
In questo manuale sono illustrate 
le regole base per la corretta 
applicazione del marchio 
Università di Pavia. 
Il logo, i caratteri tipografici e i colori 
scelti sono infatti gli elementi 
che partecipano alla costruzione 
dell’identità visiva di qualsiasi attore 
che voglia presentarsi al mercato, 
sia esso un prodotto mass market, 
un’Istituzione o un ateneo. 
Sono il suo volto commerciale ma 
anche istituzionale, quello che 
permetterà all’Università di Pavia di 
essere riconoscibile nel tempo 
agli occhi del suo pubblico interno, 
ma anche esterno. 
Proprio per il ruolo centrale  
che rivestono, tali elementi devono 
essere rappresentati e utilizzati 

secondo regole precise e inderogabili, 
al fine di garantire la coerenza e 
l’efficacia dell’intero sistema di identità 
visiva. Per questo è importante che il 
manuale, nella sua forma cartacea 
o digitale, venga trasmesso a tutti 
coloro che in futuro si occuperanno 
di progettare elementi di 
comunicazione per l’Università di 
Pavia.
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Proton 1D “imaging”
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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
uncertainty bands of ABM12 [2], HERAPDF2.0 [4] and JR14 (set JR14NNLO08VF) [5] at NNLO at the
scale Q2 = 4 GeV2; absolute results (left) and ratio with respect to ABM12 (right).
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FIG. 2: Same as Fig. 1 for the CT14 [3], MMHT14 [6] and NNPDF3.0 [7] PDF sets with their 1 �
uncertainty bands at NNLO; absolute results (left) and ratio with respect to CT14 (right).
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FIG. 1: The u-valence, d-valence, gluon and sea quark (x⌃ = 2x(ū + c̄ + d̄ + s̄)) PDFs with their 1 �
uncertainty bands of ABM12 [2], HERAPDF2.0 [4] and JR14 (set JR14NNLO08VF) [5] at NNLO at the
scale Q2 = 4 GeV2; absolute results (left) and ratio with respect to ABM12 (right).
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Accardi et al., arXiv:1603.08906 

http://arxiv.org/abs/arXiv:1603.08906
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With transverse spin: distortions  
encoded in Sivers TMD  
Requires presence of orbital angular 
momentum

Unpolarized TMD: cylindrically symmetric
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3D “imaging” in impact parameter space

8
Diehl, Kroll, arXiv:1302.4604, and talk by M. Diehl at DIS 2013

down valence
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• To measure what we are not able to compute in QCD

• To make predictions in other fields (high energy hadronic collisions, cosmic 
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Example: impact on high-energy physics
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ATLAS Collab. arXiv:1701.07240

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: EPJC CERN-EP-2016-305
26th January 2017

Measurement of the W-boson mass in pp collisions
at
p

s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

A measurement of the mass of the W boson is presented based on proton–proton collision
data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the
LHC, and corresponding to 4.6 fb�1 of integrated luminosity. The selected data sample
consists of 7.8 ⇥ 106 candidates in the W ! µ⌫ channel and 5.9 ⇥ 106 candidates in the
W ! e⌫ channel. The W-boson mass is obtained from template fits to the reconstructed
distributions of the charged lepton transverse momentum and of the W boson transverse
mass in the electron and muon decay channels, yielding

mW = 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV
= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corresponds to the experimental system-
atic uncertainty, and the third to the physics-modelling systematic uncertainty. A meas-
urement of the mass di↵erence between the W+ and W� bosons yields mW+ � mW� =

�29 ± 28 MeV.

c� 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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W-boson charge W+ W� Combined
Kinematic distribution p`T mT p`T mT p`T mT

�mW [MeV]
Fixed-order PDF uncertainty 13.1 14.9 12.0 14.2 8.0 8.7
AZ tune 3.0 3.4 3.0 3.4 3.0 3.4
Charm-quark mass 1.2 1.5 1.2 1.5 1.2 1.5
Parton shower µF with heavy-flavour decorrelation 5.0 6.9 5.0 6.9 5.0 6.9
Parton shower PDF uncertainty 3.6 4.0 2.6 2.4 1.0 1.6
Angular coe�cients 5.8 5.3 5.8 5.3 5.8 5.3

Total 15.9 18.1 14.8 17.2 11.6 12.9

Table 3: Systematic uncertainties in the mW measurement due to QCD modelling, for the di↵erent kinematic dis-
tributions and W-boson charges. Except for the case of PDFs, the same uncertainties apply to W+ and W�. The
fixed-order PDF uncertainty given for the separate W+ and W� final states corresponds to the quadrature sum of
the CT10nnlo uncertainty variations; the charge-combined uncertainty also contains a 3.8 MeV contribution from
comparing CT10nnlo to CT14 and MMHT2014.

6.5 Uncertainties in the QCD modelling

Several sources of uncertainty related to the perturbative and non-perturbative modelling of the strong
interaction a↵ect the dynamics of the vector-boson production and decay [33, 100–102]. Their impact
on the measurement of mW is assessed through variations of the model parameters of the predictions
for the di↵erential cross sections as functions of the boson rapidity, transverse-momentum spectrum at
a given rapidity, and angular coe�cients, which correspond to the second, third, and fourth terms of
the decomposition of Eq. (2), respectively. The parameter variations used to estimate the uncertainties
are propagated to the simulated event samples by means of the reweighting procedure described in Sec-
tion 6.4. Table 3 shows an overview of the uncertainties due to the QCD modelling which are discussed
below.

6.5.1 Uncertainties in the fixed-order predictions

The imperfect knowledge of the PDFs a↵ects the di↵erential cross section as a function of boson rapidity,
the angular coe�cients, and the pW

T distribution. The PDF contribution to the prediction uncertainty is
estimated with the CT10nnlo PDF set by using the Hessian method [103]. There are 25 error eigenvectors,
and a pair of PDF variations associated with each eigenvector. Each pair corresponds to positive and
negative 90% CL excursions along the corresponding eigenvector. Symmetric PDF uncertainties are
defined as the mean value of the absolute positive and negative excursions corresponding to each pair of
PDF variations. The overall uncertainty of the CT10nnlo PDF set is scaled to 68% CL by applying a
multiplicative factor of 1/1.645.

The e↵ect of PDF variations on the rapidity distributions and angular coe�cients are evaluated with
DYNNLO, while their impact on the W-boson pT distribution is evaluated using Pythia 8 and by re-
weighting event-by-event the PDFs of the hard-scattering process, which are convolved with the LO
matrix elements. Similarly to other uncertainties which a↵ect the pW

T distribution (Section 6.5.2), only

18

https://arxiv.org/abs/1701.07240
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ATLAS Collab. arXiv:1701.07240

Most of the uncertainties come from QCD. This particular 
contribution contains also intrinsic transverse momentum of 
partons

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: EPJC CERN-EP-2016-305
26th January 2017

Measurement of the W-boson mass in pp collisions
at
p

s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

A measurement of the mass of the W boson is presented based on proton–proton collision
data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the
LHC, and corresponding to 4.6 fb�1 of integrated luminosity. The selected data sample
consists of 7.8 ⇥ 106 candidates in the W ! µ⌫ channel and 5.9 ⇥ 106 candidates in the
W ! e⌫ channel. The W-boson mass is obtained from template fits to the reconstructed
distributions of the charged lepton transverse momentum and of the W boson transverse
mass in the electron and muon decay channels, yielding

mW = 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV
= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corresponds to the experimental system-
atic uncertainty, and the third to the physics-modelling systematic uncertainty. A meas-
urement of the mass di↵erence between the W+ and W� bosons yields mW+ � mW� =

�29 ± 28 MeV.

c� 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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W-boson charge W+ W� Combined
Kinematic distribution p`T mT p`T mT p`T mT

�mW [MeV]
Fixed-order PDF uncertainty 13.1 14.9 12.0 14.2 8.0 8.7
AZ tune 3.0 3.4 3.0 3.4 3.0 3.4
Charm-quark mass 1.2 1.5 1.2 1.5 1.2 1.5
Parton shower µF with heavy-flavour decorrelation 5.0 6.9 5.0 6.9 5.0 6.9
Parton shower PDF uncertainty 3.6 4.0 2.6 2.4 1.0 1.6
Angular coe�cients 5.8 5.3 5.8 5.3 5.8 5.3

Total 15.9 18.1 14.8 17.2 11.6 12.9

Table 3: Systematic uncertainties in the mW measurement due to QCD modelling, for the di↵erent kinematic dis-
tributions and W-boson charges. Except for the case of PDFs, the same uncertainties apply to W+ and W�. The
fixed-order PDF uncertainty given for the separate W+ and W� final states corresponds to the quadrature sum of
the CT10nnlo uncertainty variations; the charge-combined uncertainty also contains a 3.8 MeV contribution from
comparing CT10nnlo to CT14 and MMHT2014.

6.5 Uncertainties in the QCD modelling

Several sources of uncertainty related to the perturbative and non-perturbative modelling of the strong
interaction a↵ect the dynamics of the vector-boson production and decay [33, 100–102]. Their impact
on the measurement of mW is assessed through variations of the model parameters of the predictions
for the di↵erential cross sections as functions of the boson rapidity, transverse-momentum spectrum at
a given rapidity, and angular coe�cients, which correspond to the second, third, and fourth terms of
the decomposition of Eq. (2), respectively. The parameter variations used to estimate the uncertainties
are propagated to the simulated event samples by means of the reweighting procedure described in Sec-
tion 6.4. Table 3 shows an overview of the uncertainties due to the QCD modelling which are discussed
below.

6.5.1 Uncertainties in the fixed-order predictions

The imperfect knowledge of the PDFs a↵ects the di↵erential cross section as a function of boson rapidity,
the angular coe�cients, and the pW

T distribution. The PDF contribution to the prediction uncertainty is
estimated with the CT10nnlo PDF set by using the Hessian method [103]. There are 25 error eigenvectors,
and a pair of PDF variations associated with each eigenvector. Each pair corresponds to positive and
negative 90% CL excursions along the corresponding eigenvector. Symmetric PDF uncertainties are
defined as the mean value of the absolute positive and negative excursions corresponding to each pair of
PDF variations. The overall uncertainty of the CT10nnlo PDF set is scaled to 68% CL by applying a
multiplicative factor of 1/1.645.

