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THE CosMiIC PIE

The ACDM model, supplemented with inflation is in very good
agreement with current observations
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Ordinary Matter: ~5% of density content!

Dark Matter: non-luminous, weakly interacting particles
(axions, wimps, simps neutrinos, LSP, etc).

Dark Energy: permeates the universe uniformly causing the
accelerated expansion of the universe (A, modified gravity,
guintessence).
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DARK MATTER IN STRING THEORY

® String theory models of particle physics I
(D-branes, heterotic, M-theory) offers a = sBaynic /ﬁf 2t
plethora of potential DM candidates 1‘
(SUSY partners, axions, hidden sector /} f
mater, etc) Leptopic I o, U

® Can we distinguish between stringy and
field theory LSP, e.g.?

@ Can we find alternative ways, even it
indirect, to test string theory predictions
for dark matter?




PRE-BBN COSMOLOGICAL EVOLUTION

While ACDM strongly supported by current data, physics
from reheating fill just before BBN (' ~ MeV), remains

relatively unconstrained.
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During this period, universe may have gone through a
non-standard period of expansion, a matter dominated

era, etc, compatible with BBN [see Allahverdi’ tali]

If such modification happens during DM decoupling, DM
freeze-out may be modified with measurable

conseqguences for the thermal relic scenario

Cakena ek al. ‘04



PLAN

¢ The standard thermal relic scenario

¢ Modified thermal relic scenario:
D-brane disformal scalar-tensor theories

¢ Effects on relic abundance and cross section



THERMAL RELIC SCENARIO

The tavourite framework for origin of dark matter is the
thermal relic scenario:

During thermal equiliorium (I, > H) X SM
XX S ff x>.<SM

AS universe cools and expands, intferactions

become less frequent and decay rate drops
Iy S H)

Ny~ e~ /T

At this point number density freezes-out, and -

we are left with with a relic of DM particles

x(m/T)

The longer the DM particles remain in equilibrium, the lower
their density will be at freeze-out and vice-versa



THE WIMP MIRACLE

In this scenario, a DM candidate with a weak scale
inferaction cross-section and (m ~ 100 GeV) mass, freezes-out
with an abundance that matches the presently observed
value for the DM density

Qpar = 0.1188 4 0.0010h 2 (h = 0.6774 = 0.0046)

(H = 100h km/s/Mpc)

However observations indicate that annihilation cross-sections
smaller/larger than the thermal average can still be allowed
for value for lower/larger dark matter masses
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THE BOLTZMANN EQUATION

The abundance of the present CDM can be computed
using the Boltzmann equation

dn,

.- X SM
o -3Hn, = —(ov) (nf< — an ) >.<
X SM

Modifications to the standard picture can arise from
modifications from either the LHS or RHS

In this falk, | consider modifications to LHS of Boltzmann
equation due to modificafion of expansion rafe In
phenomenological and D-brane scalar-fensor theories

and its implications



CONFORMAL AND DISFORMAL COUPLINGS

INn scalar tensor theories, besides a conformal relation
between two mefrics:

Juv = C(¢)9uv

Bekenstein deduced the most general relation
compatible with general covariaonce to be of the

form:
Juv = C(®)guv +D($)0,,60, ¢

C(¢) conformal transtormation (preserves angles)

D(¢) disformal fransformation (distorts angles)

where C, D safisty the causality constraint

C(¢) > 0 and C(¢) + 2D(¢)X > 0, (X = £(94)?)



STRINGY SCALAR-TENSOR THEORIES

Conformal & Disformal couplings are ubiquitous In
scalar-tensor theories arising from string theory ©
couplings are determined by the theory

Particularly interesting are scalar-tensor theories arising
iINn D-brane models of cosmology and particle physics:

Induced metric on the brane takes the form

Juv = C(¢)9MV + D(¢)au¢8v¢

fluctuations are distormally coupled.



SCALAR-TENSOR FROM D-BRANES

After string inflafion & reheating, radiation domination

follows. Dy
Maftter lives on a (stack of) D-brane(s): g Cﬁﬁnp
coupled to brane scalar field conformal

AN

and disformally via induced metric on M
brane. éi
/'\ '\

Coupling described by DBI+CS action

Sper + Scs

In what follows | describe a toy picture of modification
of expansion rate and thus thermal relic picture due to

D-brane scalar-tensor theory.
[Dutta, Jimenez, 17, '16-17]



SCALAR-TENSOR FROM D-BRANES

Consider the following action:

S = SEH + Sbranea

1

SEH — 2—/{/2 d4ZC\/ —gR,

M*C?(¢) \/ 1+ M«W +V(9)

_ 4$ —
Sbra,ne — /d \/_g C((b)

/d433\/ —g EM(!?W) ;

where matter is coupled to ¢ via

Juv = C(¢)glw ‘|‘D(§b)au§bav¢

C(¢), D(¢) dictated by the theory



SCALAR-TENSOR FROM D-BRANES

Consider the following action:

