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State of the art of HI measurements
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E. Scomparin
INFN Torino (Italy)

 A short introduction  Heavy ion collisions, a bit of history
 Experiments for HI collisions  Characterize the QGP

 The physics program
 Global observables
 The most liquid liquid that 

ever existed
 Light flavors and strangeness
 The chemistry of the QGP

 Hard probes
 Transport properties of the QGP

 p-Pb vs Pb-Pb
 a reference or more?

 Open points and prospects
 LHC and other facilities
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Experiments with heavy ions: why? 

2

 Investigate the phase diagram of strongly interacting matter
 Currently active facilities (RHIC, LHC) access the region corresponding to

high(est) temperature and low(est) possible net baryon density

 Re-create the first (and hottest!) liquid that ever existed and 
that gave rise to matter around us….
…and study its properties in the laboratory!

Critical point
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The energy frontier

3

 Evolution of (some) properties of the system with the collision energy
(N.B. approximate values!)

LHC  hotter, larger and longer lived fireball!

Central collisions SPS RHIC LHC

s (GeV) 17 200 5000 
(today)

dNch/d (=0) 450 650 2000

Energy density (GeV/fm3) 2.2-3.2 5.4 20

V (fm3)
(from HBT)

120 160 300

Decoupling time (fm/c)
(from HBT)

6 7.5 10.5

Average QGP temperature 
(MeV) (photons, dileptons)

190 240 300
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A complex (and long!) endeavor…

4

 (Almost) exactly 30 years ago: first heavy-ion beams at CERN!
From the press highlights of that time
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 (Almost) exactly 30 years ago: first heavy-ion beams at CERN!
From the press highlights of that time



E. Scomparin, State of the art of HI measurements, Hot QCD Matters, Frascati 2017

… which brought to several discoveries

6
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… which brought to several discoveries
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Was QGP born in Roma ? 
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Cabibbo and Parisi
Phys. Lett. 59B, 

67 (1975)

“Experimental hadronic spectrum
and quark liberation”

Statement correct to ~10%!

N.B. the “word” QGP was introduced only 3 years later 
E. Shuryak, “Quark-gluon plasma and hadronic production of leptons, 

photons and psions”, Phys. Lett. 78B, 150 (1978)
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The SPS/RHIC experimental program
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Fixed target 
 up to 158 A GeV Pb ions

Collider
 up to sNN =200 GeV Au ions

(recently up to U)
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The SPS experimental program
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From a multitude of dedicated “small” experiments (exploratory phase)…
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The RHIC experimental program

12

…to two general-purpose detectors (STAR, PHENIX), dedicated to 
heavy-ions (plus two small set-ups, BRAHMS and PHOBOS, now dismantled)
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The quest for QGP

13

 At the beginning, experiments were concentrating on the detection of
the so-called “QGP signatures”, smoking guns for the phase transition

 Two (famous) examples
 The J/ suppression (Matsui and Satz, 1986) 

Perturbative Vacuum

cc

Color Screening

cc

D

Tc
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The quest for QGP

15

 At the beginning, experiments were concentrating on the detection of
the so-called “QGP signatures”, smoking guns for the phase transition

 Two (famous) examples
 The strangeness enhancement (Hagedorn and Rafelski, 1980) 
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The SPS inheritance

16

 SPS/RHIC results  crucial steps in our understanding of QGP

 SPS  evidence for deconfinement signals

Clear signal of  J/ suppression 
beyond CNM effects

Clear enhancement of 
strange hyperon production

NA50, PLB477(2000) 28

NA57, J.Phys.G 32 (2006) 427
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Pinning down the QGP properties

17

 More recently, the approach is no more simply based on “signatures”

 Energy density needed for transition to QGP  c ~ 1 GeV/fm3

 Energy density attained at ion colliders   > 10 c

 transition towards a deconfined state is indisputable

 Choose a wide set of observables that can have a connection, 
as direct as possible, with specific properties (intensive or extensive)
of the system, and try to evaluate as precisely as possible those
properties, starting from accurate measurements of the related
observables

 Interaction between theory and experiment is crucial
 data driven field, complex phenomenology
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The RHIC inheritance

18

 RHIC: new observables and two major discoveries

Strong elliptic flow
(close to hydro limit)

Quenching of high-pT particles in 
central Au-Au collisions

QGP as a perfect liquid, opaque to hard probes traversing it 

STAR, PRL 86 (2001) 402 PHENIX, PRL 88 (2002) 022301
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Heavy ions in the LHC

19

 Acceleration of ions in the LHC poses non-negligible technical problems
 Instantaneous luminosity much lower than in pp (factor 106-107)
 limited by ions lost to e.m. dissociation and e- capture
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LHC experiments

20

 All the major LHC experiments take data with Pb-beams
 ALICE  dedicated experiment, from 2010
 ATLAS, CMS  from 2010
 LHCb  from 2013

 Complete characterization
of QGP observables requires

 Powerful PID
 Low-pT coverage

(bulk of particle production)
 Access to hard probes

(jets, heavy quarks, 
quarkonia)

 LHC experiments are
to a good extent
complementary
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The collision systems

21

Pb-Pb collisions
Hot matter effects
Soft + hard probes

p-Pb collisions
Calibrate cold nuclear 
matter effects (CNM)

pp collisions
Reference for Pb-Pb studies,
QCD (mainly soft)

Change of paradigm at 
LHC energies!