The e↵ect of PDF variations on the rapidity distributions and angular coe�cients are evaluated with
DYNNLO, while their impact on the W-boson pT distribution is evaluated using Pythia 8 and by re-
weighting event-by-event the PDFs of the hard-scattering process, which are convolved with the LO
matrix elements. Similarly to other uncertainties which a↵ect the pW

T distribution (Section 6.5.2), only
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Most of the uncertainties come from QCD. This particular 
contribution contains also intrinsic transverse momentum of 
partons

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: EPJC CERN-EP-2016-305
26th January 2017

Measurement of the W-boson mass in pp collisions
at
p

s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

A measurement of the mass of the W boson is presented based on proton–proton collision
data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the
LHC, and corresponding to 4.6 fb�1 of integrated luminosity. The selected data sample
consists of 7.8 ⇥ 106 candidates in the W ! µ⌫ channel and 5.9 ⇥ 106 candidates in the
W ! e⌫ channel. The W-boson mass is obtained from template fits to the reconstructed
distributions of the charged lepton transverse momentum and of the W boson transverse
mass in the electron and muon decay channels, yielding

mW = 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV
= 80370 ± 19 MeV,

where the first uncertainty is statistical, the second corresponds to the experimental system-
atic uncertainty, and the third to the physics-modelling systematic uncertainty. A meas-
urement of the mass di↵erence between the W+ and W� bosons yields mW+ � mW� =

�29 ± 28 MeV.

c� 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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on the measurement of mW is assessed through variations of the model parameters of the predictions
for the di↵erential cross sections as functions of the boson rapidity, transverse-momentum spectrum at
a given rapidity, and angular coe�cients, which correspond to the second, third, and fourth terms of
the decomposition of Eq. (2), respectively. The parameter variations used to estimate the uncertainties
are propagated to the simulated event samples by means of the reweighting procedure described in Sec-
tion 6.4. Table 3 shows an overview of the uncertainties due to the QCD modelling which are discussed
below.

6.5.1 Uncertainties in the fixed-order predictions

The imperfect knowledge of the PDFs a↵ects the di↵erential cross section as a function of boson rapidity,
the angular coe�cients, and the pW

T distribution. The PDF contribution to the prediction uncertainty is
estimated with the CT10nnlo PDF set by using the Hessian method [103]. There are 25 error eigenvectors,
and a pair of PDF variations associated with each eigenvector. Each pair corresponds to positive and
negative 90% CL excursions along the corresponding eigenvector. Symmetric PDF uncertainties are
defined as the mean value of the absolute positive and negative excursions corresponding to each pair of
PDF variations. The overall uncertainty of the CT10nnlo PDF set is scaled to 68% CL by applying a
multiplicative factor of 1/1.645.

The e↵ect of PDF variations on the rapidity distributions and angular coe�cients are evaluated with
DYNNLO, while their impact on the W-boson pT distribution is evaluated using Pythia 8 and by re-
weighting event-by-event the PDFs of the hard-scattering process, which are convolved with the LO
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Table 2. Science Matrix for TMD: 3D structure in transverse-momentum space: the golden measurements (upper part); the
silver measurements (lower part).

Deliverables Observables What we learn

Sivers & SIDIS with Quantum interference & spin-orbital correlations

unpolarized transverse 3D Imaging of quark’s motion: valence + sea

TMD quarks polarization; 3D Imaging of gluon’s motion

and gluon di-hadron (di-jet) QCD dynamics in an unprecedented Q2 (PhT ) range

Chiral-odd SIDIS with 3rd basic quark PDF: valence + sea, tensor charge

functions: transverse Novel spin-dependent hadronization effect

transversity; polarization QCD dynamics in a chiral-odd sector

Boer-Mulders with a wide Q2 (PhT ) coverage

x + ξ x − ξ

p p

x + ξ x − ξ

p p

γ ∗ γ ∗γ V

Fig. 23. Graphs for deeply virtual Compton scattering (left)
and for exclusive vector meson production (right) in terms of
generalized parton distributions, which are represented by the
lower blobs. The upper filled oval in the right figure represents
the meson wave function.

Weighting with the fractional quark charges eq and
integrating over x, one obtains a relation with the electro-
magnetic Dirac and Pauli form factors of the proton:

∑

q

eq

∫
dxHq(x, ξ, t) = F p

1 (t),

∑

q

eq

∫
dxEq(x, ξ, t) = F p

2 (t) (14)

and an analogous relation to the neutron form factors.
At small t the Pauli form factors of the proton and the
neutron are both large, so that the distributions E for up
and down quarks cannot be small everywhere.

2.4 Spatial imaging of quarks and gluons4

2.4.1 Physics motivations and measurement principle

Spatial imaging

Elastic electron-nucleon scattering has played a ma-
jor role in our understanding of strong interactions ever
since the Hofstadter experiment showed that protons and
neutrons are not point-like particles. Measurements of the
electromagnetic nucleon form factors have become ever
more precise [97] and give detailed information about the
spatial distribution of electric charge and magnetization

4 Conveners: Markus Diehl and Franck Sabatié.

in the nucleon. Further information (albeit with less ac-
curacy) can be obtained from neutral and charged weak
currents. However, elastic scattering does not reveal the
distribution of gluons, which carry only color charge, and
it is not selectively sensitive to sea quarks.

Hard exclusive scattering processes bring the idea of
imaging to a new qualitative level by probing the trans-
verse distribution of quarks, anti-quarks and gluons as a
function of their longitudinal momentum in the nucleon.
One may regard this as a tomography of the nucleon, with
two-dimensional spatial images being taken for different
“slices” of the parton momentum fraction, x. In different
terms, one maps out in this way the (2 + 1)-dimensional
structure of the nucleon, with two dimensions in space and
one in momentum.

Such spatial images of partons can provide insight into
the fundamental questions about QCD dynamics inside
hadrons spelled out in sect. 2.1. In particular, quantifying
the difference in the distributions of quarks and gluons
will shed light on their dynamical interplay, and the de-
pendence of the transverse distribution of quarks on x will
reveal to what extent sea and valence quarks have differ-
ent or similar characteristics. As the size of effects that
can be expected is not huge, measurements with high pre-
cision are crucial to uncover them.

We will show that with a suitable setup of detec-
tors and the interaction region, the EIC will be able to
probe partons at transverse distances bT up to about
1.5 fm or even higher. In this region, there are definite
predictions [98, 99] for the impact parameter distribution
f(x, bT ) of partons, namely an exponential falloff in bT

(akin to the one produced by a Yukawa potential) with
a characteristic length that depends on x and is of order
1/(2mπ) ≈ 0.7 fm. This behavior results from quantum
fluctuations with virtual pions at large bT , sometimes re-
ferred to as the “pion cloud” of the nucleon. The char-
acteristics of these fluctuations are a direct consequence
of the breakdown of chiral symmetry in QCD and can
be computed using effective field theory methods. From a
different point of view, one may hope that the structure
of the proton of distances on the femtometer scale will
eventually help us to better understand the mechanism of
confinement.
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Framework HERMES COMPASS DY
Z 

production
N of points

KN 2006 
hep-ph/0506225

NLL/NLO ✘ ✘ ✔ ✔ 98

Pavia 2013  
arXiv:1309.3507

No evo ✔ ✘ ✘ ✘ 1538

Torino 2014 
arXiv:1312.6261

No evo ✔  
(separately)

✔  
(separately)

✘ ✘
576 (H)  

6284 (C)

DEMS 2014  
arXiv:1407.3311

NNLL/NLO ✘ ✘ ✔ ✔ 223

EIKV 2014  
arXiv:1401.5078

NLL/LO 1 (x,Q2) bin 1 (x,Q2) bin ✔ ✔ 500 (?)

Pavia 2016 
arXiv:1703.10157

NLL/LO ✔ ✔ ✔ ✔ 8059

SV 2017  
arXiv:1706.01473

NNLL/
NNLO

✘ ✘ ✔ ✔ 309

http://arxiv.org/abs/hep-ph/0506225
http://arxiv.org/abs/arXiv:1309.3507
http://arxiv.org/abs/arXiv:1407.3311
http://arxiv.org/abs/arXiv:1401.5078
http://arxiv.org/abs/arXiv:1703.10157
http://arxiv.org/abs/arXiv:1706.01473
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semi-inclusive DIS, Drell-Yan and Z production
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It’s the dawn of TMD global fits era
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nonpertubative input is provided by model 2. The sub-panels show the ratio of deviation to the central line
(with ci = 1). – 29 –

see talk by A. Vladimirov
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The key asset of a polarized EIC: the kinematic coverage

[Figure taken from EPJA 52 (2016) 268]

Emanuele R. Nocera (Oxford) Unpolarized and polarized PDFs at an EIC November 14, 2016 23 / 33

from EIC white paper EPJA 52 (2016)
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To test the formalism, we would need more data covering the same x range 
and spanning over a large range in Q2.  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3

⌘i=� ln
⇥
tan( 1

2

✓i)
⇤
, ✓i being the polar angles of the final

partons in the virtual photon-hadron cms frame. Note
that A now also receives a contribution from �

⇤

q ! gq,
leading to somewhat smaller asymmetries.

Since the observables involve final-state heavy quarks
or jets, they require high energy colliders, such as a future
Electron-Ion Collider (EIC) or the Large Hadron electron
Collider (LHeC) proposed at CERN. It is essential that
the individual transverse momentaKi? are reconstructed
with an accuracy �K

?

better than the magnitude of the
sum of the transverse momenta K

1?

+K

2?

= qT . Thus
one has to satisfy �K

?

