
Elliptic Azimuthal Anisotropy 
in Dijet Production

Thomas Ullrich, BNL/Yale 
in collaboration with V. Skokov 
and A. Dumitru 
EIC User Meeting Trieste 
July 21, 2017

0

1

2

3

ET (GeV)

0

2

-2

-4

-2

0

-2

-4

ϕ

η



What Is It About?
• Thus far, focus on quark TMDs while the available 

studies of gluon TMDs are sparse 
• Of particular interest: WW distribution of linearly 

polarized gluons inside an unpolarized hadron, hT(1)    

• These gluon distributions play also central role in small-x 
saturation phenomena.
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hT(1) can be accessed through measuring azimuthal 
anisotropies in processes such as jet pair (dijet) 
production in e+p and e+A scattering.



Key observables: PT and qT 

• the difference in momenta 
(imbalance) 

• the average transverse 
momentum of the jets 

• φ is angle between PT and qT 

• This study: work in “correlation 
limit” PT >> qT

Kinematics: Dijets in γ*A
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Dijets in Dijets in ##*A :*A :
(Dominguez, Marquet, Xiao, Yuan,
PRD 2011)

Dijet total tr. momentum:

or

and net momentum (imbalance):

“correlation limit”                 involves only 2-point 
functions / TMDs,   no quadrupole

~PT = (1� z)~k1 � z~k2

~qT = ~k1 + ~k2

k
→
1

q→T

2P
→
T

k
→
2

φ



Anisotropy (v2)

• RHIC: Strong elliptic flow in A+A established presence of 
QGP.  LHC: p+p and p+Pb collisions revealed long-range 
near-side azimuthal angular correlations in high multiplicity 
events. 

• They are quantified by v2 = 〈cos 2φ〉
• Dijet production in e+A at high energies originates from 

long-ranged eikonal interactions ⇒ parameterizing the 
azimuthal structure arising from the linearly polarized gluon 
distribution also in terms of v2
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Ridges everywhere: pp, pA, AA

2  Quark Matter 2015,  Sep.27-Oct.3, 2015, Kobe, Japan Guo-Liang Ma�SINAP�

Long-range correlations in p+p, p+Pb, and Pb+Pb 
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•Are the ‘ridges’ due to the same origin in p+p, p+Pb and Pb+Pb?
...



Theory Prediction: Substantial v2

• Studies on parton level 
‣ substantial v2 (> 10%) 
‣ different v2 for long. and trans. polarized γ* 

• Goal:
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FIG. 2: The average azimuthal anisotropy v2 = hcos 2�i versus the dijet transverse momentum scale PT or the dijet transverse
momentum imbalance qT , respectively. The assumed �

⇤A center of mass energy is
p
s = 100 GeV. Since Q2 = 4P 2

? and z = 1/2
these curves apply to either longitudinal or transverse photon polarization. Solid (dashed) lines correspond to fixed (running)
coupling evolution.

We obtain the Wilson lines U numerically from B-
JIMWLK evolution in Y = ln(x0/x), starting from
an initial condition at x0 = 10�2 using the the MV
model. The initial condition on the lattice is constructed
as described in detail in Ref. [37]. The B-JIMWLK
equation can be solved on the lattice with a Langevin
method [38, 39]. We use here the “left-right” symmet-
ric [40] numerical method introduced in Ref. [41], using
either fixed coupling or a running coupling with the al-
gorithm of Ref. [41]. As in e.g. Ref. [42], we determine
the saturation scale Qs numerically from the two-point
(dipole) function of the Wilson lines. The renormaliza-
tion group evolution increases Qs roughly as Q2

s ⇠ x

�0.3.
For the calculation of the light cone gauge field one needs
Fourier transforms of derivatives of Wilson lines. Some
care must be exercised to obtain the proper momen-
tum space distribution: we have used two di↵erent cen-
tered di↵erence methods (discretizing over one or two
lattice spacings) and found that the results are equiva-
lent. For the fixed coupling evolution we take ↵s = 0.15
to provide an evolution speed roughly in line with in-
clusive HERA data. For running coupling we use in
this preliminary study the slightly overestimated value
Qs(x0)/⇤QCD = 11, which also slows down the evolution
closer to experimentally observed values.

For our numerical estimates below we take Q

2 = 4P 2
?.

