# Track Extrapolation in the g-2 experiment

#### Saskia Charity MUSE Meeting, 12<sup>th</sup> May 2017





# Introduction

- Reminder of tracking requirements in g-2
- Track extrapolation overview
- Identifying the decay vertex position
- True reconstructed position distributions
- Optimising the extrapolation
- Results from simulation

# Tracking Requirements - reminder

#### • Trackers required for 3 main reasons:

- Measure beam profile as a function of time at multiple locations around the ring
- Understand systematic uncertainties on the  $\omega_a$  measurement e.g. pileup (multiple e+ hitting calorimeter within a short time window), calorimeter gain and muon loss by providing an independent measurement of the momentum of the incident particle
- Measure any vertical tilt in muon precession plane  $\rightarrow$  EDM signal

#### • Requirements:

- <l% momentum resolution
- mm-level position resolution



## Track Extrapolation - overview

Fitted decay positron tracks are extrapolated back to the muon decay vertex location using a 4<sup>th</sup> order Runge-Kutta algorithm

- uses Nystroem algorithm (Handbook Nat. Bur. of Standards, procedure 25.5.20) – method for solving ODEs
- Define a fixed step size and swim particle through field along the step
- Look up the magnetic field at each step
- Stop extrapolating when momentum of extrapolated track is tangential to the magic radius
- Algorithm can be optimised to use varying step size in regions where field gradient is larger



# Finding the muon decay point

The decay vertex position is assumed to be the point of tangency to the 'magic radius'

- No fixed decay vertex so need to choose when to stop extrapolating
- A good first estimate of the decay point is the point where the momentum of the track is tangential to the magic radius
  - Assumes that e+ always emitted tangential to beam need to correct for times where this is not the case. On average this is a 1mm effect (Sossong thesis)



- For checking success of algorithm, also consider the DCA of the extrapolated track to the true decay position from simulation
  - Choose the three closest points to the true decay point, fit a circle to them and find the point on the circle to the true decay position

# True – DCA position distributions

Plot the true – DCA radial and vertical positions, using true position and momenta as input, to gauge success of extrapolation algorithm

• Extrapolated from true positions/momenta



• Applying cuts could improve distributions, but limited information available

Use the geometry in the simulation to find out if an extrapolated track has hit any material

# True – DCA position distributions

## Considering only events that do not hit any material improves the true – recorresolution significantly

• Extrapolated from true positions/momenta



 Improvement is better for radial resolution than vertical resolution

### True – tangency point position distributions

### True – tangency point radial position is similar to the expected distribution before any corrections are applied

• Extrapolated from true positions/momenta - events that hit volumes removed



• Spread is similar to that measured in Brookhaven experiment

### True – tangency point position distributions

#### True – tangency point vertical position is similar to the expected distribution before any corrections are applied

• Extrapolated from true positions/momenta - events that hit volumes removed



Brookhaven experiment

# Reconstructed radial position

Plotting the true – tangent point position as a function of momentum shows the resolution improves with increasing momentum, as expected



• Extrapolated from fitted tracks (GEANE)

At 'magic' momentum, expect decays to be perfectly tangential

 Using tangent point as decay vertex is a better approximation at high momentum

# Average beam position

Using truth as input, the average beam position can be reconstructed with reasonable accuracy



- Extrapolated from true straw hit positions/momenta
- No cuts applied on momentum or volumes hit

# Average beam position – shifted beam

## Extrapolating from fitted (GEANE) tracks from two samples of muons with different beam positions - shift in mean observed as expected



- Extrapolated from fitted tracks (GEANE)
- Two samples of muons generated:
  - Beam x pos mean = 0mm
  - Beam x pos mean = 3mm
- Reconstructed beam positions from these samples:
  - Reco x pos mean = 0.06 mm
  - Reco x pos mean = 2.85 mm

# Conclusions

- Track extrapolation between fitted tracks and decay vertex/calorimeters is performed using a 4<sup>th</sup> order Runge-Kutta Nystroem algorithm
- Comparison between true and DCA decay positions show algorithm is working successfully
- Cutting events that hit material improves the reconstruction
- Using the point of radial tangency to approximate the decay vertex position, the resolution on the reconstruction is sufficient to detect a shift in the average beam position