⌧ |qT | ⌧ |K
?

|.
An analogous asymmetry arises in QED, in the ‘tri-

dents’ processes `e(p) ! `µ

+

µ

�

e

0(p0 orX) or µ

�

Z !
µ

�

`

¯̀
Z [18–21]. This could be described by the distribu-

tion of linearly polarized photons inside a lepton, pro-
ton, or atom. QCD adds the twist that for gluons inside
a hadron, ISI or FSI can considerably modify the result
depending on the process, for example, in HQ produc-
tion in hadronic collisions: p p ! QQ̄X, which can be
studied at BNL’s Relativistic Heavy Ion Collider (RHIC)
and CERN’s LHC, and p p̄ ! QQ̄X at Fermilab’s Teva-
tron. Since the description involves two TMDs, breaking
of TMD factorization becomes a relevant issue, cf. [14]
and references therein. The cross section for the process
h

1

(P
1

)+h

2

(P
2

)!Q(K
1

)+Q̄(K
2

)+X can be written in a
way similar to the hadroproduction of two jets discussed
in Ref. [13], in the following form

d�

dy

1

dy

2

d

2K
1?

d

2K
2?

=
↵

2

s

sM

2

?

⇥
h
A(q2

T ) +B(q2

T )q
2

T cos 2(�T � �

?

)

+ C(q2

T )q
4

T cos 4(�T � �

?

)
i
. (7)

Besides q2

T , the terms A, B and C will depend on other,
often not explicitly indicated, variables as z, M

2

Q/M
2

?

and momentum fractions x

1

, x
2

obtained from x

1/2 =
(M

1?

e

±y1 +M

2?

e

±y2 ) /
p
s .

In the most naive partonic description the terms A, B,
and C contain convolutions of TMDs. Schematically,

A : f

q
1

⌦ f

q̄
1

, f

g
1

⌦ f

g
1

,

B : h

? q
1

⌦ h

? q̄
1

,

M

2

Q

M

2

?

f

g
1

⌦ h

? g
1

,

C : h

? g
1

⌦ h

? g
1

.

Terms with higher powers in M

2

Q/M
2

?

are left out. In
Fig. 1 the origin of the factorM2

Q/M
2

?

in the contribution

of h? g
1

to B is explained.
The factorized description in terms of TMDs is prob-

lematic though. In Ref. [14] it was pointed out that for
hadron or jet pair production in hadron-hadron scatter-
ing TMD factorization fails. The ISI/FSI will not allow
a separation of gauge links into the matrix elements of

the various TMDs. Only in specific simple cases, such
as the single Sivers e↵ect, one can find weighted expres-
sions that do allow a factorized result, but with in gen-
eral di↵erent factors for di↵erent diagrams in the partonic
subprocess [22, 23]. Even if this applies to the present
case for A and B as well, actually two di↵erent func-

tions h?g(2)
1

(x) (and f

g(1)
1

(x)) will appear, corresponding
to gluon operators with the color structures fabe fcde and
dabe dcde, respectively [23, 24]. This is similar to what
happens for single transverse spin asymmetries (AN ) in
heavy quark production processes [25–29]. Because there
too two di↵erent (f and d type) gluon correlators arise,
the single-spin asymmetries in D and D̄ meson produc-
tion are found to be di↵erent. However, in the unpo-
larized scattering case considered in this letter the situ-
ation is simpler, since only one operator contributes or
dominates. In the �

⇤

g ! QQ̄ subprocess only the ma-
trix element with the f f -structure appears, while in the
g g ! QQ̄ subprocess relevant for hadron-hadron colli-
sions the d d-structure dominates (the ff -contribution is
suppressed by 1/N2). A side remark on pT broadening
[30–32]: because of the two di↵erent four-gluon opera-

tors for fg(1)
1

(x) we expect the broadening �p

2

T in SIDIS,
(�p

2

T )DIS

⌘ hp2T ieA �hp2T iep, to be di↵erent from the one
in hadron-hadron collisions, (�p

2

T )hh ⌘ hp2T ipA � hp2T ipp.
In case weighting does allow for factorized expres-

sions, we present here the relevant expressions for B =
Bqq̄!Q ¯Q + (M2

Q/M
2

?

)Bgg!Q ¯Q, where

Bqq̄!Q ¯Q =
N
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FIG. 1: Examples of subprocesses contributing to the cos 2�
asymmetries in e p ! e0 QQ̄X and p p ! QQ̄X, respec-
tively. As the helicities of the photons and gluons indicate,
the latter process requires helicity flip in quark propagators
resulting in an M2

Q/M
2
?

factor.
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e p ! e jet jet X p p ! ⌘c Xp p ! J/ � X

see, e.g., Boer, den Dunnen, Pisano, Schlegel, Vogelsang, PRL108 (12)  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Figure 1. Extracted Sivers distributions for u = uv + ū, d = dv +
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d, ū and ¯

d at Q

2
= 2.4 GeV2.

Left panel: the first moment of the Sivers functions, Eqs. (2.16) and (2.17) of the text, versus x.
Right panel: plots of the Sivers functions, Eq. (2.14) of the text, at x = 0.1 versus k?. The solid
lines correspond to the best fit. The dashed lines correspond to the positivity bound of the Sivers
functions. The shaded bands correspond to our estimate of 95% C.L. error.

It means that we assume the anti-quark Sivers functions to be proportional to the cor-
responding unpolarised PDFs; we have checked that a fit allowing for more complicated
structures of Eq. (2.14) for the anti-quarks, results in undefined values of the parameters ↵
and �.
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(GeV2). In order to estimate the errors on the
parameters and on the calculation of the asymmetries we follow the Monte Carlo sampling
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d, ū and ¯

d at Q

2
= 2.4 GeV2.

Left panel: the first moment of the Sivers functions, Eqs. (2.16) and (2.17) of the text, versus x.
Right panel: plots of the Sivers functions, Eq. (2.14) of the text, at x = 0.1 versus k?. The solid
lines correspond to the best fit. The dashed lines correspond to the positivity bound of the Sivers
functions. The shaded bands correspond to our estimate of 95% C.L. error.

It means that we assume the anti-quark Sivers functions to be proportional to the cor-
responding unpolarised PDFs; we have checked that a fit allowing for more complicated
structures of Eq. (2.14) for the anti-quarks, results in undefined values of the parameters ↵
and �.

The Sivers asymmetry measured in SIDIS can be expressed using our parameterisations
of TMD functions from Eqs. (2.12-2.15, 3.4) as

A

sin(�h��S)

UT (x, y, z, PT ) =

[z

2hk2?i+ hp2?i]hk2Si2
[z

2hk2Si+ hp2?i]2hk2?i
exp

"
� P

2

T z

2

(hk2Si � hk2?i)
(z

2hk2Si+ hp2?i)(z2hk2?i+ hp2?i)

#

⇥
p
2 e z PT

M

1

P
q e

2

q Nq(x)fq(x)Dh/q(z)P
q e

2

q fq(x)Dh/q(z)
· (3.6)

Thus, we introduce a total of 9 free parameters for valence and sea-quark Sivers functions:
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Most recent extraction, no TMD evolution. It is probably not a big problem for 
fixed-target DIS, but it will play a major role at EIC

http://arxiv.org/abs/arXiv:1612.06413
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, ✓i being the polar angles of the final

partons in the virtual photon-hadron cms frame. Note
that A now also receives a contribution from �

⇤

q ! gq,
leading to somewhat smaller asymmetries.

Since the observables involve final-state heavy quarks
or jets, they require high energy colliders, such as a future
Electron-Ion Collider (EIC) or the Large Hadron electron
Collider (LHeC) proposed at CERN. It is essential that
the individual transverse momentaKi? are reconstructed
with an accuracy �K

?

better than the magnitude of the
sum of the transverse momenta K

1?

+K

2?

= qT . Thus
one has to satisfy �K

?

⌧ |qT | ⌧ |K
?

|.
An analogous asymmetry arises in QED, in the ‘tri-

dents’ processes `e(p) ! `µ

+

µ

�

e

0(p0 orX) or µ

�

Z !
µ

�

`

¯̀
Z [18–21]. This could be described by the distribu-

tion of linearly polarized photons inside a lepton, pro-
ton, or atom. QCD adds the twist that for gluons inside
a hadron, ISI or FSI can considerably modify the result
depending on the process, for example, in HQ produc-
tion in hadronic collisions: p p ! QQ̄X, which can be
studied at BNL’s Relativistic Heavy Ion Collider (RHIC)
and CERN’s LHC, and p p̄ ! QQ̄X at Fermilab’s Teva-
tron. Since the description involves two TMDs, breaking
of TMD factorization becomes a relevant issue, cf. [14]
and references therein. The cross section for the process
h
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(P
1

)+h

2

(P
2

)!Q(K
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)+Q̄(K
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)+X can be written in a
way similar to the hadroproduction of two jets discussed
in Ref. [13], in the following form
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Besides q2

T , the terms A, B and C will depend on other,
often not explicitly indicated, variables as z, M
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In the most naive partonic description the terms A, B,
and C contain convolutions of TMDs. Schematically,
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Fig. 1 the origin of the factorM2
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in the contribution

of h? g
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to B is explained.
The factorized description in terms of TMDs is prob-

lematic though. In Ref. [14] it was pointed out that for
hadron or jet pair production in hadron-hadron scatter-
ing TMD factorization fails. The ISI/FSI will not allow
a separation of gauge links into the matrix elements of

the various TMDs. Only in specific simple cases, such
as the single Sivers e↵ect, one can find weighted expres-
sions that do allow a factorized result, but with in gen-
eral di↵erent factors for di↵erent diagrams in the partonic
subprocess [22, 23]. Even if this applies to the present
case for A and B as well, actually two di↵erent func-

tions h?g(2)
1

(x) (and f

g(1)
1

(x)) will appear, corresponding
to gluon operators with the color structures fabe fcde and
dabe dcde, respectively [23, 24]. This is similar to what
happens for single transverse spin asymmetries (AN ) in
heavy quark production processes [25–29]. Because there
too two di↵erent (f and d type) gluon correlators arise,
the single-spin asymmetries in D and D̄ meson produc-
tion are found to be di↵erent. However, in the unpo-
larized scattering case considered in this letter the situ-
ation is simpler, since only one operator contributes or
dominates. In the �

⇤

g ! QQ̄ subprocess only the ma-
trix element with the f f -structure appears, while in the
g g ! QQ̄ subprocess relevant for hadron-hadron colli-
sions the d d-structure dominates (the ff -contribution is
suppressed by 1/N2). A side remark on pT broadening
[30–32]: because of the two di↵erent four-gluon opera-

tors for fg(1)
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(x) we expect the broadening �p
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⌘ hp2T ieA �hp2T iep, to be di↵erent from the one
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In case weighting does allow for factorized expres-
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Fig. 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton (QCDC)
and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right) data. The x
range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive

First measurement of the Sivers asymmetry for gluons from SIDIS data 11

PG
F

) Sφ 
− Pφ

si
n(

A
Q

C
D

C
) Sφ 

− Pφ
si

n(
A

LP
) Sφ 

− Pφ
si

n(
A

gx-210 -110
-0.5

0

0.5 deuteron

Cx-210 -110
-0.5

0

0.5 deuteron

Bjx-210 -110
-0.1

0

0.1 deuteron

PG
F

) Sφ 
− Pφ

si
n(

A
Q

C
D

C
) Sφ 

− Pφ
si

n(
A

LP
) Sφ 

− Pφ
si

n(
A

gx-210 -110
-0.5

0

0.5 proton

Cx-210 -110
-0.5

0

0.5 proton

Bjx-210 -110
-0.1

0

0.1 proton

Fig. 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton (QCDC)
and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right) data. The x
range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
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Collider (LHeC) proposed at CERN. It is essential that
the individual transverse momentaKi? are reconstructed
with an accuracy �K

?

better than the magnitude of the
sum of the transverse momenta K

1?

