Novel proposal for a low emittance muon collider

M. Antonelli (LNF)

Outline

- Muons case
- Muon accelerators challenges:
 - muon production
 - ✓ LEMMA
 - high-gradient acceleration and collider rings
 - Performances
- Conclusions

The strength of a μ -beam facility lies in its richness:

- Muon rare processes
- Neutrino physics
- Higgs factory
- Multi-TeV frontier

 μ -colliders can essentially do the HE program of e^+e^- colliders with added bonus (and some limitations)

Muon based colliders great potential

As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider offers a precision probe of fundamental interactions without energy limitations

- By synchrotron radiation (limit of e⁺e⁻ circular colliders)
- By beam-strahlung (limit of e⁺e⁻ linear colliders)

Muon Collider is the ideal technology to extend lepton high energy frontier in the multi-TeV range with reasonable dimension, cost and power consumption

Muon based Higgs factory takes advantage of a strong coupling to Higgs mechanism by s resonance

IF THE MUON BEAM NOVEL TECHNOLOGY CAN BE DEMONSTRATED TO BE FEASIBLE

##

MultiTeV Lepton Collider Basics

- For √s < 500 GeV
 - SM threshold region: top pairs; W⁺W⁻; Z⁰Z⁰; Z⁰h; ...
- For √s > 500 GeV

Estia Eichten

- For SM pair production ($|\theta| > 10^\circ$)

 $\mathsf{R} = \sigma / \sigma_{\mathsf{QED}}(\mu^+ \mu^- \rightarrow \mathsf{e}^+ \mathsf{e}^-) \sim \mathsf{flat}$

$$\sigma_{\rm QED}(\mu^+\mu^- \to e^+e^-) = \frac{4\pi\alpha^2}{3s} = \frac{86.8 \text{ fb}}{s(\text{TeV}^2)}$$

- High luminosity required

108 $\mu^+\mu^- \rightarrow X$ 107 Σαα 10⁶ e⁺e $\mu^{+}\mu^{-}$ (20° cut) 10⁵ (qJ) ω 10⁵ w*w-0.003% 0.1% 103 ZZ _-__Zh(100) W*W-7 102 (E_>0.1E_) W^+W 101 100 200 300 0 400 500 √s_{µµ} (GeV)

Standard Model Cross Sections

$$\sqrt{s} = 3.0 \text{ TeV} \quad \mathcal{L} = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$$
$$\rightarrow 100 \text{ fb}^{-1} \text{year}^{-1}$$

 \Rightarrow 965 events/unit of R

Processes with R \geq 0.1 can be studied

Total - 540 K SM events per year

== 10³⁶ cm⁻² s⁻¹@ √s 30 TeV

Muon Collider 2011 @ Telluride, CO

Vector boson fusion

 $\sigma(s) = C \ln(\frac{s}{M_{\rm x}^2}) + \dots$

- For √s > 1 TeV Fusion Processes
 - Large cross sections
 - Increase with s.
 - Important at multi-Tev energies
 M_X² < s
 - Backgrounds for SUSY processes
 - t-channel processes sensitive to angular cuts

CLIC (or MC e<-> μ)

SM Higgs

Resonant Higgs production:

 Unique measurements mh and *Гh*

(mh ~ 0.1 MeV, *Γh* ~ 0.2 MeV)

- Best test of 2nd generation Higgs couplings (h $\rightarrow \mu + \mu - \mu$)
- HZ production:
 - Similar to e⁺e⁻ measurements but lower statistics factor 10 (ILC/CEPC) 100 FCC-ee
- VBF at mutiTeV
 - High xs(O(1Pb)@6TeV) & high lumi better statistics than FCC-ee ?
 - Competitive (probably best) measurement of HH production

	m _H (MeV)	0.06	30	8	
•	Г _н (MeV)	0.17	0.16	0.04	
	g _{Hbb}	2.3%	1.5%	0.4%	
	g _{HWW}	2.2%	0.8%	0.2%	Ot
	g _{Htt}	5%	1.9%	0.5%	
	g _{Ηγγ}	10%	7.8%	1.5%	
	g _{нµµ}	2.1%	20%	6.2%	
	g _{HZZ}	-	0.6%	0.15%	
	g _{Hcc}	-	2.7%	0.7%	
	g _{Hgg}	-	2.3%	0.8%	P. J
	BR _{invis}	-	<0.5%	<0.1%	1