Hence, for z = 1/2, v

L
2 and v

T
2 have equal magnitude

but there is a relative phase shift of ⇡/2. The physi-
cal momentum scale is set by the saturation momentum
at x0. To obtain the numerical values in the plots we
take Qs(x0) = 1 GeV (for a qq̄ dipole). The saturation
momentum corresponds to the scale where the forward

scattering amplitude is of order 1.
We now turn to describe our results. We first show the

solution for the unintegrated gluon distributions before
discussing the azimuthal asymmetry w.r.t. the direction
of ~q? of the �

⇤A cross section.

Figure 1 shows the dependence of G(1) and h

(1)
? at dif-

ferent evolution rapidities Y on transverse momentum.
We refrain from showing curves for running coupling evo-
lution since they look very similar. Either one of the
TMDs drops rapidly as a power of q? at high transverse
momentum q? � Qs and so they are best measured at
q? of order a few times the saturation scale. For a heavy-
ion target the saturation scale is boosted (on average over
impact parameters) by a factor of ⇠ A

1/3 [43] which fa-
cilitates such measurements in a regime of semi-hard q?.
The degree of gluon linear polarization is maximal at

high transverse momentum, h(1)
? /G

(1) ! 1; the satura-
tion of the positivity bound of the cross section has also
been observed in perturbative twist-2 calculations of the
small-x field of a fast quark [4, 6]. On the other hand

h

(1)
? /G

(1) ⌧ 1 at low q? which conforms to the expected
power suppression. At fixed q?/Qs(x) the ratio of these
functions decreases rather slowly with rapidity, at least
after an initial evolution away from the MV model to-
wards the B-JIMWLK fixed point. This means that, be-

cause of the growth of Qs, the ratio h

(1)
? /G

(1) at fixed
transverse momentum q? decreases with rapidity. Thus
the emission of additional small-x gluons reduces the de-
gree of polarization. Our results show that this e↵ect
can quite well be parametrized by geometric scaling as a
universal function of q?/Qs.
In Fig. 2 we show the elliptic asymmetry as a func-
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FIG. 3: The average azimuthal anisotropy v2 = hcos 2�i ver-
sus the dijet rapidity imbalance ⇠ = log (1 � z)/z. Thick
(thin) lines correspond to longitudinal (transverse) photon
polarization.

tion of the dijet transverse momentum scale P? and the
transverse momentum asymmetry q?. Increasing P? in-
creases x and suppresses evolution e↵ects and so v2(P?)
increases towards the MV model initial condition. The
reason for the di↵erence between the fixed and running
coupling curves in v2(P?) is that in this preliminary
study they have not been adjusted to have the same evo-
lution speed @Y lnQ2

s (Y ). We observe the same behavior
for v2(q?) even though x increases only slowly with q?;
here the increase of the elliptic asymmetry is mainly due

to h(1)
? (q?)/G(1)(q?) ! 1 as q?/Qs � 1, as shown above.

Overall, in the kinematic range considered in Fig. 2 we
find a rather substantial magnitude of v2 ⇠ 10%.

Figure 3 shows v2 versus the rapidity asymmetry

⇠ = log
1� z

z

. (11)

Our calculation applies for moderately large rapidity sep-
arations less than 1/↵s, since we are assuming that the
two jets are sensitive to the same distribution of Wilson
lines. We find a mild increase of v2 away from z = 1/2
which is due to the fact that asymmetric dijet configura-
tions probe the gluon field of the target at larger values
of x. The slow evolution of the eikonal interaction with
x translates into a rather flat v2(⇠) over several units in
⇠ away from the boundary of phase space. Hence, at
high energies the azimuthal asymmetry is long range in
rapidity.

In summary, we have computed the TMD distribu-

tion h

(1)
? of linearly polarized gluons for a large nucleus

at small x. We have used the McLerran-Venugopalan
model to obtain initial conditions at x0 ⇠ 10�2 and

the B-JIMWLK equations to evolve to lower x. We
find that for realistic values of x and transverse mo-
mentum imbalance q? that h

(1)
? (x, q?) is of substantial

magnitude. This results in large elliptic azimuthal asym-
metries v2 ⌘ hcos 2�i ⇠ 10% in DIS dijet production.
Also, the azimuthal correlations are long range in rapid-
ity, i.e. v2 depends weakly on the rapidity asymmetry
⇠ = log (1� z)/z.
In the future we intend to check other initial condi-

tions for the evolution, although we do not expect quali-
tative modifications of the results presented here. It will
be interesting, also, to study Sudakov resummation ef-
fects [44, 45] as well as more general kinematic configu-
rations which require quadrupole matrix elements [5].
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏

2
f = z(1 � z)Q2 with Q

2 of order P

2
?. Here, we re-

strict ourselves to kinematic configurations where ~

P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~

P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q

2
? +

1

z(1� z)
P

2
?