+K

2?

= qT . Thus
one has to satisfy �K

?

⌧ |qT | ⌧ |K
?

|.
An analogous asymmetry arises in QED, in the ‘tri-

dents’ processes `e(p) ! `µ

+

µ

�

e

0(p0 orX) or µ

�

Z !
µ

�

`

¯̀
Z [18–21]. This could be described by the distribu-

tion of linearly polarized photons inside a lepton, pro-
ton, or atom. QCD adds the twist that for gluons inside
a hadron, ISI or FSI can considerably modify the result
depending on the process, for example, in HQ produc-
tion in hadronic collisions: p p ! QQ̄X, which can be
studied at BNL’s Relativistic Heavy Ion Collider (RHIC)
and CERN’s LHC, and p p̄ ! QQ̄X at Fermilab’s Teva-
tron. Since the description involves two TMDs, breaking
of TMD factorization becomes a relevant issue, cf. [14]
and references therein. The cross section for the process
h

1

(P
1

)+h

2

(P
2

)!Q(K
1

)+Q̄(K
2

)+X can be written in a
way similar to the hadroproduction of two jets discussed
in Ref. [13], in the following form

d�

dy

1

dy

2

d

2K
1?

d

2K
2?

=
↵

2

s

sM

2

?

⇥
h
A(q2

T ) +B(q2

T )q
2

T cos 2(�T � �

?

)

+ C(q2

T )q
4

T cos 4(�T � �

?

)
i
. (7)

Besides q2

T , the terms A, B and C will depend on other,
often not explicitly indicated, variables as z, M

2

Q/M
2

?

and momentum fractions x

1

, x
2

obtained from x

1/2 =
(M

1?

e

±y1 +M

2?

e

±y2 ) /
p
s .

In the most naive partonic description the terms A, B,
and C contain convolutions of TMDs. Schematically,

A : f

q
1

⌦ f

q̄
1

, f

g
1

⌦ f

g
1

,

B : h

? q
1

⌦ h

? q̄
1

,

M

2

Q

M

2

?

f

g
1

⌦ h

? g
1

,

C : h

? g
1

⌦ h

? g
1

.

Terms with higher powers in M

2

Q/M
2

?

are left out. In
Fig. 1 the origin of the factorM2

Q/M
2

?

in the contribution

of h? g
1

to B is explained.
The factorized description in terms of TMDs is prob-

lematic though. In Ref. [14] it was pointed out that for
hadron or jet pair production in hadron-hadron scatter-
ing TMD factorization fails. The ISI/FSI will not allow
a separation of gauge links into the matrix elements of

the various TMDs. Only in specific simple cases, such
as the single Sivers e↵ect, one can find weighted expres-
sions that do allow a factorized result, but with in gen-
eral di↵erent factors for di↵erent diagrams in the partonic
subprocess [22, 23]. Even if this applies to the present
case for A and B as well, actually two di↵erent func-

tions h?g(2)
1

(x) (and f

g(1)
1

(x)) will appear, corresponding
to gluon operators with the color structures fabe fcde and
dabe dcde, respectively [23, 24]. This is similar to what
happens for single transverse spin asymmetries (AN ) in
heavy quark production processes [25–29]. Because there
too two di↵erent (f and d type) gluon correlators arise,
the single-spin asymmetries in D and D̄ meson produc-
tion are found to be di↵erent. However, in the unpo-
larized scattering case considered in this letter the situ-
ation is simpler, since only one operator contributes or
dominates. In the �

⇤

g ! QQ̄ subprocess only the ma-
trix element with the f f -structure appears, while in the
g g ! QQ̄ subprocess relevant for hadron-hadron colli-
sions the d d-structure dominates (the ff -contribution is
suppressed by 1/N2). A side remark on pT broadening
[30–32]: because of the two di↵erent four-gluon opera-

tors for fg(1)
1

(x) we expect the broadening �p

2

T in SIDIS,
(�p

2

T )DIS

⌘ hp2T ieA �hp2T iep, to be di↵erent from the one
in hadron-hadron collisions, (�p

2

T )hh ⌘ hp2T ipA � hp2T ipp.
In case weighting does allow for factorized expres-

sions, we present here the relevant expressions for B =
Bqq̄!Q ¯Q + (M2

Q/M
2

?

)Bgg!Q ¯Q, where

Bqq̄!Q ¯Q =
N

2 � 1

N

2

z

2(1� z)2
 
1� M

2

Q

M

2

?

!

⇥

Hqq̄(x

1

, x

2

, q2

T ) +Hq̄q(x
1
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�
,

Bgg!Q ¯Q =
N

N

2 � 1
B
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Fig. 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton (QCDC)
and Leading Process (LP) from the COMPASS high-pT deuteron (left) and proton (right) data. The x
range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate the
systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p ! `0h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (fP + fS � p). To this purpose, the
asymmetries Asin(fP+fS�p)

PGF , Asin(fP+fS�p)
QCDC , Asin(fP+fS�p)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(fS +fT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive

Estimate of asymmetry related to gluon Sivers 
TMD. Based also on Monte Carlo input.

see also talks by F. Murgia for J/ψ production and Lee for EIC
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FIG. 6: Our best fit results for the valence u and d quark transversity distributions at Q

2 = 2.4 GeV2 (left panel) and for
the lowest p? moment of the favoured and disfavoured Collins functions at Q

2 = 2.4 GeV2 (central panel) and at Q

2 = 112
GeV2 (right panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the
statistical uncertainty on these parameters, as explained in the text.
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FIG. 7: Comparison of our reference best fit results (red, solid lines) for the valence u and d quark transversity distributions
(left panel) and for the lowest p? moment of the favoured and disfavoured Collins functions (right panel), at Q

2 = 2.4 GeV2,
with those from our previous analysis [11] (blue, dashed lines).

kernel, similarly to what is done for the transversity function, as suggested in Refs. [42, 43]. The results we obtain
show a slight deterioration of the fit quality, with a global �2

d.o.f. increasing from 0.84 to 1.20. Although this is still
an acceptable result, one may wonder whether this is a genuine e↵ect of the chosen evolution model or, rather, a
byproduct of the functional form adopted for the Collins function parameterisation.

We have therefore exploited a di↵erent parameterisation based on a polynomial form. In principle, the polynomial
could be of any order. We have started by using an order zero polynomial, then increased it to order one and,
subsequently, to order two. In doing so, we have seen that the quality of the fit improves remarkably when going from
order zero to order one (i.e. from 2 to 4 free parameters) but it stops improving when further increasing to higher
orders. We therefore choose a first order polynomial form, which has the added advantage of depending on the same
number of free parameters as the standard parameterisation of Eqs. (11) and (12).

We consider generic combinations of fixed order Bernstein polynomials (see, for example, Ref. [44]) as they o↵er a
relatively straightforward way to keep track of the appropriate normalisation:

NC
i (z) = aiP01

(z) + biP11

(z) i = fav, dis (41)

where P
01

(z) = (1� z) and P
11

(z) = z are Bernstein polynomials of order one. Notice that by constraining the four
free parameters in such a way that �1  ai  +1 and �1  bi  +1, the Collins function automatically fulfils its
positivity bounds, as in the standard parameterisation. The Collins function will be globally modelled as shown in
Eqs. (6) and (8), with NC

fav

(z) and NC
dis

(z) as given in Eq. (41).
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
(b) Comparison of extracted transversity (solid lines and shaded region) at Q2 = 2.4 GeV2 with Pavia 2015 extraction [18]
(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with

Pavia 2015  
(dihadron collinear)
Radici et al., arXiv:1503.03495
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⟨x⟩ Q2 (GeV2/c2) xhuv

1 xhdv
1 xhū

1 xhd̄
1

0.006 1.27 0.01 ± 0.04 0.23 ± 0.11 -0.07 ± 0.05 0.14 ± 0.11
0.010 1.55 0.05 ± 0.03 0.03 ± 0.06 0.00 ± 0.03 0.07 ± 0.07
0.016 1.83 0.02 ± 0.02 0.08 ± 0.06 -0.01 ± 0.03 0.11 ± 0.06
0.025 2.17 0.01 ± 0.02 -0.03 ± 0.05 0.01 ± 0.02 0.00 ± 0.05
0.040 2.83 0.01 ± 0.02 -0.07 ± 0.06 0.02 ± 0.03 -0.02 ± 0.06
0.063 4.34 0.09 ± 0.03 -0.04 ± 0.08 0.00 ± 0.04 0.07 ± 0.09
0.101 6.76 0.16 ± 0.04 -0.13 ± 0.11 0.02 ± 0.05 0.02 ± 0.12
0.163 10.5 0.10 ± 0.04 -0.25 ± 0.15 -0.01 ± 0.06 -0.06 ± 0.17
0.288 22.6 0.19 ± 0.05 -0.10 ± 0.18 0.00 ± 0.07 0.10 ± 0.20