(after ~10 years of running)

ILC

Janot

uu resonance

Error on

Muon Colliders potential of extending leptons high energy frontier with high performance

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon Colliders extending leptons high energy frontier with potential of considerable power savings

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon Source

Goals

- **Neutrino Factories**: O(10²¹) μ /yr within the acceptance of a μ ring
- **Muon Collider**: luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale ($\sim N_{\mu}^2 1/\epsilon_{\mu}$)

Options

Conventional: Tertiary production through **proton on target** (and then <u>cool</u>), baseline for Fermilab design study

Rate > $10^{13}\mu$ /sec N_µ = 2.10¹²/bunch

Unconventional:

 e⁺e⁻ annihilation: positron beam on target (very low emittance and no cooling needed), baseline for our proposal here Rate ~ 10¹¹ μ/sec N_µ~ 5x10⁷ /bunch

• **by Gammas: GeV-scale Compton** γ s not discussed here Rate ~ $5 \cdot 10^{10} \mu$ /sec N_µ ~ 10^{6} (Pulsed Linac) [V. Yakimenko (SLAC)] Rate > $10^{13} \mu$ /sec N_µ ~ few $\cdot 10^{4}$ (High Current ERL) see also: W. Barletta and A. M. Sessler NIM A 350 (1994) 36-44

Exploring the potential for a Low Emittance Muon Collider

References:

- M.Antonelli, "Very Low Emittance Muon Beam using Positron Beam on Target", ICHEP (2016)
- M.Antonelli, E.Bagli, M.Biagini, M.Boscolo, G.Cavoto, P.Raimondi and A.Variola, "Very Low Emittance Muon Beam using Positron Beam on Target", IPAC (2016)
- M. Antonelli, "Performance estimate of a FCC-ee-based muon collider", FCC-WEEK 2016
- M. Antonelli, "Low-emittance muon collider from positrons on target", FCC-WEEK 2016
- M. Antonelli, M. Boscolo, R. Di Nardo, P. Raimondi, *"Novel proposal for a low emittance muon beam using positron beam on target"*, **NIM A 807 101-107 (2016)**
- P. Raimondi, *"Exploring the potential for a Low Emittance Muon Collider"*, in **Discussion of the scientific potential of muon beams workshop**, CERN, Nov. 18th 2015
- M. Antonelli, **Presentation Snowmass 2013**, Minneapolis (USA) July 2013, [M. Antonelli and P. Raimondi, Snowmass Report (2013) also INFN-13-22/LNF Note

Also invetigated SLAC team:

- L. Keller, J. P. Delahaye, T. Markiewicz, U. Wienands:
 - *"Luminosity Estimate in a Multi-TeV Muon Collider using* $e^+e^- \rightarrow \mu^+\mu^-$ *as the Muon Source",* MAP 2014 Spring workshop, Fermilab (USA) May '14
 - Advanced Accelerator Concepts Workshop, San Jose (USA), July '14

Idea for low emittance μ beam

Conventional production: from proton on target

π, K decays from proton on target have typical P_{μ} ~ 100 MeV/c (π, K rest frame)

whatever is the boost P_T will stay in Lab frame \rightarrow very high emittance at production point \rightarrow cooling needed!

Direct μ pair production:

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} around the $\mu^+\mu^-$ threshold ($\sqrt{s}\sim 0.212 \text{GeV}$) in asymmetric collisions (to collect μ^+ and μ^-)

NIM A Reviewer: "A major advantage of this proposal is the lack of cooling of the muons.... the idea presented in this paper may truly revolutionise the design of muon colliders ... "

Advantages:

- **1.** Low emittance possible: $P\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^- P\mu$ can be very small close to the $\mu^+\mu^-$ threshold
- Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: Muon Energy spread also small at threshold, it gets larger as √s increases, one can use correlation with emission angle (eventually it can be reduced with short bunches)

Disadvantages:

