

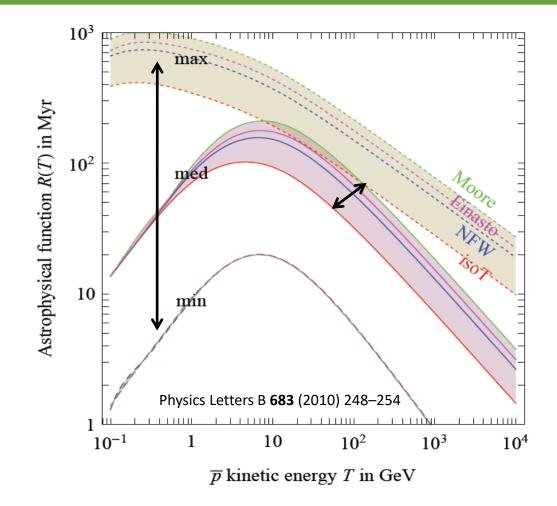
Indirect DM search status with AMS-02 (and collider limits)

Dr. Nicolò Masi

Bologna University and INFN – 20th Sepetember 2017

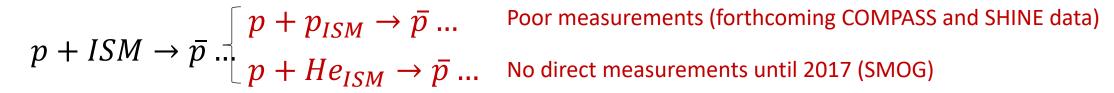
Topics

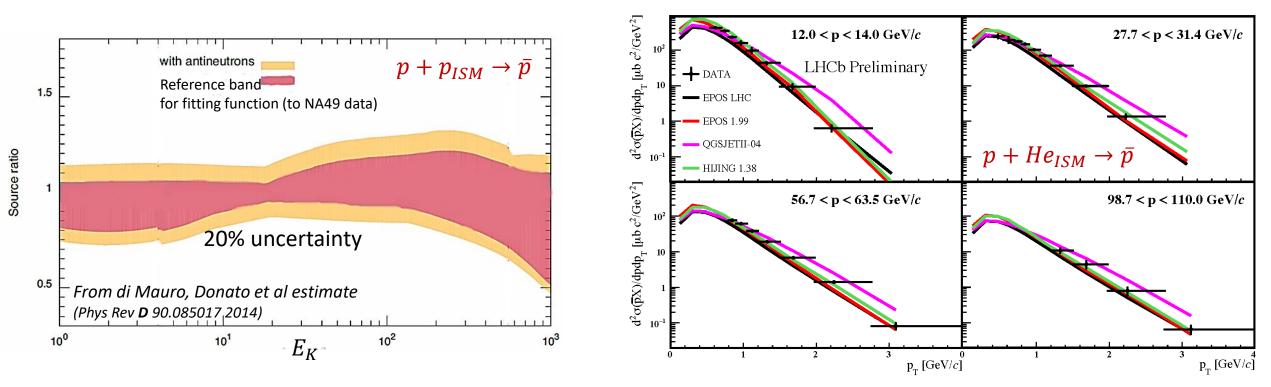
CR description uncertainties


Hints of new physics with AMS-02 electrons

Astrophysical uncertainties in the AMS-02 era

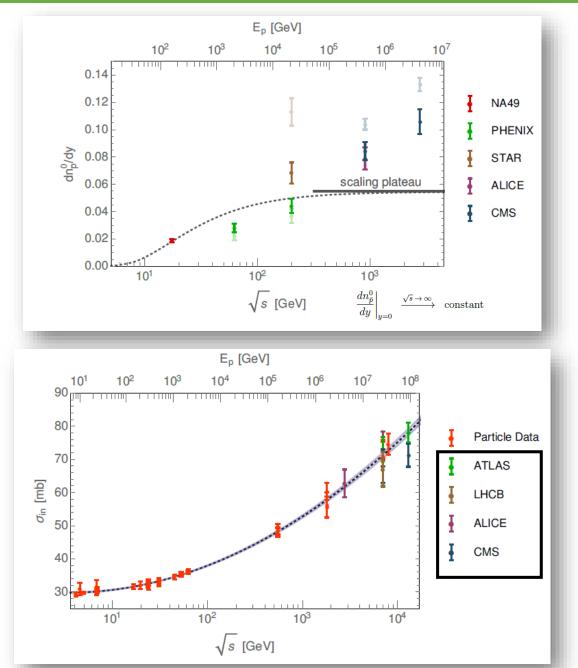
The antiprotons channel after AMS-02

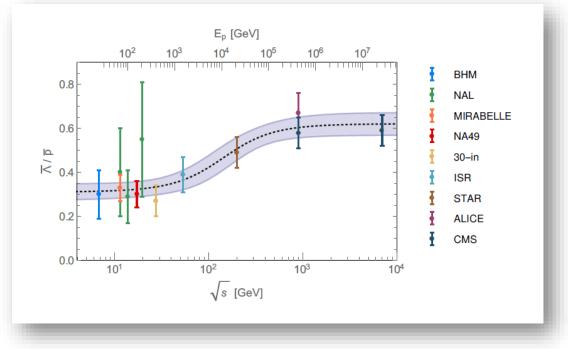

Collider search status


Fluxes uncertainties: astrophysics vs dark halo

- 1. **Propagation models**: almost two orders of magnitude, one above one below the MED set
- 2. **Radial distribution of the halo:** modulates spectra in a less significant way, even if *higher DM density regions* in the inner Galaxy or the introduction of a *cohorotating Dark Disk* (Lisa Randall proposal) could induce a greater annihilation cross section.

Nuclear Uncertainties in the antiproton channel

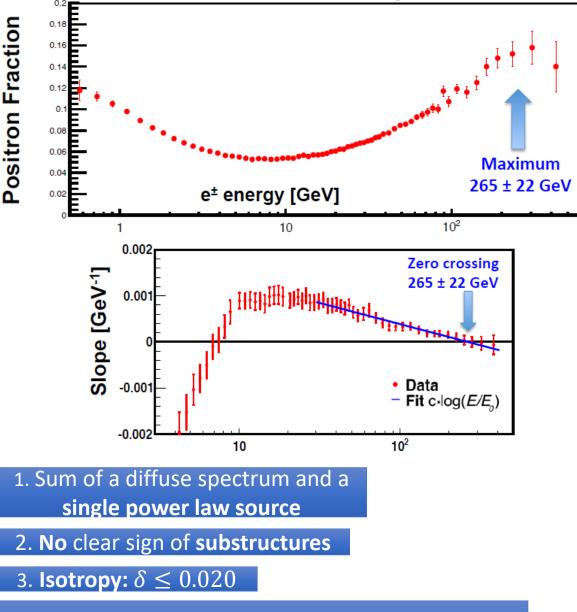




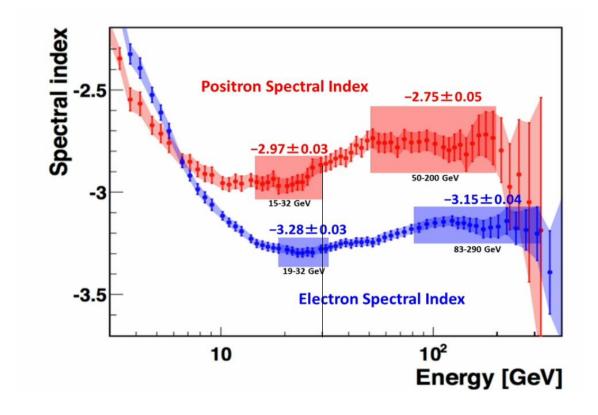
- Uncertainties in the pbar production spectrum are at least 10%.
- Below 100 GeV the uncertainties for $pp
 ightarrow \overline{p}$ are about 10-20%
- Above 100 GeV extrapolations lead to errors larger than 30%

In March LHCb has performed the first measurement of the antiproton cross-section in p-He collisions at 6.5 TeV using fixed He target @ SMOG. A precision of around 10% is attained

