

A_N in $l p \rightarrow h X$ TMD approach and quasireal photon contribution

Umberto D'Alesio Università & INFN - Cagliari

A_N in $l p \rightarrow h X$ TMD approach and quasireal photon contribution

Umberto D'Alesio Università & INFN - Cagliari

UD, C. Flore and F. Murgia PRD95 (2017)

- TMD approach and SSAs in inclusive processes: *lp* vs. *pp*
- Quasireal photon contribution
- Comparison with data on SSAs
- Predictions at (and role of) EIC
- Conclusions

Transverse SSAs in inclusive processes:

large amount of data in pp collisions: sizeable from low to high energies (RHIC)

□ Single scale processes, sub-leading SSAs

Transverse SSAs in inclusive processes:

large amount of data in pp collisions: sizeable from low to high energies (RHIC)

□ Single scale processes, sub-leading SSAs

Approaches:
Twist-three formalism (collinear factorization proven)
TMD scheme (phenomenological approach)

□ In both cases phenomenology quite involved: many channels, many effects

Transverse SSAs in inclusive processes:

large amount of data in pp collisions: sizeable from low to high energies (RHIC)

□ Single scale processes, sub-leading SSAs

Approaches:
Twist-three formalism (collinear factorizzation proven)
TMD scheme (phenomenological approach)

□ In both cases phenomenology quite involved: many channels, many effects

SSAs in inclusive particle production in lepton-proton collisions Simpler (theor.): less channels, less color structure

- Close to SIDIS...a sort of bridge to pp collisions

A testing ground for

- approaches (twist-3 vs. TMD)
- a TMD unified picture (use of same TMDs as extracted from SIDIS)

A_N in $l p \rightarrow h X$

A_N in $l p \rightarrow h X$

LO: $lq \rightarrow lq$

Anselmino, Boglione, UD, Melis, Murgia, Prokudin (2010: first study; 2014: comparison with data)

Fairly good description of HERMES data but

A_N in $l p \rightarrow h X$

LO: $lq \rightarrow lq$

Anselmino, Boglione, UD, Melis, Murgia, Prokudin (2010: first study; 2014: comparison with data)

Fairly good description of HERMES data but

Inclusive events: final lepton scattered almost collinear $Q^2 \approx 0$

Quasireal photon exchange

Lepton as a source of quasi-real γ $l \rightarrow l' \gamma$: final lepton almost collinear

$$\sigma^{WW}(\ell p \to hX) = \int dy f_{\gamma/\ell}(y) \,\sigma(\gamma p \to hX)$$

$$f_{\gamma/\ell}(y) = \frac{\alpha}{2\pi} \frac{1 + (1 - y)^2}{y} \left[\ln\left(\frac{\mu^2}{y^2 m_{\ell}^2}\right) - 1 \right]$$

unpol xsecs. at NLO and WW in a collinear framework Hinderer, Schlegel, Vogelsang (2015)

Weizsäcker-Williams approximation

Reanalysis of SSAs (and unpol. xsecs): UD, Flore, Murgia 2017

TMD scheme + Weizsäcker-Williams approx. two fragmentation function sets (Kretzer, DSS)

TMD scheme + Weizsäcker-Williams approx. two fragmentation function sets (Kretzer, DSS)

WW dominates at **smaller** P_T (smaller y) and in the **backward** region ($x_F > 0$): Naively $Q \sim 0$ (real photon) expected for forward scattering but LO only $1/t^2 \equiv 1/Q^2$ while WW also 1/su, with $|u| \ll |t|$ in the backward region

TMD scheme + Weizsäcker-Williams approx. two fragmentation function sets (Kretzer, DSS)

- HERMES SSA data (backward region)
 - higher statistics at $P_T \ll 1$ GeV: out of pQCD regime
 - anti-tagged events, $P_T \ge 1$ GeV: mixture of low and large Q^2 components
 - tagged events: $Q^2 > 1 \text{ GeV}^2$