• Rate: much smaller cross section wrt protons

 $\sigma(e^+e \rightarrow \mu^+\mu^-) \sim 1 \ \mu b \ at \ most$

i.e. Luminosity(e+e-)= 10^{40} cm⁻² s⁻¹ \rightarrow gives μ rates 10^{10} Hz

Possible Schemes

- Low energy collider with e+/e- beam (e+ in the GeV range):
 - 1. Conventional asymmetric collisions (but required luminosity is beyond current knowledge)
 - 2. Positron beam interacting with continuous beam from electron cooling (too low electron density, 10²⁰ electrons/cm⁻³ needed to obtain an reasonable conversion efficiency to muons)
- Electrons at rest (seems more feasible):
 - 3. e+ on Plasma target
 - 4. e+ on standard target (eventually crystals in channeling)
 - Need Positrons of ~45 GeV
 - $\gamma(\mu)$ ~200 and μ laboratory lifetime of about 500 μ s

Muons angle contribution to μ beam emittance

The target thickness and c.o.m. energy completely determine the emittance contributions due to muon production angle

Criteria for target design

• Number of $\mu^+\mu^-$ pairs produced per interaction:

 n^+ = number of e⁺ ρ^- = target electron density L = target length

• ρ^{-} L costraints

- Ideal target (e⁻ dominated) (ρ⁻ L)_{max}=1/σ(radiative bhabha) ≈ 10 ²⁵ cm⁻² (beam lifetime determined by radiative Bhabha)
- With (ρ^{-} L)_{max} one has a maximal $\mu^{+}\mu^{-}$ production efficiency ~10⁻⁵
- Muon beam emittance increases with L (in absence of intrinsic focusing effects) → increase ρ⁻
- Conventional target (ρ⁻ L)_{max} depends on material (see next slides)

Criteria for target design

Bremsstrahlung on nuclei and multiple scattering (MS) are the dominant effects in real life... Xo and electron density will matter:

- Heavy materials
 - minimize emittance (enters linearly) \rightarrow Copper has about same contributions to emittance from MS and $\mu^+\mu^-$ production
 - high e⁺ loss (Bremsstrahlung is dominant)
- Very light materials
 - maximize production efficiency(enters quad) → H₂
 - even for liquid need O(1m) target → emittance increase
- Not too heavy materials(Be, C)
 - Allow low emittance with small e⁺ loss

optimal: not too heavy and thin

Application for Multi-TeV Muon Collider as an example

- Use thin target with high efficiency and small e⁺ loss
- Positrons in storage ring with high momentum acceptance
- No need of extreme beam energy spread

Possible target: 3 mm Be

45 GeV e⁺ impinging beam

• Emittance at $E_{\mu} = 22 \text{ GeV}$: $\epsilon_x = 0.19 \cdot 10^{-9} \text{ m-rad}$ Multiple Scattering contribution is negligible

-> μ after production is not affected by nuclei in target

-> e+ beam emittance is preserved, not being affected by nuclei in target (see also next slide)

- Conversion efficiency: 10⁻⁷
- Muons beam energy spread: 9%

Muons at the target exit surface

Luminosity vs e⁺ beam energy

Is there an optimal value for the positron beam energy?

Positrons Storage Ring Requirements

- Transverse phase space almost not affected by target
- Most of positrons experience a small energy deviation:
 A large fraction of e⁺ can be stored (depending on the momentum acceptance)
 - 10% momentum acceptance will increase the effective muon conversion efficiency (produced muon pairs/produced positrons) by factor 100

Schematic Layout for muon source from e+

$$n_b = \sum_{i=1}^{N_T} e^{-\Delta t (N_T - i)/ au_\mu^{lab}}$$

Muon Collider:

Schematic Layout for positron based muon source

share the same complex

Muon beam parameters

Assuming

- a positron ring with a total 25% momentum acceptance (10% easily achieved) and
- ~3 × LHeC positron source rate

	positron source	proton source
μ rate[Hz]	$9\cdot 10^{10}$	$2\cdot 10^{13}$
μ /bunch	$4.5\cdot 10^7$	$2\cdot 10^{12}$
normalised $\epsilon~[\mu {\rm m}\text{-}{\rm mrad}]$	40	25000

Very small emittance, high muon rates but relatively small bunch population:

> The actual number of μ /bunch in the muon collider can be larger by a factor ~ τ_{μ}^{lab} (HE)/500 μ s (~100 @6 TeV) by topping up.