High-multiplicity p-Pb
and pp collisions show
intriguing signals of 

QGP-like effects

Three classes of collisions
are needed for a complete
characterization of QGP
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Collision centrality

22

 Nuclei are extended objects
 Geometry connected to observables via Glauber Model
 Related to multiplicity or forward energy (spectators)
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Data samples – run 1 (ALICE)

23

System sNN (TeV) Lint Year

pp 0.9 0.15 nb-1 2009-2010

pp 2.76 1.1 nb-1 2011

pp 7 4.8 pb-1 2010-2011

pp 8 9.7 pb-1 2012

p-Pb 5.02 30 nb-1 2013

Pb-Pb 2.76 0.1 nb-1 2010-2011

System sNN 

(TeV)
Lint Year

pp 13 14 pb-1 2015-2016 

Pb-Pb 5.02 0.4 nb-1 2015

pp 5 100 nb-1 2015

p-Pb 5.02 3 nb-1 2016

p-Pb 8.16 ~20 nb-1 2016

Run 1
(2009-2013)

Run 2
(2015-2018)
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Pb-Pb collisions: the columns of QGP

24
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Pb-Pb collisions: the columns of QGP

25

QUARKONIA  PHOTONS and e.m. probes  FLOW AND CORRELATIONS

HEAVY QUARKS  JETS and high pT particles   HADROCHEMISTRY…

QGP
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Charged particle multiplicity

26

 Steep rise in (dNch/d)/0.5Npart

from RHIC energy to LHC
(from logarithmic at low energy
to power law)
 Possibly related to the significant 

increase of the contribution of 
hard processes

 Interesting test for theoretical 
calculations
 sensitive to the modelling of the 

initial state of the collision 
(gluon saturation)

ALICE, PRL 105, 252301 (2010)
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Charged particle multiplicity  run 2
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 20% increase for the most central collisions with respect to 
sNN =2.76 TeV, in agreement with the previously established power-law 
dependence
 indicates a similar increase in the energy density reached

ALICE, PRL 116 (2016) 222302
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Centrality dependence of (dNch/d)

28

 Factor ~1.8 on charged multiplicity per participant pair,
from peripheral to central collisions

 Shape of the centrality dependence remarkably similar to RHIC
 Models tuned at sNN=2.76 TeV reasonably reproduce the 5.02 TeV data

ALICE, PRL 116 (2016) 222302
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Transverse energy and energy density

29

 Use tracking detectors and PHOS/EMCAL

 Results consistent with CMS in 10-80%, (slightly) lower in 0-10%
 Shape of centrality dependence is similar at RHIC and LHC

 Assuming a formation time 0=1 fm/c
 Energy density   Bj=12.3  1.0 GeV/fm3 (0-5%)
 In the core of the reaction region  Bj=21  2 GeV/fm3 

 To be compared with critical energy density Bj~ 1 GeV/fm3 !

ALICE, PRC 94 (2016) 034903
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Direct photons and temperature

30

 Interpretation of the 
inverse slope 
parameter not trivial
 A correlation 

with the initial 
temperature exists 

 Two contributions
 blue-shifted 

photons from the 
late stages (high 
radial flow) 

 high-T photons

from early stages

 Direct photon spectra at p
T
>5GeV/c are in agreement with pQCD pp 

calculations scaled by N
coll

 Central Pb-Pb collisions (0-20%): 2.6σ excess for 0.9< p
T
<2.1 GeV/c

 Low pT dominated by thermal photons 
 Teff = 304±11±40 MeV (~30% higher than RHIC)

ALICE, PLB 754 (2016) 235
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Azimuthal anisotropy

31

 Impact parameter + beam direction  reaction plane

 Correlation between azimuthal emission angles and reaction plane
 Evidence for collective behaviour

 Non-central heavy-ion collisions 
 geometrical anisotropy of the fireball

 In a hydro-dynamic scenario
 Azimuthal anisotropy mainly related to different pressure 

gradients in the collectively expanding medium
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Azimuthal anisotropy

32

 Fourier expansion of the azimuthal distributions 

v2: elliptic flow: strongly related to the thermalisation of the medium
v3, v4, … : information on the geometric fluctuations of the initial state

(odd harmonics should be zero w/o fluctuations)
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Elliptic flow – run 1 results