Compilation of Measurements: LHC contributions

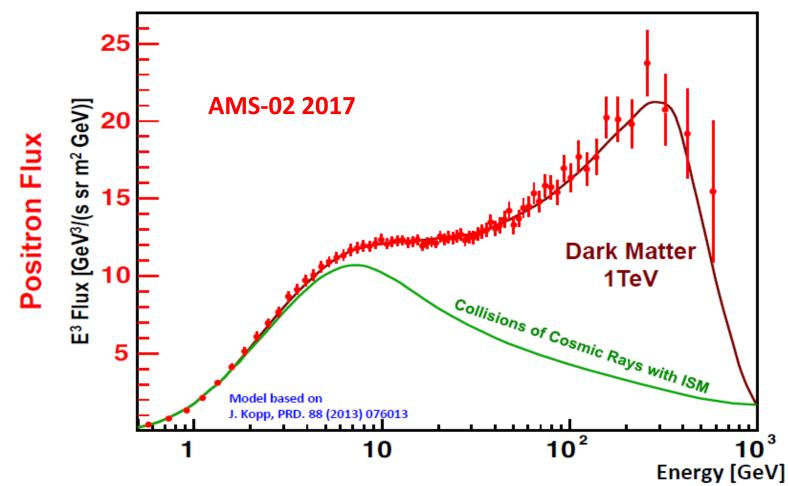


Winkler, JCAP 02(2017)048


- There are new improved calculation of secondary antiproton production, with a particular focus on the high energy regime, employing the most recent collider data.
- A substantial increase of antiproton cross sections with energy, driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production.
- This violation could lead to more antiprotons than expected at high energies

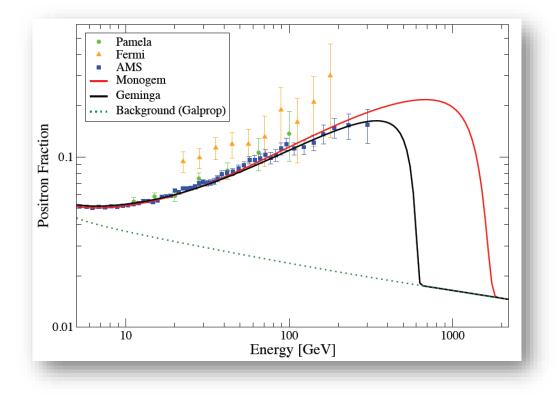
Leptons physics with AMS-02: what we have to clarify

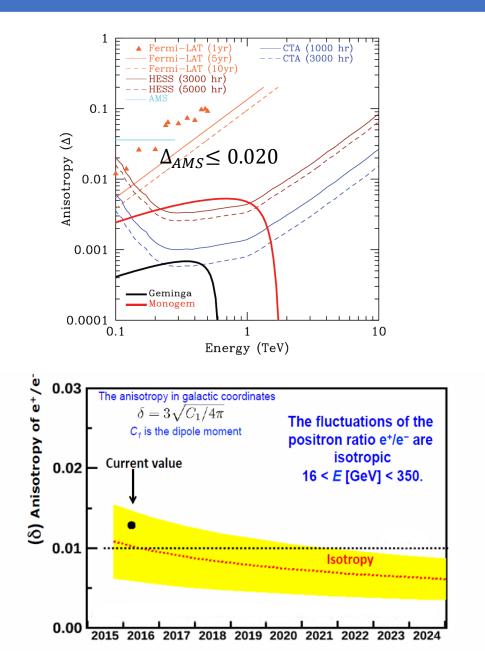
Positron Fraction: 5 years data

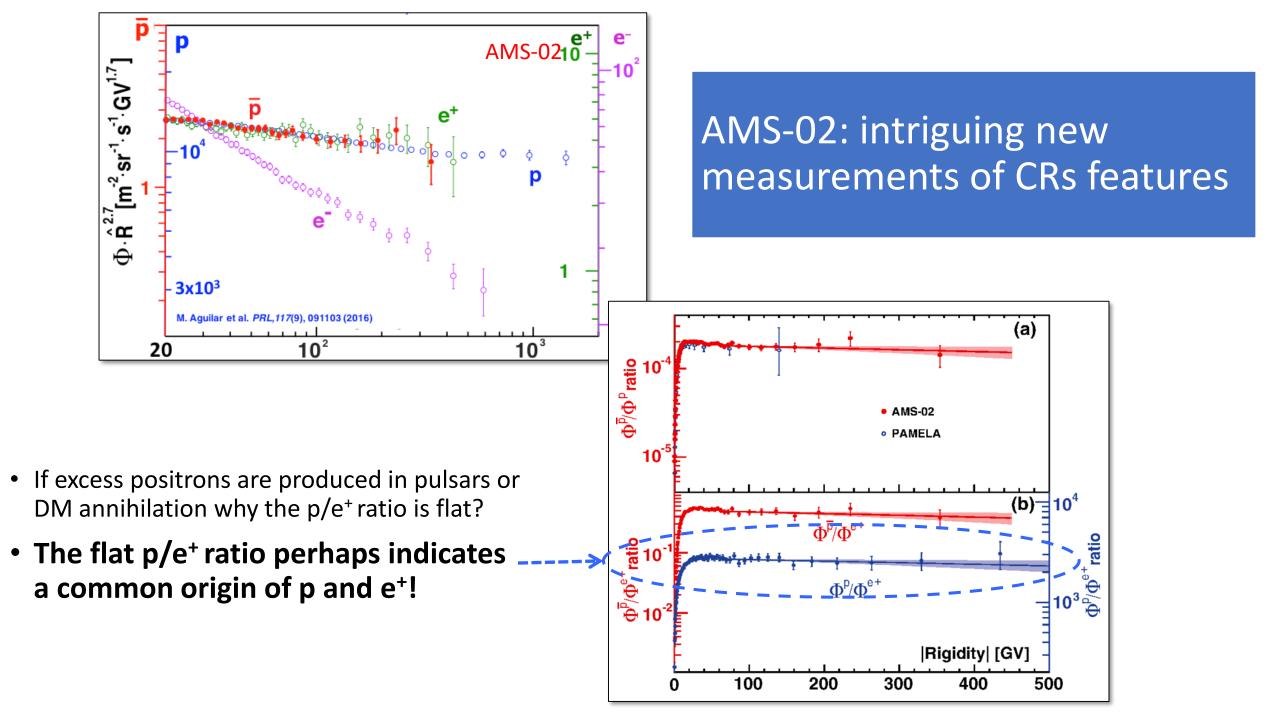

4. Above $\sim 260 \text{ GeV}$ the positron fraction no longer exhibits a remarkable increase with energy

- Standard simulations with pure secondaries are not capable of reproducing positrons, without introducing primary DM or/and astrophysical components
- Positrons spectrum hardening above 30 GeV is not expected within the standard paradigms
- > The change of slope is very similar for electrons and positrons, with an approximately conserved $\Delta \gamma_{e^+-e^-}$

Models to explain the AMS Positron Fraction and Flux

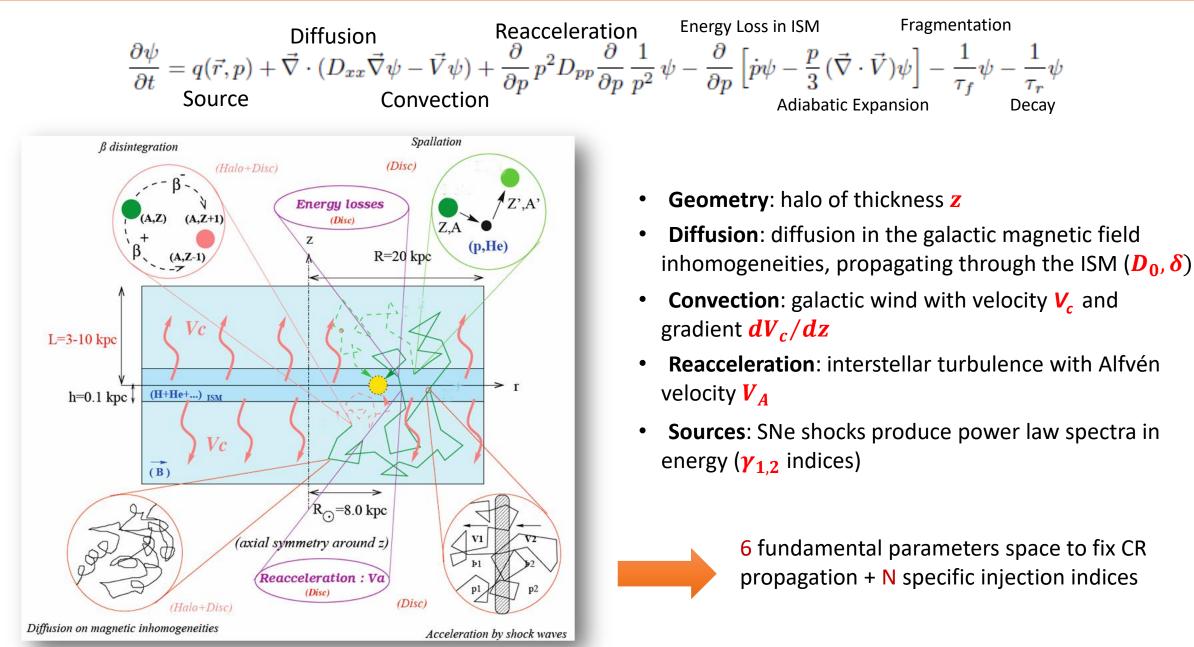

- 1) Particle origin: Dark Matter
- 2) Modified Propagation of Cosmic Rays
- 3) Astrophysics origin: Pulsars, SNRs