TABLE IV: Values of the valence and sea transversity distributions from the Collins asymmetries for Scenario
2. Note that the Q2 values refer to the proton data. The deuteron data are taken at slightly larger Q2 and in the
last bin it is Q2 = 25.9 GeV2/c2. Errors are statistical only.

experimental Collaborations, and no attempt has been made to try to assign a systematic error to the

results. For the Collins extraction, the fact that different scenarios for the H⊥(1/2)
1,fav /H⊥(1/2)

1,unf ratio and for
the evolution lead to results which differ only by few percent is an indication that in our approach the

x
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FIG. 7: The valence transversity distributions from dihadron (open points) and Collins asymmetries (solid points).
Black circles represent xhuv

1 , red squares represent xhdv
1 . The transversity extracted from single-hadron leptopro-

duction refers to Scenario 2.
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FIG. 6: Our best fit results for the valence u and d quark transversity distributions at Q

2 = 2.4 GeV2 (left panel) and for
the lowest p? moment of the favoured and disfavoured Collins functions at Q

2 = 2.4 GeV2 (central panel) and at Q

2 = 112
GeV2 (right panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the
statistical uncertainty on these parameters, as explained in the text.
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FIG. 7: Comparison of our reference best fit results (red, solid lines) for the valence u and d quark transversity distributions
(left panel) and for the lowest p? moment of the favoured and disfavoured Collins functions (right panel), at Q

2 = 2.4 GeV2,
with those from our previous analysis [11] (blue, dashed lines).

kernel, similarly to what is done for the transversity function, as suggested in Refs. [42, 43]. The results we obtain
show a slight deterioration of the fit quality, with a global �2

d.o.f. increasing from 0.84 to 1.20. Although this is still
an acceptable result, one may wonder whether this is a genuine e↵ect of the chosen evolution model or, rather, a
byproduct of the functional form adopted for the Collins function parameterisation.

We have therefore exploited a di↵erent parameterisation based on a polynomial form. In principle, the polynomial
could be of any order. We have started by using an order zero polynomial, then increased it to order one and,
subsequently, to order two. In doing so, we have seen that the quality of the fit improves remarkably when going from
order zero to order one (i.e. from 2 to 4 free parameters) but it stops improving when further increasing to higher
orders. We therefore choose a first order polynomial form, which has the added advantage of depending on the same
number of free parameters as the standard parameterisation of Eqs. (11) and (12).

We consider generic combinations of fixed order Bernstein polynomials (see, for example, Ref. [44]) as they o↵er a
relatively straightforward way to keep track of the appropriate normalisation:

NC
i (z) = aiP01

(z) + biP11

(z) i = fav, dis (41)

where P
01

(z) = (1� z) and P
11

(z) = z are Bernstein polynomials of order one. Notice that by constraining the four
free parameters in such a way that �1  ai  +1 and �1  bi  +1, the Collins function automatically fulfils its
positivity bounds, as in the standard parameterisation. The Collins function will be globally modelled as shown in
Eqs. (6) and (8), with NC

fav

(z) and NC
dis

(z) as given in Eq. (41).
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
(b) Comparison of extracted transversity (solid lines and shaded region) at Q2 = 2.4 GeV2 with Pavia 2015 extraction [18]
(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with

Pavia 2015  
(dihadron collinear)
Radici et al., arXiv:1503.03495
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FIG. 6: The sea transversity distributions xhū
1 and xhd̄

1 (left) and xhū
1 + xhd̄

1 (right) in Scenario 2.

⟨x⟩ Q2 (GeV2/c2) xhuv

1 xhdv
1 xhū

1 xhd̄
1

0.006 1.27 0.01 ± 0.04 0.23 ± 0.11 -0.07 ± 0.05 0.14 ± 0.11
0.010 1.55 0.05 ± 0.03 0.03 ± 0.06 0.00 ± 0.03 0.07 ± 0.07
0.016 1.83 0.02 ± 0.02 0.08 ± 0.06 -0.01 ± 0.03 0.11 ± 0.06
0.025 2.17 0.01 ± 0.02 -0.03 ± 0.05 0.01 ± 0.02 0.00 ± 0.05
0.040 2.83 0.01 ± 0.02 -0.07 ± 0.06 0.02 ± 0.03 -0.02 ± 0.06
0.063 4.34 0.09 ± 0.03 -0.04 ± 0.08 0.00 ± 0.04 0.07 ± 0.09
0.101 6.76 0.16 ± 0.04 -0.13 ± 0.11 0.02 ± 0.05 0.02 ± 0.12
0.163 10.5 0.10 ± 0.04 -0.25 ± 0.15 -0.01 ± 0.06 -0.06 ± 0.17
0.288 22.6 0.19 ± 0.05 -0.10 ± 0.18 0.00 ± 0.07 0.10 ± 0.20

TABLE IV: Values of the valence and sea transversity distributions from the Collins asymmetries for Scenario
2. Note that the Q2 values refer to the proton data. The deuteron data are taken at slightly larger Q2 and in the
last bin it is Q2 = 25.9 GeV2/c2. Errors are statistical only.

experimental Collaborations, and no attempt has been made to try to assign a systematic error to the

results. For the Collins extraction, the fact that different scenarios for the H⊥(1/2)
1,fav /H⊥(1/2)

1,unf ratio and for
the evolution lead to results which differ only by few percent is an indication that in our approach the
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FIG. 7: The valence transversity distributions from dihadron (open points) and Collins asymmetries (solid points).
Black circles represent xhuv
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1 . The transversity extracted from single-hadron leptopro-

duction refers to Scenario 2.
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GeV2 and result from Ref. [18] (Radici et al 2015) at 68% CL and Q2 = 4 GeV2, and Ref. [17] at 95% CL standard and
polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2. Other points are lattice computation at Q2 = 4 GeV2 of Bali et al
Ref. [117], Gupta et al Ref. [118], Green et al Ref. [119], Aoki et al Ref. [127], Bhattacharya et al ref. [120], Gockeler et al
Ref. [121]. Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [112].

processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge 
gT = δu − δd
Q2 = 4 GeV2

Q2 = 10

︷
︷

Q2 = 0.8

DSE
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FIG. 32. Comparison of the isovector nucleon tensor charge gT from this paper at 68% C.L. (Kang et al 2015) at Q2 = 10
GeV2 and result from Ref. [18] (Radici et al 2015) at 68% CL and Q2 = 4 GeV2, and Ref. [17] at 95% CL standard and
polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2. Other points are lattice computation at Q2 = 4 GeV2 of Bali et al
Ref. [117], Gupta et al Ref. [118], Green et al Ref. [119], Aoki et al Ref. [127], Bhattacharya et al ref. [120], Gockeler et al
Ref. [121]. Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [112].

processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge 
gT = δu − δd
Q2 = 4 GeV2

Q2 = 10

︷
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DSE Tensor charge is an ideal quantity 
to compare to lattice QCD
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GeV2 and result from Ref. [18] (Radici et al 2015) at 68% CL and Q2 = 4 GeV2, and Ref. [17] at 95% CL standard and
polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2. Other points are lattice computation at Q2 = 4 GeV2 of Bali et al
Ref. [117], Gupta et al Ref. [118], Green et al Ref. [119], Aoki et al Ref. [127], Bhattacharya et al ref. [120], Gockeler et al
Ref. [121]. Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [112].

processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge 
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processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge 
gT = δu − δd
Q2 = 4 GeV2

Q2 = 10

︷
︷
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DSE

talk by S. Liuti

Tensor charge is needed  
to constrain  
beyond-Standard-Model couplings

Tensor charge is an ideal quantity 
to compare to lattice QCD



Tensor charge

34

lattice

38

T
g

0 0.5 1 1.5
Kang et al (2015)

Radici et al (2015)

Anselmino et al (2013)

Anselmino et al (2013)

Bali et al (2015)

Gupta et al (2014)

Green at al (2012)

Aoki et al (2010)

Bhattacharya et al (2013)

Gockeler et al (2005)

Pitschmann et al (2015)

FIG. 32. Comparison of the isovector nucleon tensor charge gT from this paper at 68% C.L. (Kang et al 2015) at Q2 = 10
GeV2 and result from Ref. [18] (Radici et al 2015) at 68% CL and Q2 = 4 GeV2, and Ref. [17] at 95% CL standard and
polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2. Other points are lattice computation at Q2 = 4 GeV2 of Bali et al
Ref. [117], Gupta et al Ref. [118], Green et al Ref. [119], Aoki et al Ref. [127], Bhattacharya et al ref. [120], Gockeler et al
Ref. [121]. Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [112].

processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge 
gT = δu − δd
Q2 = 4 GeV2

Q2 = 10

︷
︷

Q2 = 0.8

DSE

talk by S. Liuti

Tensor charge is needed  
to constrain  
beyond-Standard-Model couplings

Tensor charge is an ideal quantity 
to compare to lattice QCD

see also talk by A. Accardi for a way to access tensor charge in inclusive DIS
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Table 3. Key measurements for imaging partons in the transverse plane. With an EIC running at lower energies, one can
investigate the transition from the valence to the sea quark regime and measure the processes in the lower block, while an EIC
with higher energies provides access to a wide region dominated by sea quarks and gluons.

Deliverables Observables What we learn Requirements

GPDs of DVCS and J/ψ, ρ0, φ transverse spatial distrib.
R

dt L ∼ 10 to 100 fb−1;

sea quarks production cross-section of sea quarks and gluons; leading proton detection;

and gluons and polarization total angular momentum polarized e− and p beams;

asymmetries and spin-orbit correlations wide range of x and Q2;

GPDs of electro-production of dependence on range of beam energies;

valence and π+, K and ρ+, K∗ quark flavor and e+ beam

sea quarks polarization valuable for DVCS

pressed compared to valence quarks because of the factor
x in the integral given in eq. (16). In this sense, com-
putations in lattice QCD and measurements of exclusive
reactions are highly complementary.

2.4.2 Processes and observables

A large number of exclusive channels can be experimen-
tally investigated at the EIC, and each of them will give
specific physics information. An overview of key measure-
ments is given in table 3.