33

 Integrated v2 is >0,  increases by ~30% from RHIC to LHC energy

 At fixed pT, the elliptic flow values
are very similar at RHIC and LHC energies
 higher integrated v2 at LHC related to the pT increase

ALICE, PRL 105, 252302 (2010)
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Higher flow harmonics

34

 Comparisons with hydro models: v2 and v3

values consistent with values of the 
viscosity to entropy density ratio close 
to the ideal fluid limit  /s = 1/4

 (Ultra) central events: v2 strongly decreases,
reaction region has a nearly spherical 
symmetry. Higher harmonics, dominated by
fluctuations, are sizeable

 Also 2-particle
correlations studies
show evidence for 
anisotropies up to
the 5th harmonics

ALICE, PRL 107 (2011) 032301
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Flow harmonics from 2-particle 
correlations

35

“Ridge” extending 
to large  in the
region   0
(long-range 
structure)

Related to the 
presence of
non-zero Fourier
harmonics (plus
contribution from
jet production,
concentrated at 
small ) 

Thought to be typical of Pb-Pb collisions  evidence for collective effects

ATLAS, PRC 86(2012) 014907
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Elliptic flow – run 2 results

36

 vn for the pT range 0.2<pT<5.0 GeV/c
vs centrality (ratios are between 5.02 
TeV and 2.76 TeV results)

 Average increase of (3.0±0.6)% for 
v2, (4.3±1.4)%  for v3 and
(10.2±3.8)% for v4 from 2.76 to 
5.02 TeV, for 0-50% centrality

 Results compatible with predictions 
from hydrodynamic models

ALICE, PRL 116 (2016) 132302
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Identified particles: flow

37

 Studies of flow harmonics for various particle species show significant
dependence on particle mass

 Mass ordering can be interpreted in 
terms of an interplay between collective 
radial expansion and anisotropic flow

 At high pT, particles tend to group 
according to mesons vs baryons (but no 
precise nq scaling visible)

 Effects well reproduced by QGP+hadronic
cascade models (VISHNU)

ALICE, JHEP 06 (2015) 190
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Recent run-2 results

38

 Include -meson v2 (mass similar to proton, baryon vs meson effects?)

 Low-pT v2 as test for hydrodynamic expansion
 Good agreement at low pT for central collisions, less good for peripheral
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Identified particles: spectra

39

 Wide pT range accessible

 Sensitive to various 
physics mechanisms

1) Low pT: collective effects
(radial flow)

2) Intermediate pT:
fragmentation vs 
recombination

3) High pT:
parton
energy loss
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Identified particles: integrated yields

40

Yields span 7 orders of 
magnitude

Agreement within 20% 
(exception K*0 and p )

 Particle yields of light flavour hadrons described by thermal model fits

 Hadrons are 
produced in chemical 
equilibrium in Pb-Pb
collisions at the LHC, 
as at the SPS and 
RHIC

Chemical freeze-out
temperature
 Tch ~ 156 MeV

 Fit parameters
Tch chemical freeze-out temperature
B  baryochemical potential
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Back to strangeness enhancement

41

 Strangeness enhancement in A-A observed from SPS up to LHC.

 More important for lower energy experiments! Why?

PLB 728 (2014) 216–227

 Possible explanation  strangeness enhancement  in A-A actually comes 

from canonical suppression in pp, more important for lower energies
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Moving towards high pT (hard probes)

42

 High pT strong suppression with respect to Ncoll scaling

 NO sizeable difference vs particle species
 hadronization is not affected by the medium, the effect is due to 

parton energy loss in hot matter

Particle ID available
up to pT ~20 GeV/c !

𝑅𝐴𝐴 = 
𝑑𝑁𝑃

𝐴𝐴

𝑁
𝐶𝑜𝑙𝑙

𝑑𝑁𝑃
𝑝𝑝

RAA<1 suppression
RAA>1 enhancement



E. Scomparin, State of the art of HI measurements, Hot QCD Matters, Frascati 2017

Extending up to pT=400 GeV/c!

43

 New CMS results reach unprecedented pT coverage
 Remarkably, the RAA approaches 1 for pT>200 GeV/c (?!)
 No significant differences between sNN=2.76 and 5.02 TeV results

CMS, JHEP 04(2017) 039
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Moving to a detailed understanding
Heavy quark RAA

44

 Energy loss expected to depend
 On parton color charge (g vs q)
 On parton mass (heavy vs light q)

leading to an RAA hierarchy

Eg>Eu,d,s>Ec>Eb

RAA(B) > RAA(D) clearly observed
(at “low” pT)

 RAA (D) ~ RAA ()  color charge 

dependency of energy loss 
compensated by the softer 
fragmentation and pT spectrum of 
gluons ALICE, JHEP 11 (2015) 205

CMS-PAS-HIN-12-014
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More insights from run-2

45

 ALICE: precise measurement of D-meson RAA up to pT=36 GeV/c
 CMS: first direct measurement of B-meson RAA 

 High pT  no appreciable flavor dependence is seen
 Tension with non-prompt J/ measurement at the low-pT edge?
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Jets: more info on energy loss

46

Measure energy loss distributions Longitudinal  fragm. functions
Transverse  Jet profiles

RAA=1

 Similar RAA as in high-pT hadrons (caution on 
the comparison of the pT scale!)