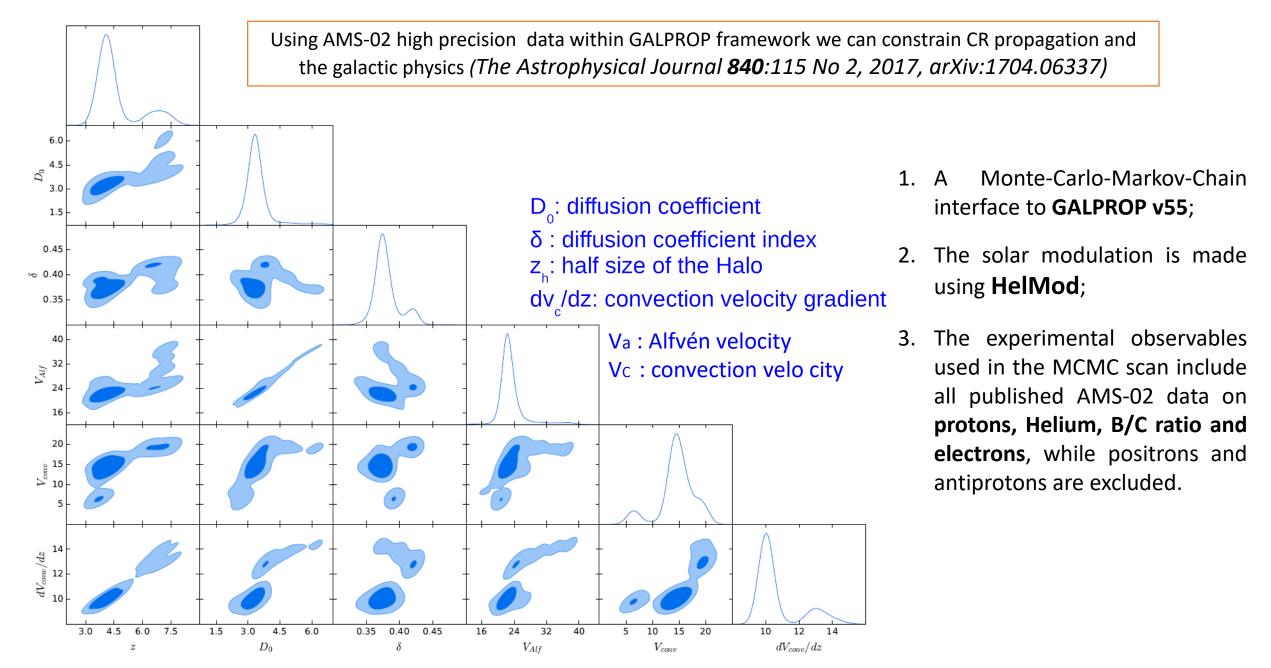

The AMS results are in excellent agreement with some Dark Matter Model


Pulsars Problem

Anyone of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations:

The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02




Our CRs production and propagation model based on AMS-02 data

The Astrophysical Journal **840**:115 No 2, 2017, arXiv:1704.06337

The Propagation Scheme in the Milky Way

MCMC Matrix

CR Physics Improvements

Before AMS-02

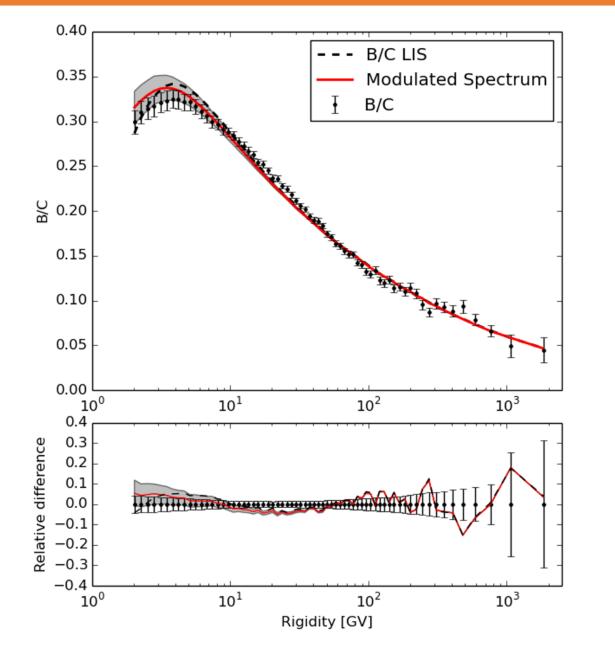
After AMS-02

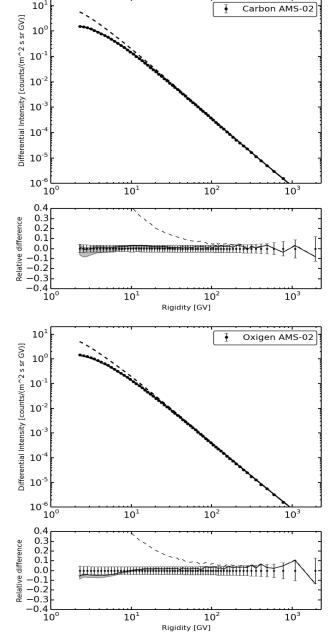
	Unit	Error (%)
Z	kpc	60%
D ₀ /10^28	$\mathrm{cm}^2\mathrm{s}^{-1}$	100%
δ		60%
V _{Alfven}	$km s^{-1}$	90%
V _{0conv}	$km s^{-1}$	100%
dV _C /dz	$km s^{-1} kpc^{-1}$	100%

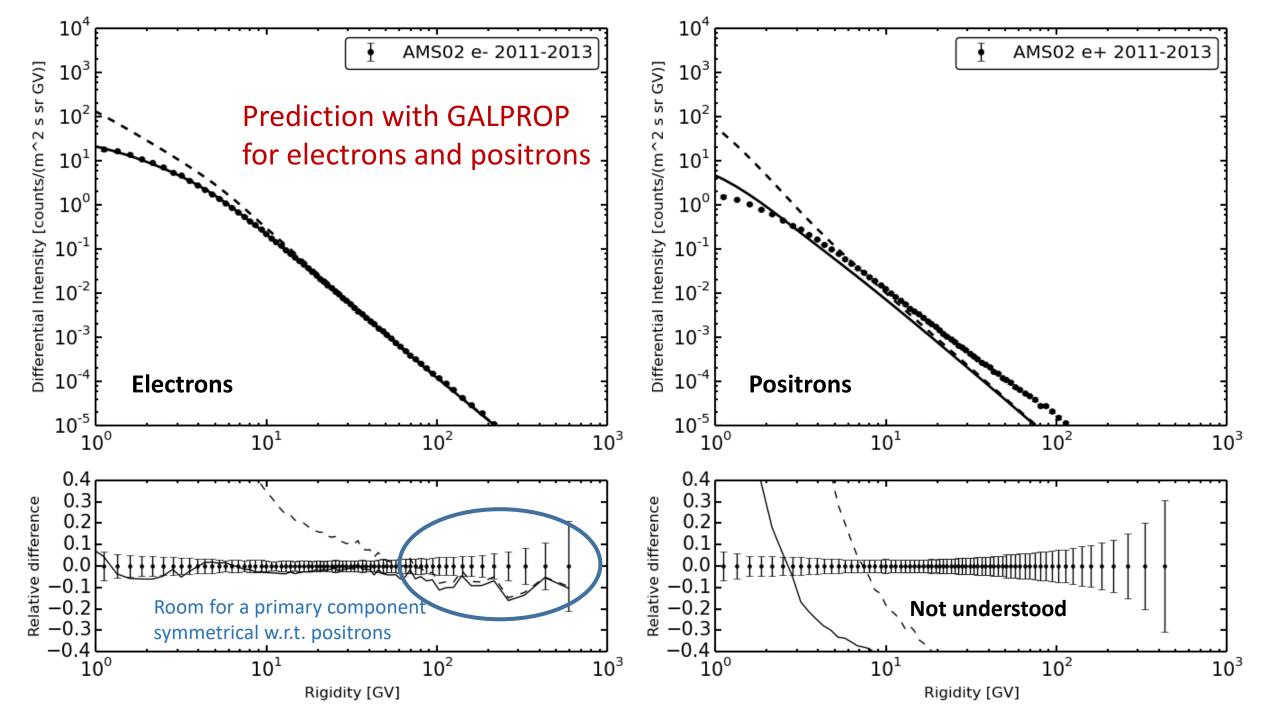
Error (%)	Improvement factor $\varepsilon_{before}/\varepsilon_{after}$			
18%	3			
12%	8			
6%	10			
10%	9			
6%	16			
7%	14			

- Before AMS-02 we were not able to fix the CR propagation physics: the parameters lied in very wide ranges.
- With AMS-02 data is finally possible to achive a consistent best fit: the errors associated to the fundamental propagation parameters z, D_{0xx} , $\delta_{1,2}$ are greatly reduced.

