Japanese vs Swiss

- Replica Watch Movement

<u>I. Komarov</u>, C. La Licata, D.Tonelli Belle II Italian meeting - Trieste, May 4, 2017

Why?

Until the mid-2000's B-factories had uncharted territory to explore freely: no real competition from CLEO or CDF/D0. Babar and Belle competed fiercely: similar detector performances made analysis-timing and sophistication key.

The scenario Belle II will play in will be quite different from what former Belle (and Babar) collaborators might be used to. Need to confront LHCb, a running, well-oiled flavor-paper factory.

Looks inefficient to aim at measurements where LHCb has shown to enjoy a disconcerting advantage.

We thought it could be interesting to give a stab at performance comparisons. Goal is to hopefully get indications that can inform our early physics choices.

What and How

The goal is to guesstimate the future performances of Belle II and LHCb for a few, broad classes of analyses

Scale the statistical resolutions of existing results of some common, representative measurements to project them for the expected future sample sizes.

Use 2-3 analyses/class to average out the fluctuations due to differences in kinematic/ topology/trigger/analysis techniques.

Assumptions:

- Nominal experimental schedules
- Frozen systematic uncertainties
- Statistical uncertainties independent from central values
- Upper limits scale as $1/\sqrt{N}$
- Offline analyses done in zero time
- 50% better performance of Belle II w.r.t. Belle
- Doubled trigger efficiency for LHCb past 2021
- Past 2021, LHCb will be able to trigger on K0s similarly to now.

A few hours ago Francesco pointed out: BELLE2-NOTE-PH-2015-004 BELLE2-NOTE-PH-2015-002

Similar exercise but we have updated inputs.

LHCb: flavor-paper factory

Year of submission

Publications per year

Papers / month

Number of publications

 Collecting data at increasing energy and luminosity since 2010

~50 papers/year

All-tracks final states

However, in Japan, some things are much better than is Switzerland...

Partially reconstructed decays

$B^0 \rightarrow D^* h$

2 neutrinos in final state

arxiv:1506.08614 arxiv:1612.00529

Measurements relying on flavor tagging

2012 2014 2019 2020 2021 2022 2023 2024 2025 $_{\rm 17}$

Dalitz analysis

$D \rightarrow K^0_s \pi \pi$

arxiv:1510.01664

arxiv:1404.2412

$B^+ \rightarrow DK^+, D \rightarrow K^0_s \pi \pi$

5-tracks, triggered on hadrons

* *Here systematic uncertainties
will be dominating quite soon.
* This graph is for stat. sensitivity

22

arxiv:1209.5869 arxiv:1204.6561

1 fb ^{-1 Runl}	711 fb ⁻¹
$\delta\phi_{3}^{comb}\pm40^{\circ}$	$\pm 16^{\circ}$

In 2020

 $\begin{array}{rrr} 3^{\text{Runl}} + 5^{\text{Runll}} \text{ fb}^{-1} & 5 \text{ ab}^{-1} \\ \pm 24^{\circ} & \pm 8^{\circ} \end{array}$

---+5°

$B^+ \rightarrow DK^+, D \rightarrow K^0_s \pi \pi$

5-tracks, triggered on hadrons

22

16.5

*Here systematic uncertainties

will be dominating quite soon.

arxiv:1209.5869 arxiv:1204.6561

The background-rejection needed in LHCb imposes impact-parameter trigger cuts that introduce hard-to-model kinematic biases, which complicate the Dalitz analysis

Final states with (visible) neutrals

At a glance

pi0 peak suppress strongly the efficiency.

 $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$

Tau physics

Luminosity matching

Class of analyses	Belle II equivalent luminosity for 1fb ^{-1Run II} LHCb
All-tracks	10 - 20 ab-1
Missing energy	0.5 -1.2 ab ⁻¹
Neutral in final state	0.08 - 3 ab ⁻¹
Flavour tag	0.1 - 0.3 ab ⁻¹
Dalitz-plot	0.2 ab ⁻¹

Summary

Belle II will do physics in competition with a well-oiled experiment that enjoys >100x more signal rate.

Unwise to indulge on measurements where LHCb has a clear edge.

The message is getting through (as the talks of this meeting show). Still looks useful to offer a rough performance comparison for various classes of analyses.

Many approximations and assumptions. But it looks clear that we should forget about all-track final states (except for flavor-tagged analyses, Dalitz analyses, or analyses involving Ks).

Belle II tau physics prospects

Highlights of Belle II golden modes

Mode	Physics	Why Belle II?
$B \rightarrow J/\psi K^{0}s$	<i>φ</i> 1	Time-dependent
$B \rightarrow \pi \pi$	φ2	Neutrals in F.S.
$B \rightarrow D(*)K/\pi$	φ3	Dalitz plot
$B \rightarrow K^{0}{}_{s}\pi^{0}$	DCPV	Neutrals in F.S.
$B \rightarrow X_c h v$	Vcb	Missing E
$B \rightarrow X_{s+d\gamma}$	FCNC	Neturals in F.S.
$D_s \rightarrow \mu \nu, D_s \rightarrow \tau \nu$	LFU	Missing E
$e^+e^- \rightarrow A' \rightarrow invisible$	BSM	Low backgrounds
$\tau \rightarrow \mu \mu \mu$	LFV	Low backgrounds
$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	QCD	Machine-specific

As you can see, Belle II priorities are chosen accounting LHCb future performance