S = SEH + Sbranea

1

SEH — 2—/€2 d4ZC\/ —gR,

M*C?(¢) \/ 1+ M«W +V(9)

S rane — T 4$ —
e = = [ a2y C(9)

NG PN

compare to the phenomenological case studied in the
iterature:

Sm = — / d*z/—g E(agb)%vw)] — / d* o/~ Lo ()

Guv = C(9)gpw +D($)0,¢0, ¢

—tstGammmeSTT

C(¢), D(¢) freely chosen in phenomenological models



SCALAR-TENSOR FROM D-BRANES

Consider the following action:

S = SEH + Sbrcmea

1

SEH — 2—/{/2 d4llf\/ —gR,

Sbrane — _/d4$\/__g M402(¢) \/1 + M(a¢)2 -+ V(Qb) _/d4x\/__§£M(§,uV) ’

C(9)

where matter is coupled to ¢ via

Juv = C(Qb)guv +D(9)0, 90, ¢

C(¢), D(¢) dictated by the theory and in a string set-up

2V6 MS string scale

M2 =/ =d (2n)?

k2= M7 = ;

27’(’9?0/7 (s string coupling

M4 — M;L(Qﬂ')gs_l Ve 6D volume in
string units
e ——tstammet




COSMOLOGICAL EQUATIONS

In FRW background, evolution equations in Einstein frame (with
respect to guv) become

/{2

H+H2——’f”—2[ + 3P4+ p + 3P]

. ., C (Dg C4 _,[5Cs D e 1
¢+3H¢v2+2D< ’¢—’¢+72[’¢—’¢]—4v 3’¢>+ 7 (Vo +Qo) =0,

H? =

D. D. p; | |
where QOZP[5¢+5¢<3H+;>+<f—57

Total energy is conserved v, (1,” + 1) = 0. but individual
conservation equations are modified:

However U Ehe Jordan/

,0°¢ -+ 3H(p¢ + P¢) — _QO$7 disformal frame, the
. i amargfj“mamev\&um tensor is
'0+3H(10+P):Q0¢° conserved, V, T+ =0

= p+3H(p+P)=0

T — EE—




MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal
or Jordan frame, felt by matter g, H = e,

H? D
where '=d/dN, 4 2=1—?5¢’2
dln C1/2
a(p) = ¥
2

We want to compare this modified rate with the standard GR:

2
Y ~
Hipn = % p where p

0_2’7_1/0



MODIFIED EXPANSION RATE

We are looking for the modified expansion rate in the disformal
or Jordan frame, felt by matter g, H = e,

H = % (14 a(e)¢’) (¢ = ko)

In terms of H and ¢, it can be written as

4 2
(le_MCD’Y 90/2)
3(v+1)

k2 C?

. H(Q;'R (.@: cubic <9 %OT' H(ﬁ;‘ﬁ;‘ﬂ))
kKop B

’Y_le _

Deviation from GR can be readily computed from the ratio

g B 73/201/2(1+&gp’)

§ = Hop B1/2

which needs to go to 1 towards the onset of BBN, & — 1



COUPLED EQUATIONS

To find the modified expansion rate, we solve numerically the
coupled equations for H and ¢ (M*CD =1):

3B ~ 12
H' = —H |2 (L+ay7) + 5
2 2
3H*y~'B 3H*y~'B H' 3H*y~'B
1" ! —2 ~ /
o [+ it |+ 367 1= Natma @) + ¥ 1+ e
6H*y'B _ L 2MACRR® L _
— i o)™ + 3By a(e)(1 — 3@) — = [27 3 _3y2 4 1] a(p) = 0.

where ¢ = ~%w is the Jordan frame eos



COUPLED EQUATIONS
To find the modified expansion rate, we solve numerically the

coupled equations for H and ¢ (M*CD =1):

90/2

38 o
H = —-H |1+ %)+ T,
2 2
90” [1 ] 4+ 380/7_2 [1

+ Sny_?’oz(go)(l —3w)

~

s _ 35 s _ 35
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IO A IO p 0.335 f

where & = v*w is the Jordan frame eos computed from

which takes into account small departures
from 1/3 when a species becomes non- .

w(T)

T(GeV)

relativistic



PURE DISFORMAL (UNWARPED) CASE

The pure disformal effect is obtained for C = const. (M*CD =1}

3B 12
H =—-H [2 (1+ a0y %) + _@2 ’y] :
3H27~'B 3H2y'B ] H 3H2y~'B
/! /I —2 ~ / L
v [H M52 ]+39M [1_ ez O\ T P e | T



PURE DISFORMAL (UNWARPED) CASE

The pure disformal effect is obtained for C = const. (M*CD =1}

3B g0/2
9 )

3H?~y B
M4g2

90” ll_l_ ] —|—390/’Y_2 [1 .