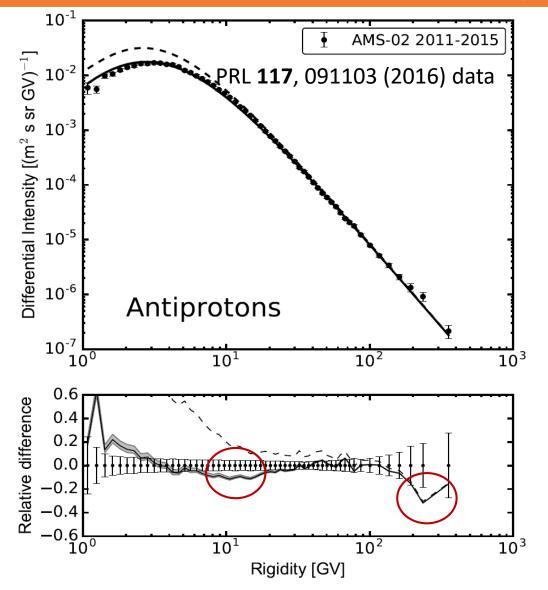
One order of magnitude of improvement for fundamental parameters


Proton and Helium High Solar Activity




Forthcoming nuclei analysis

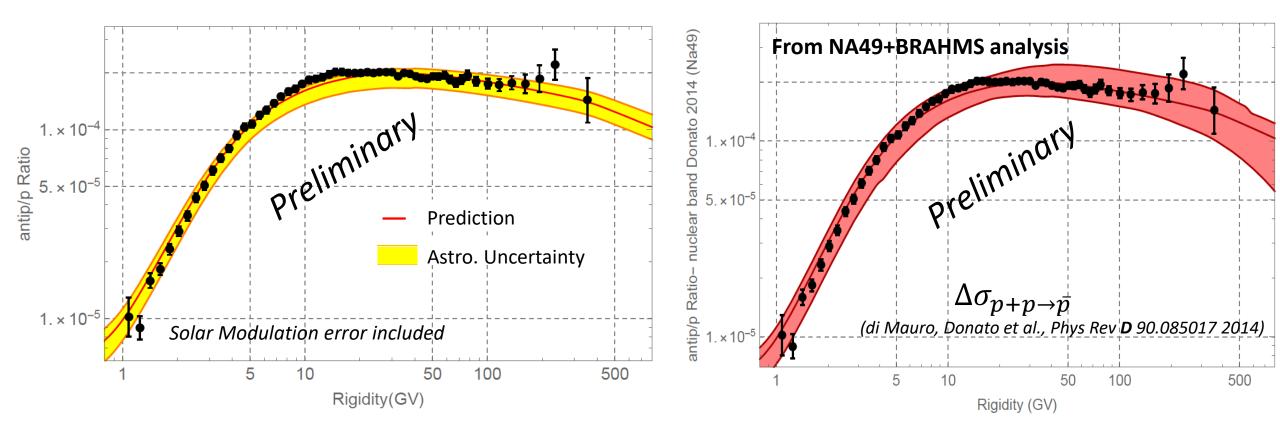
Good agreement between data and HelMod-modulated LIS from GALPROP, within nuclear and propagation uncertainties



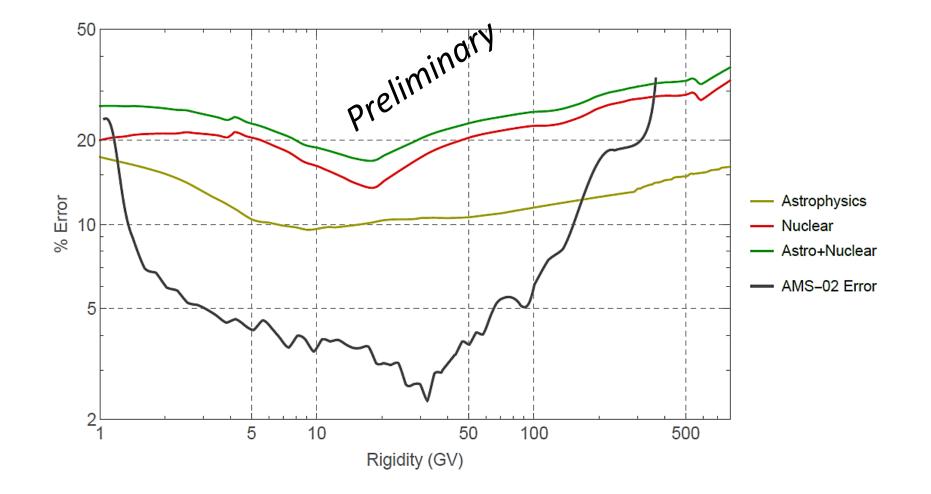
The antiproton channel

The Astrophysical Journal **840**:115 No 2, 2017, arXiv:1704.06337

Antiprotons

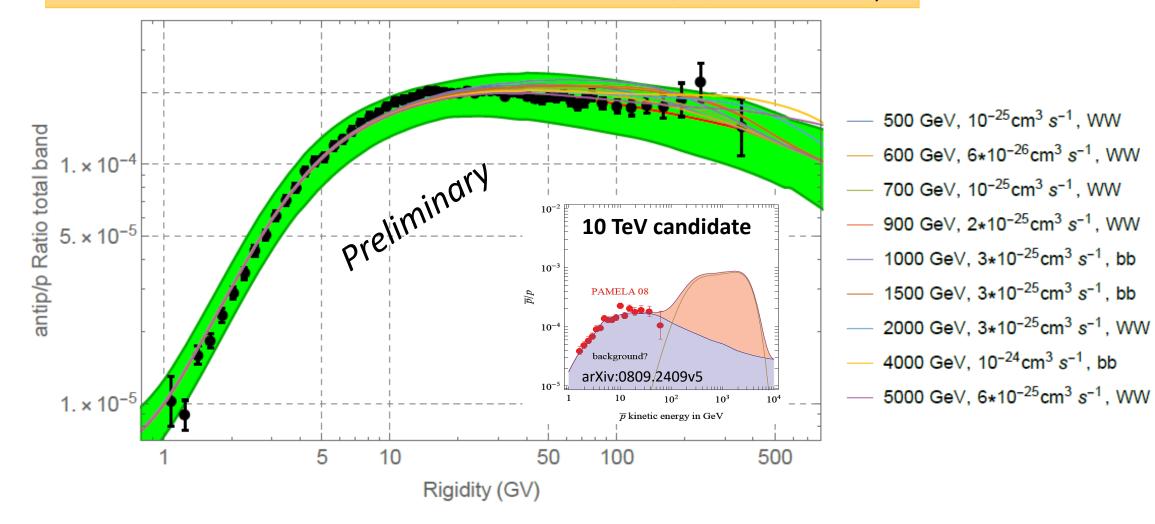

The Antiproton LIS is substantially compatible with AMS-02 within few %

Tiny discrepancies w.r.t. AMS-02 high precision data could be due to:


- nuclear cross section uncertainties
- peculiar propagation effects or variation of primary p and He spectra in the Galaxy

- In standard GALPROP: analytic parameterizations from Tan & Ng based on 70's data: PRD 26 (1982) 1179; J.Phys.G:Nucl Phys 9 (1983) 227
- In our study: recalculated \bar{p} production in pp/pA/AA-interactions using EPOS-LHC and QGSJET-II-04 MC generators, tuned to accelerator data (ApJ, 803:54, 2015)

Antip/p: astrophysical uncertainty vs nuclear uncertainty


Error Bands: Astrophysics vs Nuclear physics

- Propagation uncertainties are lower than nuclear one.
- Adding further AMS-02 data set to the analysis (C, O, Li, Be, B) the propagation error will be reduced.

Total uncertainty band + DM DarkSUSY simulations

BETTER CANDIDATES: m > 1 TeV, 0.6 TeV < m < 1 TeV and $\langle \sigma v \rangle < 10^{-25} cm^3/s$

- TeV scale candidates are favored by LHC, direct, indirect and astrophysical searches.
- DM signals could in principle still hide within the overall error band.