 Strong jet suppression observed
 Evidence for significant out-of-cone radiation
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Very high pT jets

 Extend pT coverage up to 1 TeV!

Contrary to 
(no) suppression
of high pT hadrons,
jets are strongly
suppressed up to
maximum pT

No significant
sNN dependence
of jet RAA
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Heavy quarkonium

48

Perturbative Vacuum

cc

Color Screening

cc

Screening of
strong interactions

in a QGP

T. Matsui and H. Satz, 
PLB178 (1986) 416

Large charm quark multiplicity
at LHC energy may lead to a
recombination mechanism
which enhances charmonium
production

 Charmonium

supppression

Central AA 

collisions

SPS 

20 GeV

RHIC 

200 GeV

LHC 

2.76 TeV

LHC

5 TeV

Nccbar/event ~0.2 ~10 ~85 ~115
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Charmonium suppression

49

 J/ψ is strongly suppressed in Pb-Pb

collisions, as expected in case of color 
screening, but less at the LHC than at 
RHIC 

 RAA does not vary with centrality for 
Npart>100

 Less suppression at low pT, contrary
to RHIC

 Re-generation mechanisms are 
needed to describe data

ALICE, JHEP 05 (2016) 179
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Recent results on J/

50

ALICE, arXiv:1606.08197

5.02TeV

2.76TeV

 Similar suppression at 
sNN =2.76 and 5.02 TeV

 More accurate recent data 
confirm the remarkably flat 
behavior of RAA vs Npart

 RAA increases at low pT, at 
both energies, as expected 
in a regeneration scenario

 Hint for an increase of RAA, at 
5.02TeV, in 2<pT<6 GeV/c
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New J/ v2 results

51

pT

(GeV/c)
0-2 2-4 4-6 6-8 8-12

=1.1 2.2 6.3 7.4 5.0 2.8

=5.3 1.4 6.2 5.0 3.3 1.3

 A significant fraction of observed J/ comes from charm 
quarks which thermalized in the QGP

 From hint to evidence for a 
non-zero v2 signal, maximum for 
4<pT<6 GeV/c, 20-40% centrality

 The contribution of J/ from 
(re)combination could lead to an
elliptic flow  signal at LHC energy 
 hints observed in run-1 results

 Agreement, within uncertainties,
with run-1 results

 Comparison closed vs open charm
 Learn about light vs heavy

quark flow
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New J/ v2 results

52

 From hint to evidence for a 
non-zero v2 signal, maximum for 
4<pT<6 GeV/c, 20-40% centrality
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 The contribution of J/ from 
(re)combination could lead to an
elliptic flow  signal at LHC energy 
 hints observed in run-1 results

 Agreement, within uncertainties,
with run-1 results

 A significant fraction of observed J/ comes from charm 
quarks which thermalized in the QGP

 Comparison closed vs open charm
 Learn about light vs heavy

quark flow
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Bottomonium (sequential) suppression

53

 Probably the most spectacular result from quarkonia in HI at the LHC

 Recent CMS results at s=5.02 TeV confirm the (2S,3S) suppression
relative to the strongly bound (1S)!

CMS-HIN-16-008

pp PbPb
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New RAA results

54

 sNN=2.76 TeV,  strong centrality dependence, up to factor ~2 and ~8 
suppression for (1S) and (2S), respectively

V. Khachatryan et al.,CMS
arXiv:1611.01510

 New CMS results at sNN=5.02 TeV
 Indications for slightly stronger suppression 
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 Suppression increases with y at sNN=2.76 TeV
 Suppression constant vs y at sNN=5.02 TeV

 sNN=2.76 TeV: typical features of a (re)generation pattern,
which seems to vanish at sNN=5.02 TeV

 Can the y-dependence of CNM effects vs y play a role? Not likely
 Systematic uncertainties not negligible
 Model (Strickland) agrees well with sNN=5.02 TeV results

RAA vs y: ALICE and CMS (1S)
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p-Pb and pp collisions

56
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Moving to smaller systems: p-Pb

57

 Common wisdom  use pA collisions to calibrate the size of cold

nuclear matter effects and isolate QGP-related signals

 Example: RAA vs RpA for charged hadrons

 Demonstrates that the 
suppression signal observed 
at high pT in Pb-Pb collisions 
is NOT related to cold 
nuclear matter effects

What about other hard probes ?