Low EMittance Muon Accelerator Draft Parameters

comparable luminosity with lower Nµ/bunch (lower background) thanks to very small emittance (and lower beta*)

Of course, a design study is needed to validate this table

		LEMC-6TeV
Parameter	Units	
LUMINOSITY/IP	cm ⁻² s ⁻¹	5.09E+34
Beam Energy	GeV	3000
Hourglass reduction factor		1.000
Muon mass	GeV	0.10566
Lifetime @ prod	sec	2.20E-06
Lifetime	sec	0.06
c*tau @ prod	m	658.00
c*tau	m	1.87E+07
1/tau	Hz	1.60E+01
Circumference	m	6000
Bending Field	Т	15
Bending radius	m	667
Magnetic rigidity	Tm	10000
Gamma Lorentz factor		28392.96
N turns before decay		3113.76
β _x @ IP	m	0.0002
β _y @ IP	m	0.0002
Beta ratio		1.0
Coupling (full current)	%	100
Normalised Emittance x	m	4.00E-08
Emittance x	m	1.41E-12
Emittance y	m	1.41E-12
Emittance ratio		1.0
Bunch length (zero current)	mm	0.1
Bunch length (full current)	mm	0.1
Beam current	mA	0.048
Revolution frequency	Hz	5.00E+04
Revolution period	S	2.00E-05
Number of bunches	#	1
N. Particle/bunch	#	6.00E+09
Number of IP	#	1.00
σ _x @ IP	micron	1.68E-02
σ _y @ IP	micron	1.68E-02
σ _{x'} @ IP	rad	8.39E-05
σ _{ν'} @ IP	rad	8.39E-05

Radiological hazard due to neutrinos from a muon collider

Colin Johnson, Gigi Rolandi and Marco Silari

Muon collider reach: an example

- Study the same benchmark used for White Paper:
 - New heavy particles, both colored and EW charged (~vector like quarks)→ xsec can be predicted
 - FCC reach stops at M_x = 7 TeV
- Hadron machine pays the price of the exponentially falling
 PDF → multi-TeV muon machine can be competitive!

Key Feasibility Issues

- μ Acceleration
- Collider Ring
- Collider MDI
- Collider Detector

(mostly) independent on muon source Benefit from MAP studies

LEMMA at the staring line

		pos_Ring
Parameter	Units	e+
Energy	GeV	45
Circumference	m	6300
Bending radius	m	709.6
Magnetic rigidity	Τm	150
Lorentz factor		88062.62
Coupling (full current)	%	1
Emittance x (from model)	m	5.73E-09
Emittance y	m	5.73E-11
Bunch length (zero current)	mm	3.6
Beam current	mA	240
RF frequency	Hz	5.00E+08
RF voltage	GV	0.768
Revolution frequency	Hz	4.76E+04
Harmonic number	#	10508
Revolution period	S	2.10E-05
Number of bunches	#	100
N. Particle/bunch	#	3.15E+11
Syncronous phase	#	0.73
Syncrotron frequency	Hz	2415.31
Synchrotron tune	#	5.08E-02
synchrotron period	turns	19.70
Overvoltage		1.50
Transverse damping time	turns	175.00
Transverse damping time	s	0.0037
Longitudinal damping time	turns	87.50
Longitudinal damping time	s	1.84E-03
Energy Loss/turn	GeV	0.511
Momentum compaction		1.21E-04
B field	Т	0.211
Rf energy acceptance	%	3.98
Energy spread (SR)	dE/E	1.00E-03
SR power loss	GW	0.12
SR power/Circumference	kW/m	19.48

First multi turn simulations (still very preliminary)

Use different methods: AT/PTC/MADX (optics)+ GEANT/FLUKA (target)

- Dedicated "interaction" region under study to decrease losses and beam size increase
- Emittance contribution from various sources have to be matched
- Optimize momentum aperture
- Design muon accumulator rings

Embedded positron source?

Going to lighter targets for μ production

Look to light liquid targets to reduce problems of thermo-mechanical stresses

LLi might be a good option

Proposed/tested for targets for n production

High Boiling point 1615 K Mass evaporation? Safety?

Crystals as a target ?