DM search status @ Colliders

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Model	$\epsilon, \mu, \tau, \gamma$	Jets	$E_{\rm T}^{\rm mbs}$	∫£ d1[fb	1] Mass limit	$\sqrt{s} = 7, 8$	TeV √s = 13 TeV	Reference
$\begin{array}{c} \text{MSLIGRA/CMSSM} \\ \hline q\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{0} \\ \hline q\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{0} \\ \hline q\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{0} \\ \hline g\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{0} \\ \hline g\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{0} \\ \hline g\bar{q}, \bar{q} \rightarrow q\bar{q}\chi_{1}^{0} \\ \hline g\bar{q}, q$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 1-6 2 jets 2 jets 2 jets mono-jet	+ Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	ā 008 GeV 8 8 8 8 8 8 8 8 8 8 8 8 8	1,85 TeV 1.35 TeV 1.80 TeV 1.81 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.85 TeV 1.85 TeV 1.87 TeV 1.8 TeV	$\begin{split} &m[\hat{q}]\mathtt{cm}[\hat{g}] \\ & \langle \hat{\xi}_{1}^{n} \rangle \!$	1507.05825 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05490 1507.05490 1507.05490 1502.01518
23. 3→558 23. 3→112 23. 3→112 23. 3→112	0 0-1 e.µ 0-1 e.µ	3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	ž ž ž	1.89 TeV 1.89 TeV 1.37 TeV	m k ⁰ ₁ =0 GeV m k ⁰ ₁ =0 GeV m k ⁰ ₁ <300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2018-052 1407.0600
$\begin{array}{c} \begin{array}{c} \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{2}\mathbf{k}_{2}\mathbf{k}_{2}\mathbf{k}_{2}\mathbf{k}_{1}^{R} \\ \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{1}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{1}, \mathbf{k}_{1} \rightarrow \mathbf{k}_{1}^{R} \\ \mathbf{k}_{2}\mathbf{k}_{1}, \mathbf{k}_{2} \rightarrow \mathbf{k}_{1} + \mathbf{k} \\ \mathbf{k}_{2}\mathbf{k}_{2}, \mathbf{k}_{2} \rightarrow \mathbf{k}_{1} + \mathbf{k} \end{array}$	0 $2 e, \mu$ (SS) $0 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu (Z)$ $3 e, \mu (Z)$ $1 e, \mu$	2 b 1 b 1 - 2 b - 2 jets/1 - 2 i mono-jet 1 b 1 b 6 jets + 2 b	 Yes 4. Yes Yes Yes 	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	δ₁ 840 GeV δ₁ 325-635 GeV q̃ 17-170 GeV 200-720 GeV t̄₁ 90-198 GeV t̄₁ 90-323 GeV t̄₁ 320-620 GeV		$\begin{split} m \tilde{\xi}_{1}^{0} <\! 100GeV \\ m \tilde{\xi}_{1}^{0} <\! 150GeV, m(\tilde{\xi}_{1}^{0} = m(\tilde{\xi}_{1}^{0}) + 100GeV \\ m \tilde{\xi}_{1}^{0} = 2m(\tilde{\xi}_{1}^{0}), m \tilde{\xi}_{1}^{0} = 256GeV \\ m \tilde{\xi}_{1}^{0} = 1GeV \\ m \tilde{\xi}_{1}^{0} = 1GeV \\ m \tilde{\xi}_{1}^{0} > 150GeV \\ m \tilde{\xi}_{1}^{0} = 0GeV \\ m \tilde{\xi}_{1}^{0} = 0GeV \end{split}$	1608.08772 ATLAS-CONF-2018-037 1209.2102, ATLAS-CONF-2016-077 1506.08618, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2018-038 1508.08816
$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{K}_{1}^{2} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} , \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} , \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\rho \nu), \ell \nu \tilde{\ell}_{L} \ell (\rho \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-} \rightarrow W \tilde{\chi}_{2}^{+} \tilde{\ell}_{L} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-} \rightarrow W \tilde{\chi}_{2}^{+} \tilde{\kappa}_{L}^{+} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{-} \gamma W \tilde{\chi}_{2}^{+} \tilde{\kappa}_{L}^{+} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{-} \gamma W \tilde{\chi}_{2}^{+} \tilde{\kappa}_{L}^{+} \\ \tilde{G} G M (vino NLSP) weak prod. \\ G G M (bino NLSP) weak prod. \end{array} $	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2 - 3 ε.μ 7/γγ ε.μ.γ 4 ε.μ 1 ε.μ + γ 2 γ	0 - 0-2 jets 0-2 k 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	i 90-335 GeV it [*] 040 GeV it [*] 580 GeV it [*] 580 GeV it [*] 1.0 TeV it [*] 425 GeV it [*] 270 GeV it [*] 635 GeV it [*] 115-370 GeV it 590 GeV	m(8 ⁺ ₁)=n	$\begin{split} &m[\hat{\epsilon}_1^n]{=}0GeV \\ &3eV, m[\hat{\epsilon},\hat{\eta}]{=}0, S[m[\hat{\epsilon}_1^n]{+}m[\hat{\epsilon}_1^n]{)} \\ &m[\hat{\epsilon}_1^n]{=}0GeV, m[\hat{\epsilon},\hat{\eta}]{=}0, S[m[\hat{\epsilon}_1^n]{+}m[\hat{\epsilon}_1^n]{)} \\ &\tilde{\epsilon}_1^n]_{n}, m[\hat{\epsilon}_1^n]{=}0, m[\hat{\epsilon},\hat{\eta}]{=}0, S[m[\hat{\epsilon}_1^n]{+}m[\hat{\epsilon}_1^n]{)} \\ &m[\hat{\epsilon}_1^n]_{n}, m[\hat{\epsilon}_1^n]{=}0, m[\hat{\epsilon}_1^n]{=}0, f descupled \\ &m[\hat{\epsilon}_1^n]_{n}, m[\hat{\epsilon}_1^n]{=}0, m[\hat{\epsilon}_1^n]{=}0, f descupled \\ &\tilde{\epsilon}_1^n)_{n}, m[\hat{\epsilon}_1^n]{=}0, m[\hat{\epsilon},\hat{\eta}]{=}0, S[m[\hat{\epsilon}_2^n]{+}m[\hat{\epsilon}_1^n]{)} \\ &cr < 1 nm \\ \end{split} \end{split}$	1403 5294 ATLAS-CONF-2018-096 ATLAS-CONF-2018-093 ATLAS-CONF-2018-098 1403 5294, 1402 7029 1501.07110 1405 5086 1507.05493 1507.05493
$\label{eq:constraints} \begin{array}{c} \mbox{Direct} \chi_1^* \chi_1^* \mbox{ prod., long-lived} \chi_1^* \\ \mbox{Direct} \chi_1^* \chi_1^* \mbox{ prod., long-lived} \chi_1^* \\ \mbox{Direct} \chi_1^* \chi_1^* \mbox{ prod., long-lived} \chi_1^* \\ \mbox{Stable} g \mbox{ R-hadron} \\ \mbox{Stable} g \mbox{ R-hadron} \\ \mbox{GMSB}, stable r, \chi_1^0 {\rightarrow} \tau(r, \mu) {+} \tau(\\ \mbox{GMSB}, \chi_1^0 {\rightarrow} \gamma \tilde{G}, \mbox{ long-lived} \chi_1^0 \\ \mbox{ gf} \chi_1^0 {\rightarrow} \chi_2^0 \\ \mbox{gf} \chi_1^0 {\rightarrow} \chi_2^0 \\ \mbox{gf} \chi_1^0 {\rightarrow} \chi_2^0 \end{array}$	i dE/dxtrk o trk dE/dxtrk		Yes Yes · · · Yes ·	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	\$\bar{x}^*\$ 270 GeV \$\bar{x}^*\$ 495 GeV \$\bar{x}^*\$ 850 GeV \$\bar{x}^*\$ 537 GeV \$\bar{x}^*\$ 537 GeV \$\bar{x}^*\$ 1.0 TeV \$\bar{x}^*\$ 1.0 TeV		$\begin{split} m[\tilde{\mathcal{K}}_{1}^{n}) &\leftarrow n[\tilde{\mathcal{K}}_{1}^{n}) &\leftarrow n[\tilde{\mathcal{K}}_{1}^{n}) &\leftarrow n[\tilde{\mathcal{K}}_{1}^{n}] &\leftarrow n[\tilde{\mathcal{K}}_{1}^{n}]$	1310.3675 1506.05332 1310.6584 1606.05120 1604.04520 1411.6795 1409.5542 1504.05162
$ \begin{array}{c} \underset{k=1}{\overset{LFV}{\overset{P}} p p \rightarrow b_{\tau} + X, b_{\tau} \rightarrow s \mu / s \tau / \rho \tau \\ Bilnear RPV CMSSM \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\xi}_1^+, \tilde{\chi}_1^0 \rightarrow s s v, s \rho v, \mu \\ & \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\xi}_1^-, \tilde{\chi}_1^0 \rightarrow \tau \tau v_s, s \tau v_\tau \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow q q \tilde{g}, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{g} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ & \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0$	$2 e, \mu$ (SS) $\mu\nu$ $4 e, \mu$ $3 e, \mu + \tau$ 0 - 4 0 - 4 $1 e, \mu = 8$	- 0-3 b - 5 large- <i>R</i> je 5 large- <i>R</i> je 5 large- <i>R</i> je 10 jets/0-4 2 jets + 2 b 2 b	sta - 6 - 6 -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	2. 3. ĝ 1.14 1.14 1.14 1.08 Te 2. 2. 3. 450 GeV 1.08 Te 3. 3. 450 GeV 1.08 Te 3. 450 GeV 450 GeV 1.08 Te 450 GeV 450 G	eV 1.55 TeV 1.75 TeV 1.4 TeV	$\begin{split} \lambda_{a11}^{\ell} &= 0.11, \ \lambda_{112/101/201} = 0.07 \\ m \hat{g} _{2} = n \hat{g} _{1}, \ \sigma_{121} < 1 \ rrm \\ m \hat{g}_{1}^{(2)} > 400 \text{GeV}, \ \lambda_{121} \neq 0 \ (k = 1, 2) \\ m \hat{g}_{1}^{(2)} > 0.2 \times m \hat{g}_{1}^{(2)}, \ \lambda_{121} \neq 0 \\ \text{BP}(j) = BP (j) = BP (j) = BP (j) = 0\% \\ m \hat{g}_{1}^{(2)} = 300 \ \text{GeV} \\ m \hat{g}_{1}^{(2)} = 300 \ \text{GeV} \\ \text{BES GeV} < m \hat{f}_{1} < 850 \ \text{GeV} \\ \text{BP}(f_{1} \rightarrow \delta x/\mu) > 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other Scalar charm, ≈→ck ⁰ *Only a selection of the states or phenomena		2 r ass limits	Yes on nei	20.3 W 1	2 510 GeV	1	mi ^k ů)<200 GeV Mass scale [TeV]	1501.01325