- HERMES SSA data (backward region)
 - higher statistics at $P_T \ll 1$ GeV: out of pQCD regime
 - anti-tagged events, $P_T \ge 1$ GeV: mixture of low and large Q^2 components
 - tagged events: $Q^2 > 1 \text{ GeV}^2$

First study: LO (Anselmino, Boglione, UD, Melis, Murgia, Prokudin 2014): \Box inclusive and tagged event categories (large Q^2 component)

- HERMES SSA data (backward region)
 - higher statistics at $P_T \ll 1$ GeV: out of pQCD regime
 - anti-tagged events, $P_T \ge 1$ GeV: mixture of low and large Q^2 components
 - tagged events: $Q^2 > 1 \text{ GeV}^2$

First study: LO (Anselmino, Boglione, UD, Melis, Murgia, Prokudin 2014): \Box inclusive and tagged event categories (large Q^2 component)

This study (UD, Flore, Murgia 2017):
improvement in description of inclusive events (low Q² component)
anti-tagged events (new)

Only quark Sivers and (marginally) Collins effects sizeable

Predictions from SIDIS extractions

HERMES data (2014), $P_T > 1 \text{ GeV}$

Only quark Sivers and (marginally) Collins effects sizeable

Predictions from SIDIS extractions

HERMES data (2014), $P_T > 1 \text{ GeV}$

Here $x_F > 0$: forward proton hemisphere (like pp collisions)

Here $x_F > 0$: forward proton hemisphere (like pp collisions)

- WW+LO same as LO in the SSA (ratio)

- $x_F > 0$ A_N rising in x_F as in $pp \rightarrow \pi X$ at RHIC;
- $x_F < 0$ NO spin-TMDs effects

Transverse single spin asymmetries

EIC, $\sqrt{s} = 100 \text{ GeV}$

Here $x_F > 0$: forward proton hemisphere (like pp collisions)

- WW+LO same as LO in the SSA (ratio)
- $x_F > 0$ A_N rising in x_F as in $pp \rightarrow \pi X$ at RHIC;
- $x_F < 0$ NO spin-TMDs effects
- flat P_T behaviour as in $pp \rightarrow \pi X$ at STAR

• SSAs in $lp \rightarrow h X$: test of the TMD approach in single-scale inclusive processes

- SSAs in $lp \rightarrow h X$: test of the TMD approach in single-scale inclusive processes
- Strong analogy with SSAs in $pp \rightarrow hX$ but simpler
- Bridge between SIDIS and $pp \rightarrow hX$
- Use of SIDIS TMD extractions: unified TMD picture

- SSAs in $lp \rightarrow h X$: test of the TMD approach in single-scale inclusive processes
- Strong analogy with SSAs in $pp \rightarrow hX$ but simpler
- Bridge between SIDIS and $pp \rightarrow hX$
- Use of SIDIS TMD extractions: unified TMD picture
- Role of quasireal photon contribution
 - Big in unpolarized cross sections, relevant in SSAs at low energies
 - improvement in description of available SSA data

- SSAs in $lp \rightarrow h X$: test of the TMD approach in single-scale inclusive processes
- Strong analogy with SSAs in $pp \rightarrow hX$ but simpler
- Bridge between SIDIS and $pp \rightarrow hX$
- Use of SIDIS TMD extractions: unified TMD picture
- Role of quasireal photon contribution
 - Big in unpolarized cross sections, relevant in SSAs at low energies
 - improvement in description of available SSA data
- Studies of SSAs at EIC: expected similar behaviour in x_F and P_T as in $pp \rightarrow hX$ towards a unified TMD picture of SSAs

BACK-UP SLIDES

 $21/07/2017 \qquad \ \ EICUG2017 \qquad \qquad U. \ D'Alesio \quad AN \ in \ lp->hX \ , \ TMD \ approach...$

COMPASS

Unpolarized xsecs.

Transverse SSAs

 μ 200 times heavier than *e*: less role of WW

NOTICE $x_F > 0$ backward proton hemisph.

JLAB 12 GeV

Unpolarized xsecs.

Transverse SSAs