Tests with e⁺ beam

Use tertiary 45 GeV e⁺ beam in CERN North area (H4) (ask for 2 weeks of beam time for next year)

 Low intensity (one by one e⁺ tracking) with crystals and amorphous targets: measure beam degradation (emittance energy spectrum)

measure produced photons flux and spectrum

High intensity (up to 5 x 10⁶ /spill) with amorphous targets:

measure muon production rate and muons kineamatic properties

Conclusion

- Very low emittance muon beams can be obtained by means of positron beam on target
- Low emittance would allow to extend the center of mass energy
- interesting muon rates require:
 - Challenging positron source (synergy with LHeC/FCC-eh, ILC,...)
 - Positron ring with high momentum acceptance (synergy with next generation SL sources and FCC-ee)
 - Thin targets surviving to ~100 KW
- We are working on all these issues
- fast muon acceleration concepts and collider rings design studied by MAP

Backup Slides

Embedded positron source?

Processes at \sqrt{s} around 0.212 GeV

- Bhabha scattering, $\mu^+\mu^-$ production $\gamma\gamma$ (not relevant)
- $e^+e^- \rightarrow \mu^+\mu^-$ cross section:

Muonium production also investigated: huge cross section (mb range) 10⁻⁴ eV width

Not viable.... Deeper studies?

Few statements on the plasma option

- Plasma would be a good approximation of an ideal electron target ++ autofocussing by Pinch effect
- enhanced electron density can be obtained at the border of the blow-out region (up x100)
- Simulations for n_p=10¹⁶ electrons/cm³ (C. Gatti, P. Londrillo)
- Region size decreases with 1/Vn_p even don't know if blowout occurs at n_p~10²⁰electrons/cm³

Processes at $\sqrt{s} \sim 0.212$ GeV e⁺ on target

 $e^+e^- \rightarrow \mu^+\mu^-$ muons energy spread:

M. Boscolo, G1, Catania, 3 Dic. 2015

Parametric-resonance Ionization Cooling see Derbenev, Johnson, Beard

Excite ¹/₂ integer parametric resonance (in Linac or ring)

- Like vertical rigid pendulum or 1/2-integer extraction
- Elliptical phase space motion becomes hyperbolic
- Use xx'=const to reduce x, increase x'
- Use IC to reduce x'

Detuning issues being addressed (chromatic and spherical aberrations, space-charge tune spread). Simulations underway. New progress by Derbenev.

Processes at $\sqrt{s} \sim 0.212$ GeV e⁺ on target

 $e^+e^- \rightarrow e^+e^-(\gamma's)$ is the dominant process

- Babayaga for "large" angles and
- BBBrems for collinear (dominant $\sigma \sim 150 \text{ mb}, \delta \text{E/E} < 2\%$)

M. Boscolo, G1, Catania, 3 Dic. 2015

Positron sources: studies on the market

• Summary of e⁺ sources projects (all very aggressive):

In [F. Zimmermann, et al., '**POSITRON OPTIONS FOR THE LINAC-RING LHEC'**, WEPPR076 Proceedings of IPAC2012, New Orleans, Louisiana, USA]

	SLC	CLIC	ILC	LHeC	LHeC
				pulsed	ERL
E [GeV]	1.19	2.86	4	140	60
$\gamma \epsilon_x [\mu m]$	30	0.66	10	100	50
$\gamma \epsilon_y [\mu m]$	2	0.02	0.04	100	50
$e^{+[10^{14}s^{-1}]}$	0.06	1.1	3.9	18	440

This is the most critical issue

rebunching at 6 TeV

perform continuous injection every 500 μs

rebunch effective for ~ 1 muon lifetime 66 ms (factor 66/0.5) no damping -> fill transverse phase space maintaining lumi increase

Future accelerators programs at CERN

- A new LHC injector complex to increase the collider luminosity 10x with the High Luminosity LHC (HL-LHC)).
- Two accelerators (the LP-SPL and a new 50 GeV synchrotron, PS2) would replace the three existing ones (Linac2, the PSB, and the PS), with the injection of the SPS at 50 GeV,