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

ATLAS Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$

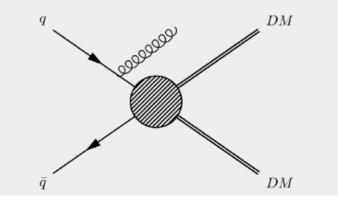
 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

Jets† E_T^{miss} ∫⊥ dt[fb⁻¹] Model ℓ, γ Limit Reference ADD $G_{KK} + g/q$ 6.58 TeV _ ≥ 1 j Yes 3.2 n = 21604.07773 ADD non-resonant *ll* 2 e, µ 20.3 n = 3 HLZ1407.2410 _ 4.7 TeV _ ADD QBH $\rightarrow \ell a$ $1 e, \mu$ 1 i _ 20.3 n = 61311.2006 5.2 TeV ADD QBH _ 2 j _ 15.7 M., 8.7 TeV n = 6ATLAS-CONF-2016-069 dimensi ADD BH high $\sum p_T$ $\geq 1 e, \mu$ ≥ 2 j _ 3.2 Mth 8.2 TeV n = 6, $M_D = 3$ TeV, rot BH 1606.02265 n = 6, $M_D = 3$ TeV, rot BH ADD BH multijet ≥3 i _ 3.6 M_{th} 9.55 TeV 1512.02586 _ RS1 $G_{KK} \rightarrow \ell \ell$ 2 e, µ 20.3 2.68 TeV $k/\overline{M}_{Pl} = 0.1$ 1405.4123 _ _ _{кк} т Extra $k/\overline{M}_{Pl} = 0.1$ RS1 $G_{KK} \rightarrow \gamma \gamma$ 2γ _ 3.2 G_{KK} mass 3.2 TeV 1606.03833 Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$ 1.24 TeV $k/\overline{M}_{Pl} = 1.0$ $1 e, \mu$ 1 J Yes 13.2 G_{KK} mass ATLAS-CONF-2016-062 360-860 GeV Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ 4 b _ 13.3 G_{KK} mass $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2016-049 Bulk RS $g_{KK} \rightarrow tt$ $\geq 1 \text{ b}, \geq 1 \text{J/2j}$ Yes 20.3 BR = 0.925 1 e, µ кк mas 2.2 TeV 1505.07018 2UED / RPP $\geq 2 \text{ b}, \geq 4 \text{ j}$ Yes 1.46 TeV Tier (1,1), BR($A^{(1,1)} \rightarrow tt$) = 1 $1 e, \mu$ 3.2 KK mass ATLAS-CONF-2016-013 2 e, µ SSM $Z' \rightarrow \ell \ell$ 13.3 4.05 TeV ATLAS-CONF-2016-045 _ Z' mass SSM $Z' \rightarrow \tau \tau$ 2τ _ 19.5 Z' mass 2.02 TeV 1502.07177 Leptophobic $Z' \rightarrow bb$ 1.5 TeV 2 b _ 3.2 Z' mass 1603.08791 -SSM $W' \rightarrow \ell v$ $1 e, \mu$ Yes 13.3 W' mass 4.74 TeV ATLAS-CONF-2016-061 _ 2 HVT $W' \rightarrow WZ \rightarrow qqvv$ model A 0 e,μ 1 J Yes 13.2 W' mass 2.4 TeV $g_V = 1$ ATLAS-CONF-2016-082 Gauge HVT $W' \rightarrow WZ \rightarrow aaaa$ model B 2 J 15.5 W' mass 3.0 TeV $g_V = 3$ ATLAS-CONF-2016-055 HVT $V' \rightarrow WH/ZH$ model B multi-channel 3.2 V' mass 2.31 TeV $g_V = 3$ 1607.05621 LRSM $W'_P \rightarrow tb$ 1 e, µ 2 b, 0-1 j Yes 20.3 1.92 TeV 1410.4103 N' mass LRSM $W'_{P} \rightarrow tb$ 0 e, µ \geq 1 b, 1 J 20.3 1.76 TeV 1408.0886 _ N' mas CI qqqq 2 j _ 15.7 **19.9 TeV** $\eta_{LL} = -1$ ATLAS-CONF-2016-069 _ 5 Clllgg 2 e, µ _ 3.2 **25.2 TeV** $\eta_{LL} = -1$ 1607.03669 2(SS)/≥3 *e*,*µ* ≥1 b, ≥1 j CI uutt Yes 20.3 4.9 TeV $|C_{RR}| = 1$ 1504.04605 g_q =0.25, g_{χ} =1.0, $m(\chi)$ < 250 GeV Axial-vector mediator (Dirac DM) 3.2 0 e, µ ≥ 1 j Yes 1.0 TeV 1604.07773 DM Axial-vector mediator (Dirac DM) 1 j $g_q=0.25, g_{\chi}=1.0, m(\chi) < 150 \text{ GeV}$ 0 e, μ, 1 γ Yes 3.2 710 GeV 1604.01306 ZZ_{XX} EFT (Dirac DM) 1 J, ≤ 1 j Yes 3.2 M. 550 GeV $m(\chi) < 150 \text{ GeV}$ ATLAS-CONF-2015-080 0 e, µ $\beta = 1$ Scalar LQ 1st gen 2 e ≥ 2 j _ 3.2 1.1 TeV 1605.06035 O mass LQ ≥ 2 j 3.2 $\beta = 1$ Scalar LQ 2nd gen 2μ _ Q mass 1.05 TeV 1605.06035 Scalar LQ 3rd gen 1 e, µ ≥1 b, ≥3 j Yes 20.3 640 GeV $\beta = 0$ 1508.04735 VLQ $TT \rightarrow Ht + X$ 1 e, µ $\geq 2 \text{ b}, \geq 3 \text{ j}$ Yes 20.3 855 GeV T in (T,B) doublet 1505.04306 Y in (B,Y) doublet $VLQ YY \rightarrow Wb + X$ $1 e, \mu$ ≥ 1 b, ≥ 3 j Yes 20.3 770 GeV 1505.04306 mass Heavy VLQ $BB \rightarrow Hb + X$ ≥ 2 b, ≥ 3 j Yes 20.3 735 GeV isospin singlet 1505.04306 $1 e, \mu$ VLQ $BB \rightarrow Zb + X$ 2/≥3 e,µ ≥2/≥1 b 20.3 755 Ge B in (B,Y) doublet 1409.5500 _ $VLQ QQ \rightarrow WqWq$ Yes $1 e, \mu$ ≥4 j 20.3 690 GeV 1509.04261 VLQ $T_{5/3}T_{5/3} \rightarrow WtWt$ 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 3.2 T_{5/3} mass 990 GeV ATLAS-CONF-2016-032 Excited quark $q^* \rightarrow q\gamma$ 1 j 4.4 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1γ _ 3.2 r* mass 1512.05910 Excited quark $q^* \rightarrow qg$ only u^* and d^* , $\Lambda = m(q^*)$ xcited _ 2 j _ 15.7 q* mass 5.6 TeV ATLAS-CONF-2016-069 Excited quark $b^* \rightarrow bg$ 1 b, 1 j _ 8.8 b* mass 2.3 TeV ATLAS-CONF-2016-060 _ Excited quark $b^* \rightarrow Wt$ 1 or 2 e, µ 1 b, 2-0 j Yes 20.3 1.5 TeV $f_{g} = f_{L} = f_{R} = 1$ 1510.02664 * mass ш 3 e, µ Excited lepton ℓ^* 20.3 $\Lambda = 3.0 \text{ TeV}$ 1411.2921 _ 3.0 TeV mass Excited lepton v* 3 e, μ, τ _ 20.3 1.6 TeV $\Lambda = 1.6 \text{ TeV}$ 1411.2921 mass LSTC $a_T \rightarrow W\gamma$ $1 e, \mu, 1 \gamma$ Yes 20.3 960 GeV 1407.8150 _ LRSM Majorana v 2 j $m(W_R) = 2.4$ TeV, no mixing 2 e, µ _ 20.3 2.0 TeV 1506.06020 Higgs triplet $H^{\pm\pm} \rightarrow ee$ 2 e (SS) _ 13.9 H^{±±} mass 570 GeV DY production, BR($H_{I}^{\pm\pm} \rightarrow ee$)=1 ATLAS-CONF-2016-051 _ Other Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ DY production, BR($H_{l}^{\pm\pm} \rightarrow \ell \tau$)=1 3 e, μ, τ _ _ 20.3 I^{±±} mass 400 GeV 1411.2921 Monotop (non-res prod) Yes 20.3 $a_{non-res} = 0.2$ 1410.5404 1 e, µ 1 b le particle mass 657 GeV Multi-charged particles DY production, |q| = 5e20.3 785 GeV 1504.04188 Magnetic monopoles DY production, $|g| = 1g_D$, spin 1/2 1509.08059 7.0 1.34 TeV 1 $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ 10^{-1} 10 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

