

















MUSE Mid-Term Meeting Frascati, 11 May 2017

# Plans for Medical Applications SiPM for Particle Therapy

B. Lutz, D. Bemmerer, K. Römer, D. Weinberger, F. Fiedler



## **Detectors for Particle Therapy**

Signal originates from radiation inside humans. Its magnitude is defined by medical considerations.

It cannot be optimized for detection!



#### Conditions

- significant neutron background
- short measurement times (seconds)
- magnetic fields from equipment (accelerators, MRI)

### Requirements

- fast, efficient, magnetic insensitive sensors
- high bandwidth, background insensitive system design

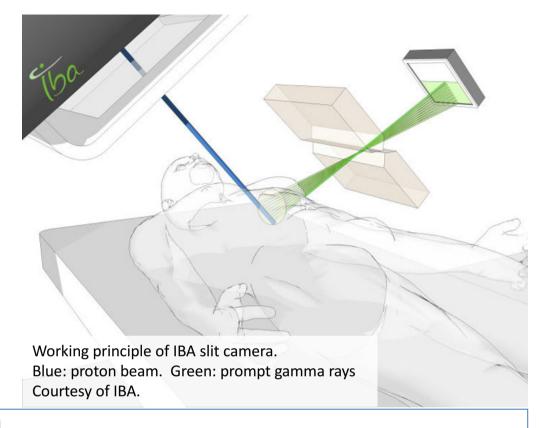


## Why Silicon Photo Multipliers?

#### **SiPM**

- small
- inexpensive
- efficient
- fast
- magnetic field insensitive

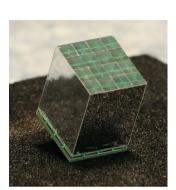
#### **Benefits**


- can afford many channels
  - reduced pileup
  - good spatial resolution
- time resolution, pileup
- compatible with medical environment

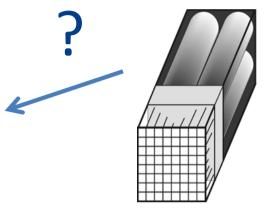
#### But:

limited radiation hardness




## Applications of SiPM: IBA Slit Camera




- prototype currently being tested
- range verification system
- exploiting prompt gamma rays emitted when primary beam interacts with patient tissue
- slit focuses beam on crystal array
- crystal array read by SiPM



## Applications of SiPM: In-Beam PET



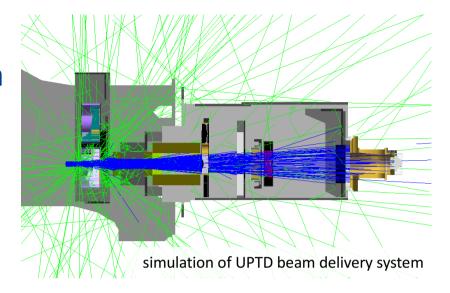
4×4 LYSO 3×3×15mm<sup>3</sup> SiPM matrix (Hamamatsu) used in ToFPET

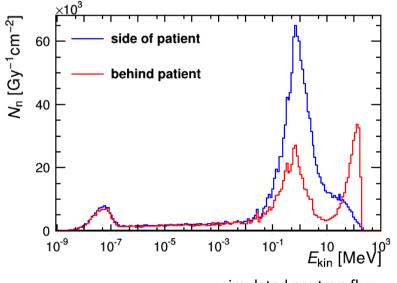


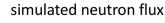
BGO-Block:  $8 \times 8$  Kristalle;  $2 \times 2$  PMT



## In-beam positron emission tomography


- uses ß<sup>+</sup> emitters created by primary beam
- range & dose verification
- very challenging background conditions compared to standard PET
- detection efficiency important
- can we improve by changing the technology from PMT to SiPM?



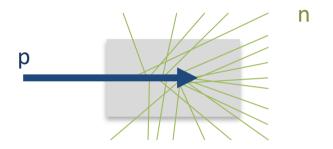


## Neutron Background at University Proton Therapy Dresden

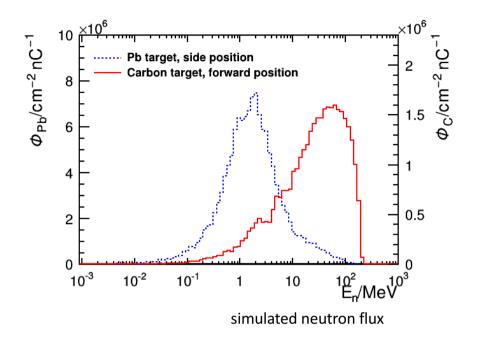
#### Neutron flux

- position dependent
  - intensity
  - spectral shape
- significant contribution of high energetic neutrons (10 – 230 MeV)
- 5·10<sup>4</sup> cm<sup>-2</sup>s<sup>-1</sup> (peak rate)
- 1·10<sup>10</sup> cm<sup>-2</sup>a<sup>-1</sup> (200 patients)











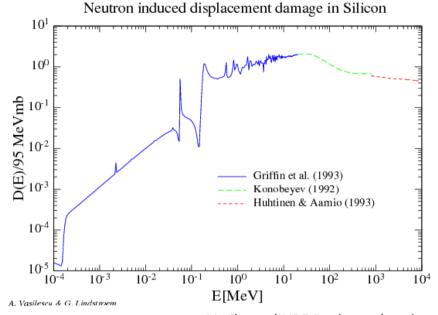

### **SiPM Irradiation Tests**





- field generation:
  - UPTD experimental area
  - absorb proton beam in Pb or C-rich material
  - different materials and location give different neutron spectra
- monitor SiPM during irradiation
- test spectral sensitivity




#### What to learn from irradiation

## test for SiPM degeneration

- noise increase
- gain reduction
- shift of working point
- failure of pixel quenching

## induced signals

- SiPM material
  - sensitivity
  - abnormal signals
- packaging



Vasilescu (INPE Bucharest) and G. Lindstroem (University of Hamburg), Displacement damage in silicon, on-line compilation

#### Crucial:

close contact with producer

- understand effects
- mitigate/remove sensitivity
- define best SiPM for medical applications







## Summary

- SiPM are promising candidates for use in medical applications
  - small & inexpensive
  - fast
  - magnetic field insensitive
- Proton therapy has a challenging neutron background
  - spectrum extends to high kinetic energies (230 MeV)
  - high flux
- → SiPMs need to be qualified for the use at such fields in irradiation test
  - simulation of neutron yield completed for Pb and graphite
  - target holder and targets available
  - beam time request approved
  - SiPM readout currently developed
- First meeting with AdvanSiD this month