CERN-SPL parameters

Layout of superconducting	Parameter	r	Units	HP-	SPL	LP-SPL
SPL with intermediate				Low-current	High-current	
extractions	Energy		GeV	5	5	4
extractions.	Beam pow	ver	MW	4	4	0.144
SPL design is very flexible	Repetition	rate	Hz	50	50	2
and it can be adapted to	Average p	ulse current	mA	20	40	20
una il can be adapted to	Peak pulse	current	mA	32	64	32
the needs of many high-	Source cur	rrent	mA	40	80	40
power proton beam	Chopping	ratio	%	62	62	62
applications	Beam puls	e length	ms	0.8	0.4	0.9
applications.	Protons pe	r pulse	10 ¹⁴	1.0	1.0	1.13
160 MeV 753 MeV 146 82 m 211 m 2	60 MeV 287 m	26	00 MeV 392 m	<u>↓</u>	584 m	50 Hz MWat
Linac4 medium β cryomodules high β cryomodules 20×3 5×8 $\beta=0.65$ cavities $\beta=1$ cavities	ejection	high β yomodule 6 x 8 β=1 cavitie	s ejection	high β cryomodule 12 x 8 β=1 cavities	s S Gev MW	4
Venice,March.2015	I.5 GeV Isolde		2.6 Ge RIB	v	CERN	14-07

A muon based Higgs factory at CERN

- A muon cooled Higgs factory can be easily housed within CERN
- The new 5 GeV Linac will provide at 50 c/s a multi MWatt H- beam with enough pions/muons to supply the muon factory.
- The basic additional accelerator structure will be the following:
 - ➤ Two additional small storage rings with R ≈ 50 m will strip H- to a tight p bunch and compress the LP-SPL beam to a few ns.
 - Muons of both signs are focused in a axially symmetric B = 20 T field, reducing progressively pt with a horn and B = 2 T
 - > A buncher and a rotator compresses muons to \approx 250 MeV/c
 - > Muon Cooling in 3D compresses emittances by a factor 106.
 - > Bunches of about 2×1012 m \pm are accelerated to 62.5 GeV
 - Muons are colliding in a SC storage ring of R ≈ 60 m (about one half of the CERN-PS ,1/100 of LHC) where about 104 Higgs events/y are recorded for each of the experiments.

Staged Neutrino Factory and Muon Colliders Increasing complexity meters hallenges

Accounts for

Site Radiation

Mitiaation

6.0

0.1

0.25

0.025

0.2

1.6

820 000*

Neutrino Factory at intensity frontier

Muon Collider at the energy frontier

System	Parameters	Unit	nuSTORM	NuMAX Commissioning	NuMAX	NuMAX+			Higgs F	actory	Top Thresh	old Options	Multi-TeV	Baselines
for- nce	v _e or v _µ to detectors/year	-	3×10 ¹⁷	4.9×10 ¹⁹	1.8×10 ²⁰	5.0×10 ²⁰								
Per ma	Stored μ+ or μ-/year	-	8×10 ¹⁷	1.25×10 ²⁰	4.65×10 ²⁰	1.3×10 ²¹			Startup	Production	High	High		
	Fan Data stan	T		MIND /	MIND /	MIND /	Parameter	Units	Operation	Operation	Resolution	Luminosity		
	Far Detector:	туре	SuperBIND	Mag LAr	Mag LAr	Mag LAr	CoM Energy	TeV	0.126	0.126	0.35	0.35	1.5	3.
	Distance from Ring	km	1.9	1300	1300	1300		4034 -2 -1	0.0047	0.000	0.07		4.05	
P	Mass	kT	1.3	100 / 30	100 / 30	100 / 30	Avg. Luminosity	10°°cm°s°	0.001/	0.008	0.0/	0.6	1.25	4
ect	Magnetic Field	Т	2	0.5-2	0.5-2	0.5-2	Beam Energy Spread	%	0.003	0.004	0.01	0.1	0.1	0.
Det	Near Detector:	Туре	SuperBIND	Suite	Suite	Suite	Higgs* or Top ⁺ Production/10 ⁷ sec		3,500*	13.500*	7.000+	60.000 ⁺	37.500*	200.000
	Distance from Ring	m	50	100	100	100	Circumforanco	lm	0.2		0.7	0.7)[
	Mass	kT	0.1	1	1	2.7		NII	0.5	0.0	V./	U./	Z.J	4
	Magnetic Field	Т	Yes	Yes	Yes	Yes	No. of IPs		1	1	1	1	2	ĺ
	Ring Momentum	GeV/c	3.8	5	5	5	Repetition Rate	H7	30	15	15	15	15	1
g g	Circumference (C)	m	480	737	737	737		116		10	10	10	1/0 5 0)	
Rin	Straight section	m	184	281	281	281	Ď*	cm	3.3	1./	1.5	0.5	1 (0.5-2)	0.5 (0.3-
Ne Ne	Number of bunches	-		60	60	60	No muons/hunch	10 ¹²)	4	4	3)	
	Charge per bunch	1×10 [°]		6.9	26	35	No. humahaa /haam		-	1	1	4	-	
ati	Initial Momentum	GeV/c	-	0.25	0.25	0.25	No. bunches/beam		1	1	1	1	1	
eler on	Single-pass Linacs	GeV/c	-	1.0, 3.75	1.0, 3.75	1.0, 3.75	Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2	0.2	0.05	0.025	0.02
ů č		MHz	-	325, 650	325, 650	325, 650	Manua Lana Fusittanan a		1	1 5	1 5	10	70	
<	Repetition	Hz	-	30	30	60	Norm. Long. Emittance, E _{ln}	π mm-rad	1	1.5	1.5	10	/0	
Cooling			No	No	Initial	Initial	Bunch Length, o.	cm	5.6	6.3	0.9	0.5	1	0
	Proton Beam Power	MW	0.2	1	1	2.75	Duration Dubing Damage	N/N/	48	4		4	-	
ive	Proton Beam	GeV	120	6.75	6.75	6.75	Proton Driver Power	MW	4	4	4	4	4	
Pro	Protons/year	1×10 ²¹	0.1	9.2	9.2	25.4	Cooling		6D no	final		F	ull 6[2
	Repetition	Hz	0.75	15	15	15 L						-		