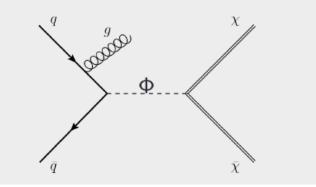
†Small-radius (large-radius) jets are denoted by the letter j (J).

The main idea

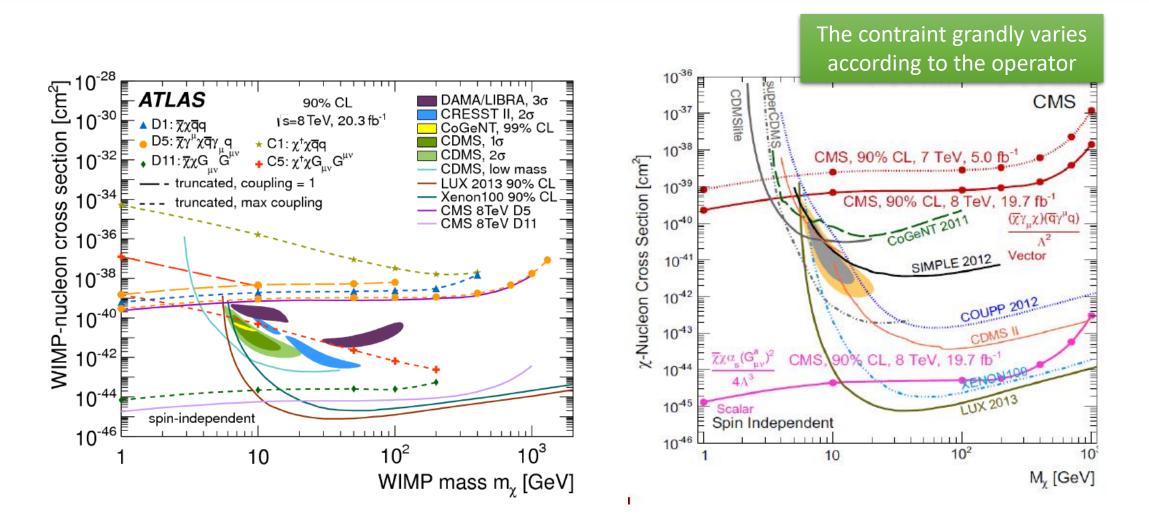

Two main production mechanisms, affecting the experimental strategies:

1) Effective interactions with quarks and gluons if no new resonances accessible

2) Decays of other resonances - new mediators - when the latter can be produced on-shell

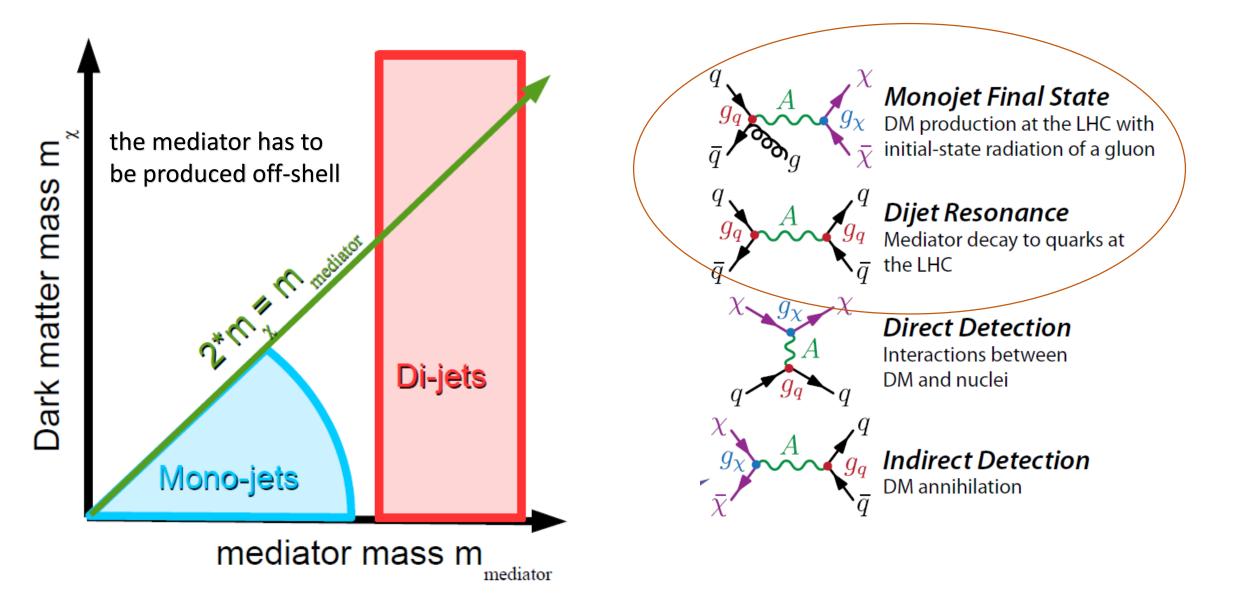

EFT models

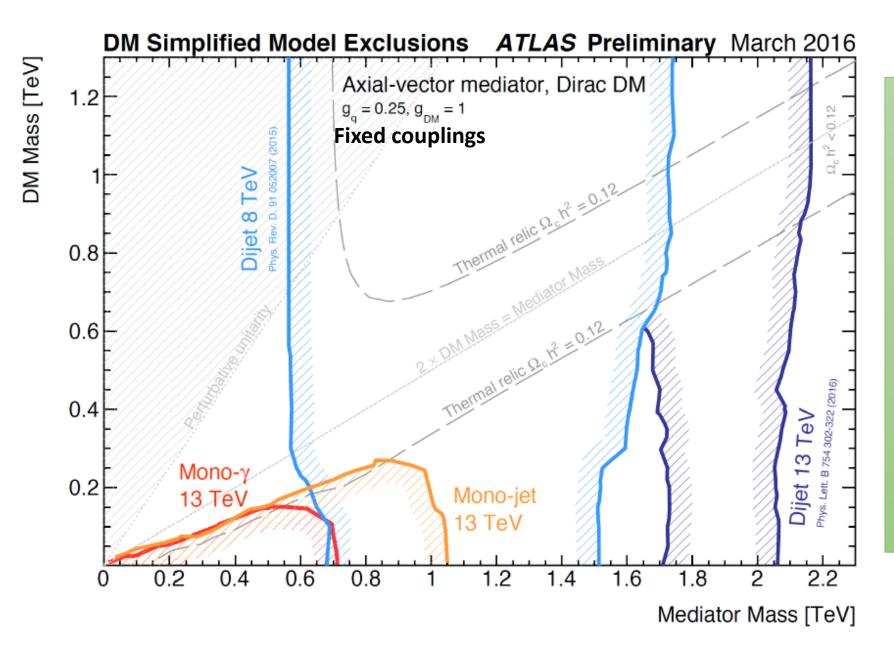
- direct coupling between DM-SM through an effective vertex
- Valid if mass scale M_{*} >> Q momentum transfer