3/2

: gl
In this case ¢ = =173

A non-trivial disformal enhancement of expansion rate occurs



DISFORMAL ENHANCEMENT

[Dubta, Jimenez, 12, '16-17]
Full numerical solutions:
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DISFORMAL ENHANCEMENT

Full numerical solutions:

T(GeV)

T(GeV)

[Dutta, Jimenez, 12, '16-17]

T(GeV)

1ll]1 107"
T(GeV)
[Dutta, Jimenez, 12, '16-17]



CONFORMAL & DISFORMAL EFFECTS

For C # const. (warped geometry), there is an interplay of
conformal and disformal effects.

3H2y~1B 3H2y~1B H 3H2y~1B
1" /. —2 ~ /
v [1—'_ MA2AC?k? ] e [1 - MAC2R2 w] i HY [1 i MA2AC?k? ]
6H*y 'B _ L 2MACPRT _
— Oz(gp)gpQ + 3B~y 304(90)(1 —3w) — E [27 3 _ 3y 2 | 1} alp) = 0.

H,_/

Vers ~ 3(1-3w)InC

Conformal piece acts as effective potential for ¢

INn this case

. (O1/2~3/2 (we considered only
£ = 2 [1 4+ @(Sp)(p’ ] exp&mdims solutions,
kGr B1/2 (14 a(p)¢’) >0

The term in parenthesis can become less than one = & <1

w H < Hgr w re-annihilation effect [Cotena et al. ‘04 ]
[ Meehan, Whittingham ‘18]

[Dubta, Jimenez, 12, '16-17]



CONFORMAL & DISFORMAL EFFECTS

For concreteness we consider C(¢) = (1+be??)? (b=01, 8=38)

[Catena ek al. ‘04 ]

= Verr = In(1 + be—[ﬂ@)

Vet

N\

1 -05 05 1

This choice of initial conditions gives the most intferesting
evolution

[Dutta, Jimenez, 12, '16-17]



CONFORMAL & DISFORMAL EFFECTS

Full numerical solutions:

= 400
~0.3 m 500
= 1000
-0.4}
| |
10° 10? 10’

T(GeV)

(¢0i, i) = (0.2, -0.004)

10° e 0
T(GeV)
(i, ¢5) = (0.2, —0.004)

[Dutta, Jimenez, 12, '16-17]
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DISFORMAL EFFECT ON DM RELIC ABUNDANCE
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[Dubta, Jimenez, 12, '16-17]

Relic abundance evolution is
tompu&ecﬁ from Bolkzmanin equation

dy
dr

s(ov)
xH

(Y* = Ye)

(Y =n/s, x =m/T)

Here relic for a DM particle with mass
m, = 100GeV

Exgans&om rake corresyom&iv\g ko
M = 12 GeV as function of

&emyma&ure.
- - . 2
zdv L1y Y
Y dx H Y

(f = f/§<m}>)

[Similar behaviour in pheno model (relentless dark matter) recently by D'Eramo, Fernandez, Profumo, 17]



CONFORMAL RE-ANNIHILATION EFFECT

1077
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x(m/T)

[Dubta, Jimenez, 1Z, '16-17]

Relic abundance evolution is
computed from Bolkzmann equation

dY — s{(ov)

dr  ¢H

(Y* - Yo)

Here relic for a DM particle with mass
m, = 1000GeV for conformal case

Expansian and inkeraction rakes’
evolukion

A re—annihilation phase occurs for
suttable nitial conditions
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EFFECT ON DM CROSS-SECTION

The present dark matter content of

the universe is determined by
current value of the relic
abundance

[Dutta, Jimenez, 12, '16-17]

We used bhis to determine the
thermally-averaged annihilation
cross section (gv) required to match
th, and use it ko solve the Boltzmann
equ&&om

- - - 2
L P
Y dx H Y

The resulting annihilation cross sections are ((ov)gr ~ 2.1 x 107*°cm?/s)

10F
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SUMMARY

We studied for the first time modifications to standard
thermal relic picture due to non-standard early cosmology
evolution In scalar-tensor theories with (D-brane)
conformal and disformal couplings to matter

Juv = O(Cb)g/w + D(@augbavgb

The effect of the coupling Is to enhance or decrease the
expansion rate, with respect to the standard case, thus
moditying the standard thermal picture

H
¢z 1 (fH>

Dark matter freeze-out occurs at higher temperatures
compared to the standard case ™ reproducing the
observed abundance requires significantly larger
annihilation rates



SUMMARY

When conformal term is turned-on, a re-annihilation effect
occurs and slightly smaller annihilation rate is needed.

In the purely disformal case (C=const.), enhancement
occurs at different scales, depending on parameter M,
affecting different pre-BBN physics

In a D-brane like set up, the scale M is identified with the
string parameters:

M* = Mg (2m)gs

thus string scale dictates disformal enhancement scale.
For DM production M is very low, implying a very WEAKLY
couples, LARGE volume compactitication



OUTLOOK

We considered the simplest case for matter coupling. In
a more redlistic sef-up, we expect a non-universal

coupling of matter to the scalar
[Meehan, Whittingham '15]

Non-standard expansion rate may be relevant for other
physical phenomena during the early universe evolution

[Dutta ek al. in Pragress]

Analysis of different conformal&distormal functions

Beyond a toy model for a post-string inflationary picture