For most processes, we have formal proofs of factor-
ization [107, 108], which provide a solid ground for their
interpretation in terms of GPDs (akin to the factoriza-
tion proofs that enable us to extract conventional parton
densities from inclusive processes, see sect. 2.2). For these
proofs to apply, the photon virtuality Q2 must be large,
in particular much larger than the invariant momentum
transfer t to the hadron. In terms of imaging, the precision
∼ 1/Q with which partons are resolved is then much finer
than the precision ∼ 1/

√
|t| with which their position in

the hadron is determined [101]. This permits a clean sep-
aration between the object that is being imaged and the
probe used to obtain the image.

Deeply virtual Compton scattering (DVCS) is mea-
sured in the reaction ep → epγ and plays a privileged role
in several respects:

– Its theoretical description is most advanced, with ra-
diative corrections being available up to order α2

s [109–
111] and corrections of order 1/Q to the limit of large
Q2 being well understood their structure [112]. Re-
cently, results have even been obtained for corrections
of order 1/Q2 due to the finite target mass and to
nonzero t [113–115].

– It has a large number of angular and polarization ob-
servables that can be calculated using the factoriza-
tion theorem and thus constrain GPDs [116,117]. With
longitudinal electron polarization and both longitudi-
nal and transverse polarization of the proton, one has
enough observables to disentangle the distributions H
and E discussed above, as well as their counterparts
H̃ and Ẽ for longitudinally polarized partons.

– Several contributions that are suppressed by 1/Q can
be extracted from suitable observables and be cal-
culated in terms of twist-three distributions, which
are closely connected to those accessible in semi-
inclusive processes at high transverse momentum (see
sect. 2.3.2).

– Compton scattering interferes with the Bethe-Heitler
process, which is calculable in QED. This allows one to
extract the complex phase of the Compton scattering
amplitude, which in turn gives more detailed informa-
tion about GPDs.

– Further information about the phase of the Compton
amplitude can be extracted if both e− and e+ beams
are available (even if the latter are unpolarized). In the
absence of a positron beam, some of this information
may be obtained by running at different beam ener-
gies (using a Rosenbluth-type separation of different
contributions to the cross-section).

Closely related to DVCS is time-like Compton scatter-
ing, γp → ℓ+ℓ−p, i.e. photo-production of a lepton pair
with large invariant mass [110,111,118]. An advantage of
this process is that the analog of the DVCS beam charge
asymmetry is an asymmetry in the angular distribution of
the produced lepton pair, which can be measured without
positron beams.

Compton scattering thus has the potential to yield de-
tailed and precise information about GPDs for different
polarizations of the partons and the proton. A limitation
it shares with inclusive DIS is that it is sensitive only to the
sum of quark and anti-quark distributions in a particular
flavor combination and that it involves gluon distributions
only via a logarithmic dependence on Q2. Exclusive meson
production offers substantial help in the separation of dif-
ferent quark and anti-quark flavors and of gluons, which is
of special interest as discussed in sect. 2.1. The extraction
of the flavor dependence of GPDs will only be possible if
GPDs are truly universal. Hints of this universality have
been unveiled recently by a common analysis of all DVCS
and exclusive meson production data with a common GPD
set [119]. The theoretical description of these processes is
more involved: it requires knowledge of the relevant me-
son wave functions, and theoretical progress is still needed
to achieve control over radiative corrections [120,121] and
over corrections to the large Q2 limit [122]. Measuring at
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Q2=100 GeV2

Q2=50 GeV 2Planned DVCS at fixed targ.:
COMPASS- dσ/dt, ACSU, ACST
JLAB12- dσ/dt, ALU, AUL, ALL

Current DVCS data at colliders:
ZEUS- total xsec
ZEUS- dσ/dt

H1- total xsec
H1- dσ/dt
H1- ACU

Current DVCS data at fixed targets:
HERMES- ALT HERMES- ACU
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Fig. 24. An overview of existing and planned measurements
of DVCS in the (x, Q2)-plane.

100 pb−1 will, however, limit the accuracy of measure-
ments at Q2 above 5GeV2 and the possibilities to ex-
plore simultaneously the dependence on x, Q2 and t. At
present it is not clear whether polarized protons will be
available.

A first era of precise parton imaging will begin with
the 12GeV upgrade at JLab, with very high statistics and
sufficiently high Q2 to probe partons at high x, including
the effects of polarization. Figure 24 gives an overview of
existing and anticipated measurements of DVCS in the
(x,Q2)-plane.

To realize the full physics potential of parton imaging
that we have discussed in the previous section will require
the EIC. Such a machine will, for the first time, make it
possible to image partons with high statistics and with po-
larization in a wide range of small- to moderate x. At high
x it will complement the JLab 12 program with measure-
ments at large Q2, thus opening up the possibility to ex-
tract physics from scaling violations for high-momentum
partons.

Let us finally mention that it is very difficult to ob-
tain information on GPDs from exclusive processes in
p + p collisions. This is due to the effect of soft gluon
exchange between spectator partons in the two protons,
which precludes a simple theoretical interpretation of such
reactions. Lepton-proton scattering thus provides a privi-
leged way to quantify the spatial structure of the proton
via GPDs. On the other hand, the information gained in
lepton-proton scattering can help to better understand im-
portant features of proton-proton collisions, in particular
the dynamics of multi-parton interactions [130,131].

2.4.4 Accelerator and detector requirements

The experimental study of DVCS and meson electro-
production requires high luminosity: cross-sections are at
best a few percent of the inclusive DIS cross-section, and
the data need to be kinematically binned in up to five vari-
ables (x,Q2, t,φ,φS), where φ (φS) is the angle between

the hadron production (proton beam polarization) plane
and the electron scattering plane. Luminosities as high as
1034 cm−2 s−1 are crucial for the measurement of DVCS
spin asymmetries and for the exploration of the high-t re-
gion, as well as for certain meson production channels,
especially at low x. A large lever arm in Q2 at fixed x is
required for testing the power behavior predicted by fac-
torization theorems, and beyond this for the use of evolu-
tion effects to disentangle gluons from quarks in Compton
scattering. If several collision energies and hence several
beam configurations are needed to achieve this, one needs
accurate measurements of integrated luminosities in order
to cross-normalize data sets. A significant lever arm in y
at fixed x and Q2 is mandatory for the separation of σL

and σT , which is essential for pseudoscalar mesons and
helpful for DVCS in case a positron beam is not available,
as explained in sect. 2.4.2.

To measure truly exclusive processes, it is essential to
detect all final state particles. Hermeticity of the EIC de-
tector is therefore a crucial requirement. The most critical
aspect is the ability to detect the recoil baryon, which in
the region of interest has a transverse momentum up to a
few GeV. This corresponds to very small scattering angles
with respect to the proton beam. At large proton beam
energies, the detection of the recoil proton may require
Roman Pots integrated in the machine lattice, whereas
at lower proton beam energies, or high proton transverse
momenta, it should be possible to detect the proton in the
main EIC detector. Note that the transverse momentum
acceptance is directly related to the region in bT space
where reliable images can be obtained. The emittance of
the proton beam at the location of the detectors needs to
be kept reasonably low so that the detectors can be placed
as close to the proton beam as possible. Near perfect her-
meticity is also essential in the case of low-y events, which
are needed to explore high x at a given Q2. Indeed, in
this case, y is measured using a hadronic method and de-
pends on the sum over the energy minus the longitudinal
momentum of all the hadronic final-state particles.

Specifically for DVCS, but also for π0 production, the
photon detection coverage is particularly important over
the full rapidity range. Note that for DVCS, both the pho-
ton and the electron tend to be emitted backward in the
same hemisphere when the electron energy increases.

As far as particle identification is concerned, the situ-
ation varies depending on the beam energies. In the most
general case, the separation of electrons and pions requires
particular care in the momentum range between about 4
and 10GeV. For the identification of light mesons, mostly
in the barrel section, the same care will be necessary in
the same momentum range. A ring imaging Cherenkov
counter (RICH) or a DIRC complementing a time-of-flight
system will likely be needed in the barrel section of the
detector (see sect. 6.4). Note that in addition to standard
particle identification, the missing-mass method might be
used at low collision energies to discriminate between par-
ticle types, depending on the kinematics and the resolu-
tion that can be achieved.
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FIG. 24. (Color online) Unpolarized cross sections for Kin2. Each t-bin corresponds to slightly di↵erent av-
erage (x

B

, Q2) values; their range is indicated in the legend, their specific values are listed in the data tables.
Error bars are statistical only. The light blue area represents the point-to-point systematic uncertainties
added linearly to the normalization error. The KM10a model along with its modified version (including the
TMC e↵ects) are shown as dotted blue and solid green curves, respectively. The Bethe-Heitler contribution
is represented as a dashed red line.
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FIG. 20. (Color online) t dependence, for each Q2-x
B

bin, of
the ↵UL term of the target-spin asymmetry. The curves show
the predictions of four GPD models for the TSA at � = 90o:
i) VGG [23] (red dashed), ii) KMM12 [26] (cyan dotted), iii)
GK [26] (blue dash-dotted), and iv) GGL [27] (orange dashed-
three-dotted).

2-t (GeV/c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

U
L’

α

-0.1

0

0.1

0.2

0.3

0.4

0.5 This Work
CLAS 2006
HERMES 2010

FIG. 21. (Color online) Comparisons of the t dependences
of the sin� term of the ep� target-spin asymmetries for
the present data, integrated over Q2 and x

B

(black circles),
the previous CLAS experiment [13] (magenta triangles), and
HERMES [16] (green squares).

the t-dependence of this observable - predict this and
correctly reproduce it. The best match for this term is
provided by the VGG and GK models, which show size-
able di↵erences only at the highest �t values, where the
DVCS contribution is expected to start to play a role.
The models suggest a slight contribution from DVCS in
the cos� term but the statistical precision of the data
does not allow us to draw conclusions on which predic-
tion provides the better fit.