Simplified models

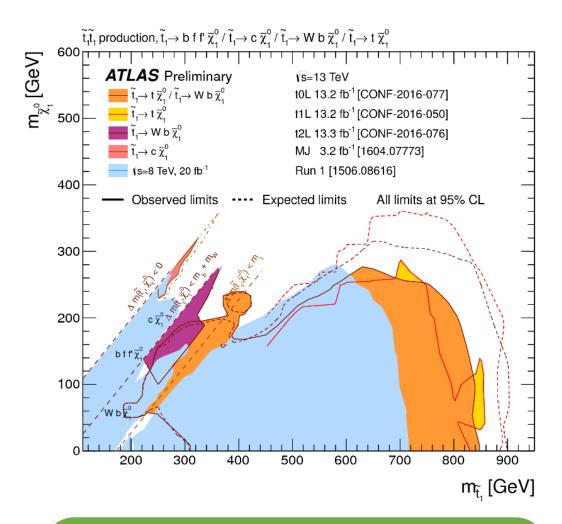
- χ is a Dirac fermion
- couples to SM through a mediator
 Φ in s-channel processes
- **•** parameters: M_{Φ} , m_{χ} , g_{χ} , g_q , Γ_{Φ}



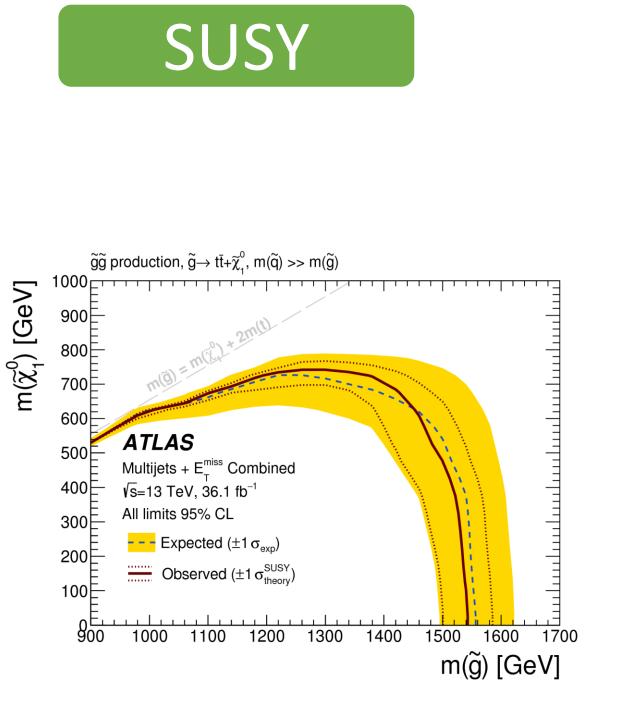

Effective Field Model

The exclusion capability is competitive with direct search experiment in the DM mass region below 10 GeV

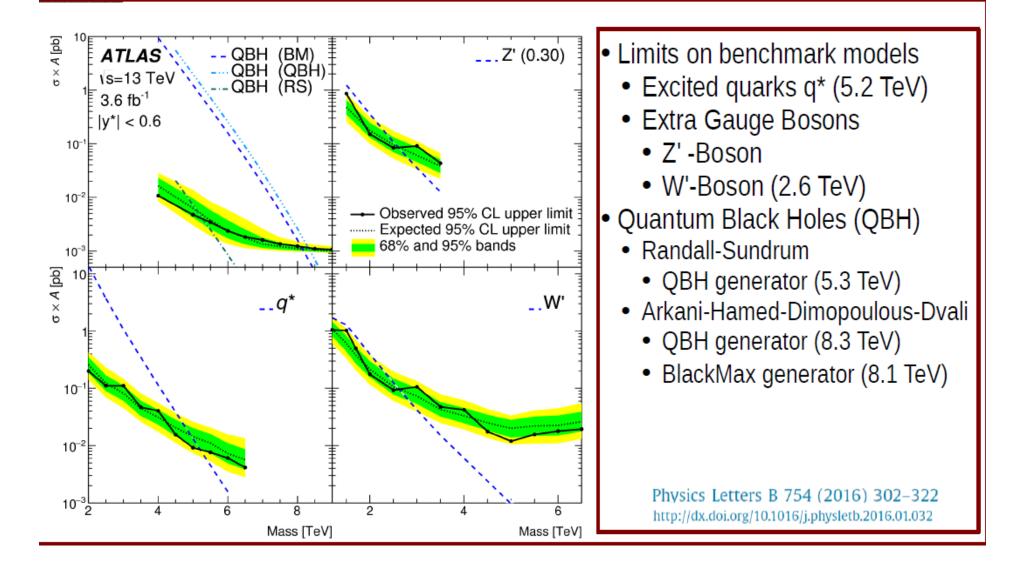
Simplifies model approach



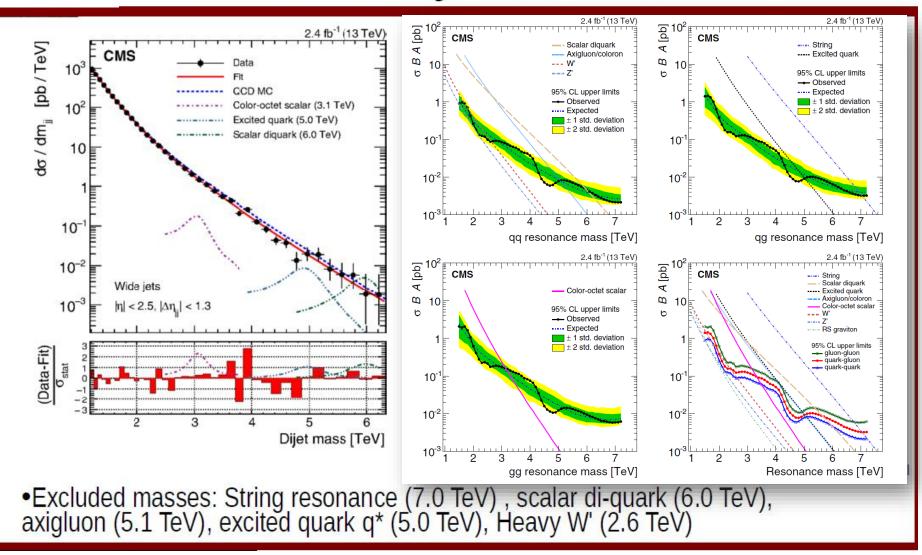
ATLAS dijet results exclude the existence of mediating particles with masses from about **600 GeV** to 2 TeV.


The mono-jet and mono-photon channels **exclude the parameter space at lower mediator and dark-matter masses**, below the off-shell region

Only **TeV-ish** DM candidates and mediators are free to sweep the parameters space and in agreement with thermal relic density



We are learning that:


- Minimal SUSY parameter space is narrowing
- The masses scale for DM, NLSP and exotic mediators is increasing up to the TeV scale

Limits on Dijet resonances

Phys. Rev. Lett. 116, 071801 (2016) Limits on Dijet resonances

A new era for astroparticle physics

- AMS-02 data allow a deeper understanding of the «High Energy Universe» and do put the models to the test, highlightning theoretical inaccuracies and driving the models to a precision astroparticle physics;
- Fitting AMS-02 data with the latest **GALPROP** framework together with the **HelMod** Model of Heliosphere, a precise and almost univocal propagation scheme was achieved, granting a unitary description of CR physics at the % level;
- This model is fully consistent and capable of reproducing all CRs observations (except for positrons, but the work is still in progress);
- Once fixed the CR propagation parameters, the secondary background for DM searches (and anomalies in general) is removed;
- The indirect dark matter search is moving through a **TeV-ish DM paradigm**, which is substained by recent astrophysical and colliders observations.