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

ESS neutrino and muons facility

Alain Blondel Experiments at muon colliders CERN 2015-11-18

Beam characteristics

Main ESS facility parameters concerning the proton beam.

Parameter	Value
Average beam power	5 MW
Proton kinetic energy	2.0 GeV
Average macro-pulse current	62.5 mA
Macro-pulse length	2.86 ms
Pulse repetition rate	14 Hz
Maximum accelerating cavity surface field	45 MV/m
Maximum linac length (excluding contingency and upgrade space)	352.5 m
Annual operating period	5000 h
Reliability	95%

Number of neutrinos per m² crossing a surface placed on-axis at a distance of 100 km from the target station during 200 days for 2.0 GeV protons and positive and negative horn current polarities.

	Positive		Negative	
	$N_{\nu} \; (\times 10^{10}) / {\rm m}^2$	%	$N_{\nu} \; (\times 10^{10}) / {\rm m}^2$	%
v_{μ}	396	97.9	11	1.6
\bar{v}_{μ}	6.6	1.6	206	94.5
ve	1.9	0.5	0.04	0.01
$\bar{\nu}_e$	0.02	0.005	1.1	0.5

Alain Blondel Experiments at muon colliders CERN 2015-11-18

nuSTORM: Neutrinos from STORed Muons

nuSTORM: storage ring for 3.8 GeV/c muons that can be realised now without any new technology

- Pions of 5 Gev/c captured and injected into ring.
- 52% of pions decay to muons before first turn: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- This creates a first flash of neutrinos from pion decays
- Ring designed to store muons with p = 3.8 GeV \pm 10%
- Muons decay producing neutrinos: $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$
- Creates hybrid beam of neutrinos from pion & muon decay

nuSTORM Facility

- nuSTORM facility:
 - 120 GeV protons on carbon or inconel target (100 kW)
 - NuMI-style horn for pion collection
 - Injection pions (5 GeV/c ± 10%) into storage ring: 0.09 π /POT

Muon Beam Meeting, CERN: 18 November 2015

nuSTORM at Fermilab

nuSTORM could be sited at Fermilab Proposal to FNAL PAC: arXiv: 1308.6822

Near Detector Hall

Far Detector Hall (D0)

Target building

nuSTORM at CERN

- nuSTORM could be sited at CERN
- Target station in North Area Eol to CERN: arXiv:1305.1419

 For two detector oscillation search: near detector in North Area and far detector in Point 1.8

Muon Beam Meeting, CERN: 18 November 2015

NuMAX: Neutrino Factory FNAL/Sanford

- Neutrinos from a Muon Accelerator CompleX (NuMAX)
 - Neutrino Factory with 10²⁰ straight muons decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford
 - A 10kT MIND or magnetized LAr detector upgraded from LBNE

Muons cool via dE/dx in low-Z medium

Discussion of the Scientific Potential of Muon Beams

Nov 18, 2015

 Approaching intensities desired for NF (but train structure not favorable for collider luminosity, N² issue)