VIII. EXTRACTION OF COMPTON FORM
FACTORS

In recent years, various groups have developed and
applied di↵erent procedures to extract Compton Form
Factors from DVCS observables. The approach adopted
here [34–36] is based on a local-fitting method at each
given experimental (Q2, x

B

,�t) kinematic point. In this
framework, instead of four complex CFFs defined as in
Eq. 9, there are eight real CFFs defined as

F
Re

(⇠, t) = <eF(⇠, t) (46)

F
Im

(⇠, t) = � 1

⇡
=mF(⇠, t) = [F (⇠, ⇠, t)⌥ F (�⇠, ⇠, t)] ,

(47)
where the sign convention is the same as for Eq. (8).
These CFFs are the almost-free parameters - their values
are allowed to vary within ±5 times the values predicted
by the VGG model - that are extracted from DVCS ob-
servables using the well-established DVCS+BH theoret-
ical amplitude. The BH amplitude is calculated exactly
while the DVCS amplitude is taken at the QCD leading
twist. The expression of these amplitudes can be found,
for instance, in [23].
The three sets of asymmetries (BSA, TSA and DSA)

for all kinematic bins were processed using this fitting
procedure to extract the Compton Form Factors. In the
adopted version of the fitter code, Ẽ

Im

is set to zero, as
Ẽ is assumed to be purely real - it is parametrized in the
VGG model by the pion pole (1/(t �m2

⇡

)). Thus seven
out of the eight real and imaginary parts of the CFFs are
left as free parameters in the fit. Figure 25 shows H

Im

(black full squares) and H̃
Im

(red full circles), which are
obtained from the fit of the present data, as a function
of �t for each of our 5 Q2-x

B

bins. These are the two
CFFs that appear to be better constrained by the present
results. Given that the size of the error bars reflects
the sensitivity of the combination of observables to each
CFF, it is evident that, as expected, our asymmetries are
mostly sensitive to =mH̃.
The results for H

Im

and H̃
Im

confirm what had been
previously observed in a qualitative way by direct com-
parison of the t-dependence of our TSAs and BSAs in
Section VII.2: the t-slope of =mH is much steeper than
that of =mH̃, hinting at the fact that the axial charge
(linked to =mH̃) might be more “concentrated” in the
center of the nucleon than the electric charge (linked to
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FIG. 24. (Color online) Unpolarized cross sections for Kin2. Each t-bin corresponds to slightly di↵erent av-
erage (x

B

, Q2) values; their range is indicated in the legend, their specific values are listed in the data tables.
Error bars are statistical only. The light blue area represents the point-to-point systematic uncertainties
added linearly to the normalization error. The KM10a model along with its modified version (including the
TMC e↵ects) are shown as dotted blue and solid green curves, respectively. The Bethe-Heitler contribution
is represented as a dashed red line.
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FIG. 20. (Color online) t dependence, for each Q2-x
B

bin, of
the ↵UL term of the target-spin asymmetry. The curves show
the predictions of four GPD models for the TSA at � = 90o:
i) VGG [23] (red dashed), ii) KMM12 [26] (cyan dotted), iii)
GK [26] (blue dash-dotted), and iv) GGL [27] (orange dashed-
three-dotted).
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FIG. 21. (Color online) Comparisons of the t dependences
of the sin� term of the ep� target-spin asymmetries for
the present data, integrated over Q2 and x

B

(black circles),
the previous CLAS experiment [13] (magenta triangles), and
HERMES [16] (green squares).

the t-dependence of this observable - predict this and
correctly reproduce it. The best match for this term is
provided by the VGG and GK models, which show size-
able di↵erences only at the highest �t values, where the
DVCS contribution is expected to start to play a role.
The models suggest a slight contribution from DVCS in
the cos� term but the statistical precision of the data
does not allow us to draw conclusions on which predic-
tion provides the better fit.

VIII. EXTRACTION OF COMPTON FORM
FACTORS

In recent years, various groups have developed and
applied di↵erent procedures to extract Compton Form
Factors from DVCS observables. The approach adopted
here [34–36] is based on a local-fitting method at each
given experimental (Q2, x

B

,�t) kinematic point. In this
framework, instead of four complex CFFs defined as in
Eq. 9, there are eight real CFFs defined as

F
Re

(⇠, t) = <eF(⇠, t) (46)

F
Im

(⇠, t) = � 1

⇡
=mF(⇠, t) = [F (⇠, ⇠, t)⌥ F (�⇠, ⇠, t)] ,

(47)
where the sign convention is the same as for Eq. (8).
These CFFs are the almost-free parameters - their values
are allowed to vary within ±5 times the values predicted
by the VGG model - that are extracted from DVCS ob-
servables using the well-established DVCS+BH theoret-
ical amplitude. The BH amplitude is calculated exactly
while the DVCS amplitude is taken at the QCD leading
twist. The expression of these amplitudes can be found,
for instance, in [23].
The three sets of asymmetries (BSA, TSA and DSA)

for all kinematic bins were processed using this fitting
procedure to extract the Compton Form Factors. In the
adopted version of the fitter code, Ẽ

Im

is set to zero, as
Ẽ is assumed to be purely real - it is parametrized in the
VGG model by the pion pole (1/(t �m2

⇡

)). Thus seven
out of the eight real and imaginary parts of the CFFs are
left as free parameters in the fit. Figure 25 shows H

Im

(black full squares) and H̃
Im

(red full circles), which are
obtained from the fit of the present data, as a function
of �t for each of our 5 Q2-x

B

bins. These are the two
CFFs that appear to be better constrained by the present
results. Given that the size of the error bars reflects
the sensitivity of the combination of observables to each
CFF, it is evident that, as expected, our asymmetries are
mostly sensitive to =mH̃.
The results for H

Im

and H̃
Im

confirm what had been
previously observed in a qualitative way by direct com-
parison of the t-dependence of our TSAs and BSAs in
Section VII.2: the t-slope of =mH is much steeper than
that of =mH̃, hinting at the fact that the axial charge
(linked to =mH̃) might be more “concentrated” in the
center of the nucleon than the electric charge (linked to
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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FIG. 21. The electric and magnetic rms radii as extracted with the different models. Gray: Statistical error; black: Linearly added systematic
error.

model is not sufficiently flexible to achieve a comparably small
χ2

red. Hence, its extracted radius is unreliable and we refrain
from quoting its result.

Table X summarizes the electric radii determined with the
different approaches together with the final result Eq. (52).
Despite all these efforts, we do not see a way to reconcile our
result with those from muonic hydrogen. We do not expect
that a future calculation of TPE corrections can reconcile our
result with the muonic measurement completely, but we cannot
rule out that such calculations may reduce the discrepancy. We
want to note, however, that a large shift in the radius from TPE
would in turn create tension with atomic measurements with
electric hydrogen, albeit probably with less significance.

C. Magnetic radius

Table XI gives an overview of the results for the mag-
netic radius of the proton. The statistical and systematic
uncertainties are larger, since the radius is determines as an

extrapolation for Q2 → 0 where the cross section is less
sensitive to magnetic scattering. Interestingly, the difference
between splines and polynomials is much smaller than for

TABLE X. Results for the electric radius.

Method Electric radius rE in fm

Spline models (1) 0.875(5)stat.(4)syst.(2)model

Polynomial models (2) 0.883(5)stat.(5)syst.(3)model

Friedrich-Walcher 0.884(+7
−8)stat.(+7

−5)syst.

Spline with variable knots
+ external data:
+ Rosenbluth data 0.878
+ all external data 0.878
Average of (1) and (2) 0.879(5)stat.(4)syst.(2)model(4)group

With TPE from Ref. [96] 0.876(5)stat.(4)syst.(2)model(5)group

With TPE from Refs. [97–99] 0.875(5)stat.(4)syst.(2)model(5)group
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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FIG. 21. The electric and magnetic rms radii as extracted with the different models. Gray: Statistical error; black: Linearly added systematic
error.

model is not sufficiently flexible to achieve a comparably small
χ2

red. Hence, its extracted radius is unreliable and we refrain
from quoting its result.

Table X summarizes the electric radii determined with the
different approaches together with the final result Eq. (52).
Despite all these efforts, we do not see a way to reconcile our
result with those from muonic hydrogen. We do not expect
that a future calculation of TPE corrections can reconcile our
result with the muonic measurement completely, but we cannot
rule out that such calculations may reduce the discrepancy. We
want to note, however, that a large shift in the radius from TPE
would in turn create tension with atomic measurements with
electric hydrogen, albeit probably with less significance.

C. Magnetic radius

Table XI gives an overview of the results for the mag-
netic radius of the proton. The statistical and systematic
uncertainties are larger, since the radius is determines as an

extrapolation for Q2 → 0 where the cross section is less
sensitive to magnetic scattering. Interestingly, the difference
between splines and polynomials is much smaller than for

TABLE X. Results for the electric radius.

Method Electric radius rE in fm

Spline models (1) 0.875(5)stat.(4)syst.(2)model

Polynomial models (2) 0.883(5)stat.(5)syst.(3)model

Friedrich-Walcher 0.884(+7
−8)stat.(+7

−5)syst.

Spline with variable knots
+ external data:
+ Rosenbluth data 0.878
+ all external data 0.878
Average of (1) and (2) 0.879(5)stat.(4)syst.(2)model(4)group

With TPE from Ref. [96] 0.876(5)stat.(4)syst.(2)model(5)group

With TPE from Refs. [97–99] 0.875(5)stat.(4)syst.(2)model(5)group
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the
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for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the
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Fig. 19. The HIm CFF as a function of t for 4 CLAS (xB,
Q2) bins where the four observables σ, ∆σLU , AUL and ALL

can be fitted simultaneously. Red open squares: results of the
fit of σ and ∆σLU with the 8 CFFs as free parameters. Black
solid squares: results of the fit of σ and ∆σLUwith the 4 CFFs
HRe, H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs
being set to their VGG values. Red circles: results of the fit of
σ, ∆σLU , AUL and ALL with the 8 CFFs as free parameters.
The black solid squares and, in some cases the red circles, are
shifted to the right of the red open square points for visibility.
The dashed line shows the fit of the 6 red open squares (i.e.
the 8-CFFs fit of σ and ∆σLU ). The dash-dotted line shows
the fit of the 6 black solid squares (i.e. the 4-CFFs fit of σ and
∆σLU ). The dotted line shows the fit of the 3 red circles (i.e.
the 8-CFFs fit of σ,∆σLU , AUL and ALL). The solid line shows
the fit of the 3 red circles and the 3 red open squares whose
t-values are different from the red circles (i.e. the 8-CFFs fit of
σ, ∆σLU , AUL and ALL and of σ, ∆σLU when only these two
observables are available).

squares). The experimental precision on ALL doesn’t seem
to be sufficient to dramatically change the HRe results
obtained by the fit of only σ and ∆σLU . Only for the
largest xB bin (lower right plot of Fig. 17), one can see
an effect as the red solid circles show a somewhat smaller
HRe magnitude and smaller error bars than the red open
squares, although all values are compatible within error
bars.