ALICE, EPJC 74 (2014) 3054
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pA results: jets

58

 No effects on jets from CNM, even as a function of the centrality of
the p-Pb collision  the suppression effect seen in Pb-Pb is due to

hot matter effects

ALICE, EPJC 76 (2016) 271
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pA results: heavy quark production

59

 At both forward-y (muons from semileptonic heavy quark decays) and
central-y (D-meson hadronic decays)  no significant CNM effects 

 What about soft/global observables ?

ALICE, PRL 113 (2014) 232301
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pA/pp: strangeness

60

 Saturation of strangeness production
observed in Pb-Pb collisions for kaons
and hyperons

 p-Pb yields (normalized to pions) 
gradually reach the Pb-Pb value
when increasing the event centrality

 Even in pp collisions, a similar
increasing trend can be seen 
considering increasing charged 
particle multiplicities

 Contrary to hard probes, these results
show typical hot matter effects also
for small collision systems!

ALICE, NATURE Physics 2017, DOI:10.1038
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pA results: v2

61

 Similar ‘mass ordering’ observed for v2 from two-particle
correlations in p-Pb

 Hydrodynamic models can describe the data
 Very surprising result!

 p-Pb was supposed to be the reference system
 Applicability of hydrodynamics questionable

Are we observing a ‘pressure driven’ effect ?

ALICE, PLB 726 (2013) 164 P.Bozek et al., PRL 111(2013) 172303
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Smooth evolution from pp to Pb-Pb?

62

 2-particles correlation  Ridge at =0 (large ) in Pb-Pb attributed to 

collective flow of an expanding QGP

 What about p-Pb and pp ? Gluon correlations in the initial state? QGP??
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One fluid to rule them all … ” arXiv:1701.07145 
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Future prospects

63

 Existing colliders 

LHC 
Run 2 to end in 2018
Heavy-ion program approved for run 3 
and run 4 (end in 2029)

RHIC
2018: lighter ions (Zr-Zr, Ru-Ru) at sNN =200 GeV (STAR)
2022-2025: Au-Au 100  109 events (sPHENIX)
Beam Energy Scan (BES), 2019-2020 (STAR)

 Other facilities

FAIR @ GSI
Fixed target Phase 1 :  up to 1010 /s  238U at 11 A  GeV
NICA @ JINR
Collider, up to 1027 cm-2s-1 Au-Au at sNN=4-11 GeV
SPS @ CERN
Fixed target, > 106/s  208Pb at 13 – 158 A GeV 

Energy 
frontier

Study of
the

QCD 
phase

diagram
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Detailed studies of the phase diagram

64

 Experimental info related to the study of the phase diagram is scarce
 Existence of the critical point of QCD ?
 Evidence for 1st order phase transition at large B ?
 Study the onset of deconfinement via energy scans

 Quickly becoming among the hottest topics in our field

Mapping of the
phase diagram
at the foreseen

facilities
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STAR and BES-II

65

 Main physics topics

 Threshold of deconfinement

 Indications for critical point 
 Look for critical phenomena

• “high-pT” suppression disappears
• No more baryon vs meson effects in v2

• v3 goes to zero

• “Extra” fluctuations of conserved
quantities (baryon number, charge, 

strangeness)
• Discontinuities of the higher moments 

of particle number distributions

 10-25 times more statistics
with respect to BES-I

 sNN = 3 - 19.6 GeV

 Fixed target mode to cover
sNN<7.7 GeV
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The CBM experiment

66

 Focus on the study of 
(very) high B region

 Study of matter chemistry, including 
strangeness production, requires very high
interaction rates up to 10 MHz !

 Study charm production close to pp 
threshold and sub-threshold in A-A

Central Au-Au, 4 A GeV

 Existing HADES setup
coupled to
- Muon detection system
- Electron detection system
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NICA @ JINR

67

 Both fixed-target and collider experiments

BM@N

MPD

 2021-2023: energy (sNN=4-11 GeV)
and system scan

 (mainly) hadronic observables
 Phase II  photons, dileptons, open charm

Particle Mult. Decay  N/week

L ~35 p+- ~10% ~1 . 107

X - ~2 L+- 1.6% 1.0 . 105

r 31 e+e- 35% 2.5 . 103

W 0.14 L+K 2% 9.5 . 103

 Nuclotron extracted beams
 Interaction rate: ~5 104 s-1

 Energy: 3.5 – 4.5 A GeV
 From November 2017
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NA60+ at CERN SPS

68

 Study of dilepton and charmonium
production with Pb beams from 20 to
158 AGeV (beam energy scan)

 Muon + vertex spectrometer, 
toroidal + dipole B fields

d
N

/d
M

p
er

 2
0

 M
eV

Pb-Pb 40 GeV  NA60+
0-5% central collisions

S≈107

<S/B>≈1/12

 Main physics topics
 T (from dilepton spectrum) vs 
 1st order phase transition

 Mixing r - a1 (intermediate mass 
continuum) 
 chiral symmetry restoration
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Conclusions…

