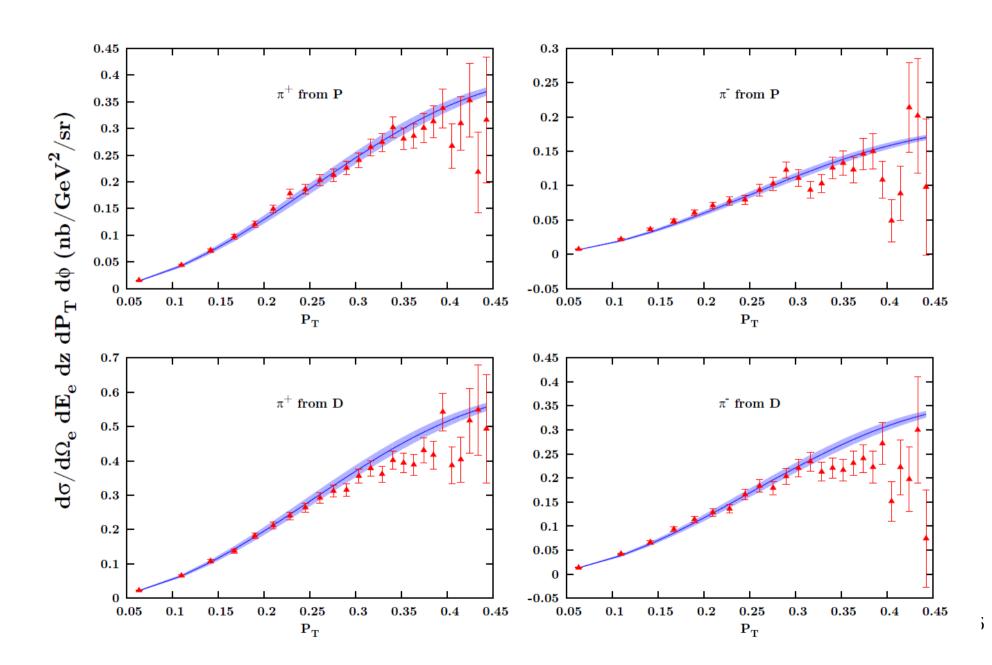
Recent SIDIS multidimensional data is so far the most suitable way to access information about the unpolarized TMD FF. Must solve some *theoretical issues*.

On the side of e+e- one hadron production, in the near future unpolarized cross sections by BELLE may allow for an analysis of the older sets, TASSO MARKII within a full TMD picture.

TMD Factorization for e+e- one hadron production?

Thank you.

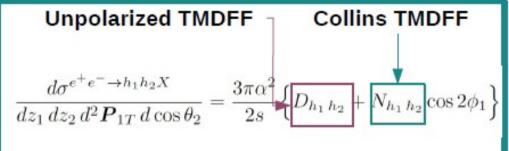
Jlab SIDIS data (2012) (Parameters from HERMES extraction).



Ingredients for extraction of Collins function.

$e^+e^- \rightarrow \pi \pi X$

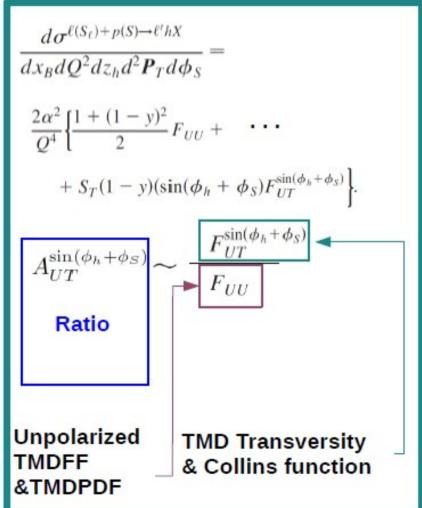
SIDIS



$$P_0^{U,L,C} = \frac{N^{U,L,C}}{D^{U,L,C}}$$
 Ratio

$$\begin{split} D^U &= D_{\pi^+\pi^-} + D_{\pi^-\pi^+} & N^U &= N_{\pi^+\pi^-} + N_{\pi^-\pi^+} \\ D^L &= D_{\pi^+\pi^+} + D_{\pi^-\pi^-} & N^L &= N_{\pi^+\pi^+} + N_{\pi^-\pi^-} \\ D^C &= D^U + D^L & N^C &= N^U + N^L \,, \end{split}$$

$$\frac{A_0^U}{A_0^{L(C)}} \equiv 1 + \cos(2\phi_1) A_0^{UL(C)}$$
 Ratio



Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} \;=\; \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \, \boldsymbol{b}_{\perp}; \, Q) \, \, \tilde{f}_{q/P}(x, \, \boldsymbol{b}_{\perp}; \, Q) \right\}$$

+ large q_T corrections + power suppressed terms