In conclusion of this section, we have obtained con-
straints on the HIm CFF from the simultaneous fit of
σ and ∆σLU . The relative error bars range from ≈40%
to ≈100%, depending on the kinematics and on the ex-
periment (CLAS or Hall A), in the case of the quasi-
model-independent 8-CFFs fit. The 4-CFFs approach can
decrease these uncertainties to ≈10% in some cases, but
this is at the price of a model-dependent input (i.e. fix-
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Fig. 20. The H̃Im CFF as a function of t for 4 CLAS (xB,
Q2) bins. Red circles: results of the fit of σ, ∆σLU , AUL and
ALL with the 8 CFFs as free parameters. Red empty squares:
results of the fit of σ and∆σLU only, from CLAS. Red triangles:
results of the fit of σ and∆σLU only, from Hall A. For visibility,
the red empty square of the upper left plot has been slightly
shifted to the right of the red circle. Stars: VGG predictions.

ing the four non-varying CFFs to a model value). An im-
portant improvement is achieved by introducing the ad-
ditional AUL and ALL observables in the 8-CFFs fit. The
drawback is the limited amount of data available as it is
more challenging to measure polarized-target observables.
In addition to the HIm CFF, some constraints on the HRe

CFF can be extracted from the simultaneous fit of σ and
∆σLU (with very little improvement from the AUL and
ALL observables input) as well as on the H̃Im CFF with
the input of AUL.

5 Physics interpretation

In this section, we will discuss how to obtain a tomo-
graphic image of the proton, i.e. the x-dependence of the
charge radius of the proton, from the ξ and t-dependencies
of the HIm CFF that we just extracted with our fitting
procedure.

In the following, we will parametrize the data for HIm

of Eq. (6) in the following way:

HIm(ξ, t) = A(ξ)eB(ξ)t. (20)

Fig. 21 shows the ξ-dependences of the slope B and am-
plitude A determined from the exponential fits of the t-
dependence of HIm displayed in Figs. 16 and 19. In this
figure, we have decided to limit the upper range in ξ to
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Fig. 24. x-dependence of ⟨b2⊥⟩ for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which

Dupré, Guidal, Niccolai, Vanderhaeghen,  
arXiv:1704.07330

Transverse proton size from Jlab data u

u

d

u u

d

d

s
s

0

2.5

5H
Im

0

2.5

5

0

2.5

5

0

2.5

5

0

2.5

5

0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

-t (GeV2)

I analysis of CLAS and Hall A data:
fit of 8 CFF at LO/LT
Dupre,Guidal,Vanderhaeghen PRD95 (2017) 011501

Deeply Virtual Compton ScatteringCan we compare all the Proton « radii »?

Interference
measurements
Fit of 8 quantities
t-slope of Im H
Singlet GPD contr.

gluon sector sea quarks

Pure DVCS cross section measurements
t-slope of the X-cross section

Singlet GPD H contribution

E.M. Kabuß DIS2017 31
talk by E. M. Kabuss at DIS2017  
and Jörg arXiv:1702.06315

talks by S. Niccolai and N. D’Hose

The errors are large, but slowly we are getting some 3D information.  
Even if we do not get 3D imaging, GPDs are still gold mines of 
information about QCD! 

http://arxiv.org/abs/arXiv:1704.07330


What about angular momentum?

43

Jq =
1
2

⇤ 1

0
dx x

�
Hq(x, 0, 0) + Eq(x, 0, 0)

⇥
Ji’s sum rule



What about angular momentum?

• Requires extrapolations at t=0

43

Jq =
1
2

⇤ 1

0
dx x

�
Hq(x, 0, 0) + Eq(x, 0, 0)

⇥
Ji’s sum rule



What about angular momentum?

• Requires extrapolations at t=0

• Requires spanning x at fixed values of ξ (ξ=0 is the most convenient)

43

Jq =
1
2

⇤ 1

0
dx x

�
Hq(x, 0, 0) + Eq(x, 0, 0)

⇥
Ji’s sum rule



What about angular momentum?

• Requires extrapolations at t=0

• Requires spanning x at fixed values of ξ (ξ=0 is the most convenient)

• Does not have an interpretation as angular momentum density as a function 
of x
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FIG. 1: LO diagrams for the exclusive double Drell-Yan process ⇡N ! �⇤
1�

⇤
2N

0.

this region one can use TMD-type factorization. The longitudinal momentum transfer to the nucleon can be written
as ⇠a = (q+1 + q

+
2 )/(2P

+
a ). The LO diagrams for this process are shown in Fig. 1. The scattering amplitude depends

on the helicities of the nucleons and photons,

T �1,�2

�a,�0
a
= T µ⌫

�a,�0
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µ(�1) "
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⌫(�2) , (6)

where "

µ(�1) and "

µ(�2) are the photon polarization vectors. One finds

T µ⌫
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, (7)

where eq and e

0
q are the quark charges in units of the elementary charge e, and Nc is the number of quark colors. The

expression in (7) describes the double Drell-Yan process for all possible pion and nucleon charge states. Note that �q0q
⇡

is defined as in (4), but with the operator q̄

0
�

�
�5 q. Isospin symmetry provides �du

⇡+ = �ud
⇡� =

p
2�uu

⇡0 = �
p
2�dd

⇡0 .

Likewise, W qq0[�] is given by (1) with the operator q̄ � q

0. With this notation one can also describe transitions between
di↵erent nucleons. Like in the case of transition GPDs, for the GTMDs one has Xdu

p!n = X

ud
n!p = X

u
p �X

d
p [41]. In

Eq. (7) we use the vector �~q? = ~q1?�~q2?. The transverse momenta of the photons can be expressed by �~q? and the
transverse momentum transfer to the nucleon ~�a? = �(~q1?+~q2?). While the amplitude contains an integration upon
the transverse momenta of the quarks, their longitudinal momenta are fixed according to xa = (q+1 �q

+
2 )/(2P

+
a ), xb =

1� q

�
1 /p

�
b = q

�
2 /p

�
b . The value for xa implies the so-called ERBL region [42, 43], characterized by �⇠a  xa  ⇠a, in

which the GTMD matrix element describes the emission of a quark-antiquark pair from the nucleon. The amplitude, a
priori, depends on both the F1,i and the G1,i (i = 1, . . . , 4). From (7) one readily sees that the dominant contribution
to the amplitude is for transversely polarized photons. In this context note that gµ⌫? = g

µ⌫ � n

µ
an

⌫
b � n

⌫
an

µ
b , with the

light-like vectors na = (1, 0, 0,�1)/
p
2, nb = (1, 0, 0, 1)/

p
2.

The relation between the scattering amplitude in (6) and the cross section in the center-of-mass frame reads
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where we have already integrated over the phase space of the outgoing nucleon. Below we consider the unpolarized
cross section, single-spin asymmetries (SSAs), and double-spin asymmetries (DSAs). It is convenient to introduce
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2
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, (11)

Exclusive double Drell-Yan

q

q1

q2
k −∆/2

k +∆/2

FIG. 2. Generic Feynman diagram to evaluate the single longitudinal spin asymmetry in the hard
exclusive dijet production in deep inelastic lepton nucleon scattering processes. All possible gluon
attachment has been included in our calculations.

kinematics: ∆ = p′ − p, P = (p+ p′)/2, t = ∆2, (q+ p)2 = W 2, (q−∆)2 = (q1 + q2)2 = M2,
and the skewness parameter is defined as ξ = (p+ − p′+)/(p+ + p′+) with p± = (p0±pz)/

√
2,

where q and p are chosen to be along the z axis. As shown in Fig. 1, the lepton plane is set
as the x− z plane. The quark pair are in one plane with azimuthal angle φq respect to the

lepton plane, whereas the recoiled proton is in another plane with momentum transfer ∆⃗⊥

and azimuthal angle φ∆. The spin-average cross section for this process has been calculated
in Ref. [19]. In the following, we will compute the single longitudinal target-spin asymmetry.
We will show how this asymmetry can be related to the gluon OAM contributions.

Generically, the single longitudinal spin asymmetry in the above process can be evaluated
following the usual collinear expansion at the next-to-leading power. We write the scattering
amplitude, depicted in Fig. 2, as

iAf ∝
∫

dxd2k⊥H(x, ξ, q⊥, k⊥,∆⊥) xf
g(x, ξ, k⊥,∆⊥) , (4)

where q⊥ is the jet transverse momentum defined above, and k⊥ is the gluon transverse
momentum entering the hard partonic part of Fig. 2. In this calculation, q⊥ is the same
order of Q, while the nucleon recoil momentum ∆⊥ is much smaller than Q. In the twist
analysis, we expand the scattering amplitude in terms of k⊥/q⊥ (or k⊥/Q),

H(x, ξ, q⊥, k⊥,∆⊥) = H(0)(x, ξ, q⊥, 0,∆⊥) + kα
⊥

∂

∂kα
⊥

H(x, ξ, q⊥, 0,∆⊥) + · · · . (5)

For the spin-average cross section, we take the zero-th order expansion of k⊥. As a result,
k⊥ is integrated out for the gluon Wigner distribution,

∫

d2k⊥xf
g(x, ξ, k⊥,∆⊥) = Fg(x, ξ,∆⊥) , (6)

where Fg is the spin-average gluon GPD. The scattering amplitude can be written as

iA(0)
f ∝

∫

dxH(0)(x, ξ, q⊥, 0, 0) xFg(x, ξ,∆⊥) . (7)

4

Exclusive dijet production
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Ji, Yuan, Zhao, arXiv:1612.02438 
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• The EIC will be our dream machine.  
Without the EIC, we will have a very limited view of the inner structure of the 
proton.

• Apart from mainstream activity (golden and silver), a lot of other interesting 
topics can be addressed (many other polarized objects, higher twist, jets, 
nuclear corrections, TMD factorization breaking…)  
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