69

 LHC experiments have collected a wealth of data through LHC run 1 and 
are now enriching their data sample in run 2

 Very large set of observables investigated, from global variables to
identified particle spectra, electromagnetic and hard probes (jets, 
high-pT hadrons, open heavy quark production, quarkonia,…)

 From the study of the hottest lump of matter created up to now at 
particle accelerators 
 Confirm effects seen at SPS/RHIC extending them to a 

new energy scale
 Bring new discoveries, and among them

 Jets are strongly affected by the medium
 Mass-dependence of heavy quark energy loss
 Evidence for charmonium production through 

re-combination of deconfined charm quarks
 Strong bottomonium suppression
 Hydrodynamic description holds not only for large QGP 

volumes, but also for the medium created in smaller systems
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…and open questions (1)

70

 Even if a lot has been learnt at th LHC, many important points still
need clarification. A few examples:

 Thermal description of hadronic yields
 Common to ALL lighter systems, including e+e-

 LHC: discrepancy for protons (too few!), light nuclei correctly 
described (not destroyed in the final state due weak binding energy ?!)

 Quarkonium
 Success of suppression + regeneration model at LHC
 Magic compensation of the effect moving from sNN = 2.76 to 5.02 TeV

 High-pT hadron suppression
 Again, compensation of the effect moving from sNN = 2.76 to 5.02 TeV

 Mass and color charge dependence of parton energy loss
 b-quark energy loss smaller (but check direct B vs non-prompt J/

 Not really seen in c vs u,d vs g (some explanations proposed, though)
 Even J/ RAA is remarkably similar to that of open charm !
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…and open questions (2)

71

 What are we observing in small systems at the LHC ?

 Collective effects seen already in pp collisions (ridge, etc.)
 Related to hydrodynamic flow or to initial state quantum correlations?

 Strangeness enhancement smoothly increases from pp to Pb-Pb AND 
from low- to high-multiplicity pp
 Still largely unexplained

 No clear effects seen when moving to hard(er) probes

 which matter are we creating in small systems ? Where is the 

difference with respect to Pb-Pb collisions ?

 What will we observe at low(er) energy facilities?

 Can the onset of deconfinement be precisely pinpointed, seen the
smooth evolution of most measured quantities?

 Will the interpretation of near-threshold observables define a clear
picture ?
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Other stuff

72
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Thank you!

p-Pb, sNN=8.16 TeV
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Quarkonia in 2016: from color screening…

74

Perturbative Vacuum

cc

Color Screening

cc
Screening of

strong interactions
in a QGP

• Screening stronger at high T

• D  maximum size of a bound 

state, decreases when T increases

Resonance melting

QGP 
thermometer

• Different states,
different sizes

T. Matsui and H. Satz, 
PLB178 (1986) 416
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…to regeneration

75

At sufficiently high energy, the cc pair multiplicity becomes large

Contrary to the color screening scenario 
this mechanism can lead to a charmonium enhancement 

Statistical approach:
 Charmonium fully melted in QGP
 Charmonium produced, together

with all other hadrons, at chemical freeze-out,
according to statistical weights

Kinetic recombination:
 Continuous dissociation/regeneration over 

QGP lifetime

P. Braun-Munzinger
and J. Stachel,

PLB490 (2000) 196
Thews, Schroedter and 

Rafelski, 
PRC63 054905 (2001)

Central AA 

collisions

SPS 

20 GeV

RHIC 

200 GeV

LHC 

2.76TeV

Nccbar/event ~0.2 ~10 ~85
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CNM effects are not negligible!

76

 Fair agreement with models 
(shadowing/CGC + energy loss)

 (Rough) extrapolation of CNM 
effects  to Pb-Pb
RPbPb

cold=RpPbRPbp

 Evidence for hot matter effects!

 p-Pb collisions, sNN=5.02 TeV, RpPb vs pT

backward-y mid-y forward-y

Pb-going

p-going

ALICE

ALICE, JHEP 1506 (2015) 055  
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(2S) in p-Pb collisions 

77

 (2S) suppression is stronger
than the J/ one at RHIC and LHC

 shadowing and energy loss, almost identical 
for J/ and (2S), do not account for the 
different suppression

 Only QGP+hadron resonance gas (Rapp) or 
comovers (Ferreiro) models describe the 
strong (2S) suppression at LHC

ALICE, JHEP 1412(2014)073, LHCb-CONF-2015-005,
PHENIX, PRL 111 (2013) 202301

 Accurate Pb-Pb results still missing!
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Weak CNM effects for bottomonium

78

ALICE, PLB 740 (2015) 105
ATLAS-CONF-2015-050 
LHCb, JHEP 07(2014)094

 RpPb close to 1 and with no
significant dependence on 
y, pT and centrality

 Fair agreement ALICE vs LHCb
(within large uncertainties)
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Anisotropic transverse flow