◆
(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have

v

L
2 =

1

2

h

(1)
? (x, q?)

G

(1)(x, q?)
, v

T
2 = �

✏

2
fP

2
?

✏

4
f + P

4
?

h

(1)
? (x, q?)

G

(1)(x, q?)
.

(6)

The linearly polarized h

(1)
? and unpolarized G

(1) dis-
tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xG

ij
WW =

1

2
�

ij
xG

(1) � 1

2

✓
�

ij � 2
k

i
k

j

k

2

◆
xh

(1)
? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx

�
A

+(x�
,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

A

i(xT ) =
1

ig

U

†(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone A

i(xT , x
�) ⇠ ✓(x�)Ai(xT ), this field can

also be thought of as a sheet of color electric field on the
light cone Ei(xT , x

�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xG

ij
WW(x,~k) =

8⇡

L

2

Z
d

2
xT

(2⇡)2
d

2
yT

(2⇡)2
e

�ikT ·(xT�yT )

⇥
⌦
A

i
a(xT )A

j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L

2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h

(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].



Theory → Experiment (EIC)
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Theory Experiment

parton level jets 
does v2 survive showering 
and jet finding?

no backgrounds various background sources, 
does signal survive?

γ*: L and T distinguished Cannot experimentally 
distinguish L and T

both partons η > 0 Does jet kinematics reflect 
original parton directions

Exciting theory but need to show that measurement is feasible



Simulations: Event Generation
• Event generator: MCDijet 
‣ V. Skokov, A. Dumitru, TU, https://github.com/vskokov/ 
‣ qq̅ dijet at LO in eA collisions 
‣ Determines the distribution of linearly polarized gluons 

of a dense target at small-x by solving the B-JIMWLK 
renormalization evolution equation 

‣ Output: 
๏ x, Q2, …. 
๏ partons p1, p2 

• Parton showering → Jets: Pythia8 
‣ input: qq̅ pair 
‣ output: Pythia event record

7



Parton Kinematics

• Here: √s = 90 GeV e+Au 
• 4 < Q2 < 81 GeV2 

• Partons 
‣ pT < 5 GeV/c, 〈pT〉~1.8 GeV/c 
‣ 0 < η < 3 

• Not optimal for jet finding
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Diparton Kinematics

• Bulk PT < 3.5 GeV/c and qT < 2 GeV/c 
• Correlation limit PT >> qT does cost lots of signal 
• Note, cross-section and efficiencies do not matter 

(to some extent) only anisotropy
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Jet Finding
• Standard jet finding package: FastJet 

• Clean environment ⇒ Rjet=1 

• Accept hadrons, pT > 250 MeV/c 

• Problem: two forward jets with low-moderate pT 

• Anti-kt algorithm not the right choice 
‣ 〈#jets/event〉 ~ 4.7 
‣ Comparison of parton with jet pT, dijet qT, PT shows the 

algorithm is not up to the task 

• ee-kt seems best of all available algorithms 

‣ Fixed number of jets, here 2 
‣ Future: combination of ee-kt and anti-kt with detailed 

comparison and QA

10



Jet - Parton Comparison

• Ok η match 
• Obvious lower jet pT than original parton 
• Shift needs to be corrected by usual unfolding in “real” 

analysis. Beyond scope here. 
• Poor man’s correction: add average E-loss to compensate
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Dijet - Diparton Comparison

• Perfect qT match due to ee-kt 
• PT matches quite well (unfolding would improve)
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Elliptic Anisotropy

• Here: eA  √s=90 GeV, 1.25 < qT < 1.75 GeV/c,  2.75 < PT < 3.25 GeV/c 
• Error bars scaled to 1 fb-1/A, fluctuations due to limited MC stats 
• Dijets recover the anisotropy (v2) quite well 
• Lower yield of jets due to uncorrected jet finding efficiency  