Reaction plane

 In collisions with b  0 (non central) the fireball has a geometric
anisotropy, with the overlap region being an ellipsoid

 Macroscopically (hydrodynamic description)
 The pressure gradients, i.e. the forces “pushing” the particles are

anisotropic (-dependent), and larger in the x-z plane
 -dependent velocity  anisotropic azimuthal distribution of particles

 Microscopically

 Interactions between produced 
particles (if strong enough!) can 
convert the initial geometric 
anisotropy in an anisotropy in 
the momentum distributions
of particles, which can be 
measured
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Anisotropic transverse flow

80
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 Starting from the azimuthal distributions of the produced particles with
respect to the reaction plane RP, one can use a Fourier decomposition
and write

 The terms in sin(-RP) are not present since the particle distributions
need to be symmetric with respect to RP

 The coefficients of the various harmonics describe the deviations with
respect to an isotropic distribution

 From the properties of Fourier’s series one has
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Other recent results on anisotropies

81

 More complex observables can be defined, which are more robust
against systematic biases originating from non-flow effect
 E-by-E fluctuations of amplitudes of anisotropic flow harmonics

No single centrality where a single 
parametrization of /s describes 
BOTH correlations

Central collisions very sensitive to 
various parameterizations of the MC-
Glauber initial conditions 

ALICE, PRL 117 (2016) 182301
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E-by-E fluctuations of amplitudes of 
anisotropic flow harmonics

82

Symmetric 2-harmonic 4-particle Cumulant  SC(m,n)  with mn

  indicates averaging in two steps 
a) Over all distinct particle quadruplets in the events
b) Single event averages weighted with `number of combinations’

SC(m,n) is zero if no flow fluctuations or if magnitudes of vm and vn are
uncorrelated 
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Analyzing jet shapes

83

Core of jets in Pb-Pb appears to 
be more collimated than in pp

pT-weighted width of the jet
(low g for collimated jets)

Dispersion of constituents in jets
Fewer constituents  higher pTD

Shift to higher pTD in Pb-Pb
 fewer jet constituents and 

larger pT dispersion
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ALICE, PRL 111 (2013) 162301

Heavy quark/quarkonium v2

84

 ALICE results show evidence for D-meson elliptic flow and strong
indications for J/ v2 in Pb-Pb collisions

 Low (intermediate) pT non-zero v2  indication for c-quark 
thermalization and further confirmation for J/ production by 
recombination

J/D0

ALICE, PRC 90 (2014) 034904
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ALICE: a complex (and long!) project

85

March 1992  Evian meeting "Towards the LHC Experimental Programme"
March 1993  The ALICE Letter of Intent

 Use L3 magnet
 TPC-based tracking
 Emphasis on PID

At that time 
 Only y~0
 No muon-dedicated

detectors

42 institutes, 230 people 
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ALICE nowadays

86

 A world-wide Collaboration
 Goal  exploit the unique physics potential of nucleus-nucleus 

interactions at LHC energies
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The ALICE detector

87

 General-purpose detector for the study of QGP-related signals at 
the LHC, with several unique features (see next slides)
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ALICE performance

88

 Excellent PID capabilities down
to very low p ~ 100 MeV/c

 Track impact parameter resolution
allows for reconstruction of 
secondary vertices from D decays 

ITS

TPC
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ALICE performance

89

 TOF, HMPID significantly extend PID 
capabilities

 TRD allows triggering on electrons
in the central barrel

TOF

TRD

HMPID
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ALICE performance (hard probes)

90

Jet physics
via 

EMCAL
(trigger)

Muon triggering (forward-y) allows for 
detection of heavy quarkonia
(J/, (2S), (1S,2S,..))

Full coverage of QGP-related signals from
low to high-pT, at both central and forward-y
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Data samples – run 2 (ALICE)

91

 New detectors installed
 Complete TRD 
 Install DCal
 Extended PHOS
 Install CPV in front of PHOS

System sNN 

(TeV)
Lint Year

pp 13 14 pb-1 2015-2016 

Pb-Pb 5.02 0.4 nb-1 2015

pp 5 100 nb-1 2015

p-Pb 5.02 3 nb-1 2016

p-Pb 8.16 ~20 nb-1 2016
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Recent bottomonium results

92

 Tendency to LESS suppression for the 
(1S) when increasing energy ?

 RAA at sNN=2.76 and 5 TeV compatible, 
but also the y-shape 
but reminds recombination patterns
(unexpected because of the relatively 
low b-quark cross section)

 Possible tension in the comparison 
with theoretical models
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ALICE upgrade

93

New ITS: 
–7 pixel layers  
–10 m2 of Si
–12.5 Gpixel

 Conditions expected for LHC run 3 (2021-2023)

 Pb-Pb peak interaction rate: 50 kHz (now  8 kHz)

 Present ALICE  readout rate  1 kHz

 Physics goal for run 3: 

 High precision measurements of rare signals (focus on low p
T
),   

to be reached through

 Increase of the readout rate to 50 kHz

 Improvement of the pointing resolution at central (new ITS) 

and forward y (Muon Forward Tracker) 

 Online reduction of the data 
volume,  Lint>10 nb-1

(100 times run 1)

 The ALICE upgrade requires major improvements for the TPC and other
detectors  higher R/O rate

 Technical Design Reports approved
 Moving to construction phase



E. Scomparin, State of the art of HI measurements, Hot QCD Matters, Frascati 2017

Conclusions (2)

94

 LHC run 2 goes on at full speed
 No qualitatively different effects are expected moving from sNN=2.76 

to 5.02 TeV, but the quality of the results is improved, thanks to 
higher luminosities and better understanding of the apparatus

 Recent ALICE run 2 results include
 Study of hadron multiplicity
 Elliptic flow
 Suppression of high-pT particles
 Charmonium and bottomonium

 Many more to come…stay tuned!

 Physics program extending into run 3 and run 4 thanks to the 
substantial upgrades foreseen for LS2
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Low pT: radial flow parameters

95

 Collective radial flow
modifies pT spectra

Blast-wave fits
 Extract Tkin and T

Central Pb-Pb collisions 
Kinetic freeze-out Tkin<100 MeV
Expansion velocity ~ 0.65c

 (Low-pT) slopes are modified 
according to the particle mass
and expansion velocity

ALICE, PRC 88, 044910 (2013)
ALICE, PLB 728 (2014) 25-38
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Intermediate pT: baryon/meson ratio

96

 Enhancement at intermediate pT

 Hydrodynamics describes only 

the rise at < 2 GeV/c
 Recombination (pushes 

baryons to higher pT)   
reproduces effect but 
overestimates

 EPOS gives good description 

of the data (with flow)

 p and  have similar masses
 p/ flat vs pT in central Pb-Pb

 Mass determines the spectral

shapes (as in hydrodynamics)

ALICE, PRL 111 (2013) 222301

ALICE, PRC 91 (2015) 024609
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Hard probes of the QGP  
Recent results on high pT hadrons

97

 Strong suppression up to pT=40 GeV/c
 Remarkable similarity between 

results at sNN=2.76 and 5 TeV
 “Compensation” between increasing

suppression and modification of the 
shape of pT spectra ?

(Further) constraints to energy loss models
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Recent results on jet RAA

98

 Strong out-of-cone jet radiation

 Similar effect at sNN=5.02 
and 2.76 TeV
 Denser medium  smaller RAA

 Harder collisions  larger RAA

 Compensation of the two effects

 Jet suppression reasonably well 
reproduced by energy loss MC models

Pb-Pb
sNN =5.02 TeV

ALICE, PLB 746 (2015) 1
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New J/ v2 results

99

pT

(GeV/c)
0-2 2-4 4-6 6-8 8-12

=1.1 2.2 6.3 7.4 5.0 2.8

=5.3 1.4 6.2 5.0 3.3 1.3

 A significant fraction of observed J/ comes from charm 
quarks which thermalized in the QGP

 From hint to evidence for a 
non-zero v2 signal, maximum for 
4<pT<6 GeV/c, 20-40% centrality

 The contribution of J/ from 
(re)combination could lead to an
elliptic flow  signal at LHC energy 
 hints observed in run-1 results

 Agreement, within uncertainties,
with run-1 results

 Comparison closed vs open charm
 Learn about light vs heavy

quark flow
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pA/pp results: baryon/meson

100

 Clear evolution with multiplicity
 Mid-pT: ratio increases
 Low-pT: corresponding depletion

...generally understood (for Pb-Pb!) in terms of
 collective flow
 recombination

 Quantitatively similar when comparing event classes with similar Nch

Reminiscent of Pb-Pb
phenomenology
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Future of LHC heavy-ion program

101

(today)

 2018: Pb-Pb run, maximum available energy, L= 1027 cm-2 s-1

 LS2: ALICE upgrades apparatus (TPC, ITS, MFT)  stand 50 kHz event rate 

expected for run-3 and improve tracking 
LHCb upgrades tracker  higher granularity, push towards central collisions
ATLAS new muon small wheel  reduce fake trigger
CMS muon upgrade  add GEM for pT resolution, RPC for reducing
background (better time resolution), extend coverage to >2.4

 2021-2023: LHC run-3, experiments require Lint>10 nb-1 for Pb-Pb
(compared to Lint ~ 1 nb-1 for run-2)
Possibility of accelerating lighter ions under discussion

 2026-2029: LHC run-4 



E. Scomparin, State of the art of HI measurements, Hot QCD Matters, Frascati 2017

The sPHENIX experiment

102

Solenoid 
Magnet

Inner HCal

EMCal

TPC

INTT

MAPS

 Focus on
 Spectroscopy of  states
 Jet structure
 b-tagged jets

Outer HCal