‣ doesn’t matter as long it doesn’t effect anisotropy 
• NOTE: phase shift between long. and trans. γ* (dominated by T)
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Disentangling L and T (I)
• Other than in diffractive exclusive J/ψ production, L and 

T cannot be separated easily 
• However, essential to extract hT(1)/G(1)

14

2

αs xh(1)
T αs xG(1)

αsY=1 

αsY=0.5
αsY=0

10−4

10−3

10−2

10−1

qT/Qs(Y)
0 2 4 6 8 10

αsY=0
αsY=0.2
αsY=0.4
αsY=0.6
αsY=0.8
αsY=1

h(
1) T
/G

(1
)

0

0.2

0.4

0.6

0.8

1.0

qT/Qs(Y)
0 2 4 6 8 10

FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,
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2
f = z(1 � z)Q2 with Q

2 of order P

2
?. Here, we re-

strict ourselves to kinematic configurations where ~

P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~

P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
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The linearly polarized h

(1)
? and unpolarized G

(1) dis-
tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:
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In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx

�
A

+(x�
,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

A

i(xT ) =
1

ig

U

†(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone A

i(xT , x
�) ⇠ ✓(x�)Ai(xT ), this field can

also be thought of as a sheet of color electric field on the
light cone Ei(xT , x

�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xG

ij
WW(x,~k) =

8⇡

L

2

Z
d

2
xT

(2⇡)2
d

2
yT

(2⇡)2
e

�ikT ·(xT�yT )

⇥
⌦
A

i
a(xT )A

j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L

2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h

(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].

Several Methods available: 
1. Using Q2 and PT dependence of L and T 

P⊥

σ /σTL
• σL is negligible at small Q2 
• Bin data in Q2 and PT and 

study dependence



Disentangling L and T (II)
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2. Use kinematic relation:

• Fit dN/dφ  with v2L and v2T as free 
parameter tied together by variable 
R 

• Here no PT, Q2 binning, use average 
for proof of principle 

• Sufficient leverage to disentangle  L 
and  T (true: v2L ~ 0.14 and v2T ~ 
-0.14)

vunpol.
2

=
RvL

2

+ vT
2

1 +R

R =
4z2(1� z)2✏2fP

2
T

z(1� z)(z2 + (1� z)2)(✏4f + P 4
T )

✏2f = z(1� z)Q2

where

with

Proof of principle from generated jet data:
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Background (I)
• Sources 
‣ physical background 
‣ artifacts by using ee_kt jet finder and enforcing two 

jets (fake jets) 

• PYTHIA6 Simulations 
‣ Generate events with full suite of processes 

switched on 
‣ Same kinematic limits (Q2, W,…) as McDijet (source 

generator) 
‣ Run through exactly same chain as McDijet
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Background (II)
• Studying Background 
‣ Dijet distributions offer no obvious cuts in PT, qT 
‣ Key difference: rapidity dependence 

17

Factor 5 improvement  
in S/B
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PYTHIA6
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• Pythia jets are more forward and dominantly η1·η2 < 0 
• Require jets to be 0 < η < 3 
‣ Signal loss 1-2% 
‣ Background reduction by factor 5



Background (III)
• Pythia & fake jet 

background is ~ 0.25 of 
that of signal. 

• background shows no 
modulation but a 
broadened away-site peak 

• Further QA cuts on jets 
may reduce the 
background further (to be 
checked) 
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Pythia

• To subtract background need to know the shape quite well 
‣ simulations 
‣ ep events 

• Proof of principle: assume Gaussian + const as free fit 
parameters



Background (IV)
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• Fit works well 
• v2 within < 15% 
• χ2/ndf ~ 1.2

• Sufficient leverage 
to deal with 
backgrounds 

• Further reduction 
of background 
through jet Q&A 
cuts and shape 
control
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Summary
• Transverse momentum dependent (TMD) factorization in DIS 

predicts a distribution for linearly polarized gluons in an 
unpolarized target, hT(1). This is reflected in an azimuthal 
anisotropy in dijet production, measured via v2. 

• Anisotropy is different for transverse (T) and longitudinal (L) 
polarized virtual photons 

• First simulations show that the in eA an EIC can perform this 
challenging measurement 
‣ Can separate background from signal jet pairs 
‣ Can extract v2L and v2T
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Measurement of v2 of dijets will give us this new
TMD gluon distribution function which has not been
measured so far.


