

# ECL reconstruction and $K_{L}$ ID Update

B. Oberhof LNF-INFN, Italy

Belle2 Italy Meeting 4<sup>th</sup> May 2017



#### Outline

- Overview of current ECL reconstruction
- K<sub>I</sub> ID & eclN2Splitter
- Pulse Shape Discrimination for hadron ID

#### **ECL Reconstruction Chain**



#### **ECL Reconstruction**



Graphics & plots in this & following slides by T. Ferber

#### **CR** Finder

|     | 3.5  |     |      |      | 0.6  |     |
|-----|------|-----|------|------|------|-----|
| 1.2 | 34.3 | 1.0 |      | 1.0  | 21.5 | 0.9 |
|     | 3.4  | 1.4 | 0.6  | 12.0 | 9.8  | 1.2 |
|     | 0.9  |     |      |      |      |     |
| 9.5 |      |     |      |      |      |     |
| 1.0 |      | 0.5 | 15.3 | 1.7  | 0.9  |     |
|     |      | 0.7 | 2.1  |      |      |     |

|     | 3.5  |     |      |      | 0.6  |     |
|-----|------|-----|------|------|------|-----|
| 1.2 | 34.3 | 1.0 |      | 1.0  | 21.5 | 0.9 |
|     | 3.4  | 1.4 | 0.6  | 12.0 | 9.8  | 1.2 |
|     | 0.9  |     |      |      |      |     |
| 9.5 |      |     |      |      |      |     |
| 1.0 |      | 0.5 | 15.3 | 1.7  | 0.9  |     |
|     |      | 0.7 | 2.1  |      |      |     |

|     | 3.5  |     |      |      | 0.6  |     |
|-----|------|-----|------|------|------|-----|
| 1.2 | 34.3 | 1.0 |      | 1.0  | 21.5 | 0.9 |
|     | 3.4  | 1.4 | 0.6  | 12.0 | 9.8  | 1.2 |
|     | 0.9  |     |      |      |      |     |
| 9.5 |      |     |      |      |      |     |
| 1.0 |      | 0.5 | 15.3 | 1.7  | 0.9  |     |
|     |      | 0.7 | 2.1  |      |      |     |

|     | 3.5  |     |      |      | 0.6  |     |
|-----|------|-----|------|------|------|-----|
| 1.2 | 34.3 | 1.0 |      | 1.0  | 21.5 | 0.9 |
|     | 3.4  | 1.4 | 0.6  | 12.0 | 9.8  | 1.2 |
|     | 0.9  |     |      |      |      |     |
| 9.5 |      |     |      |      |      |     |
| 1.0 |      | 0.5 | 15.3 | 1.7  | 0.9  |     |
|     |      | 0.7 | 2.1  |      |      |     |

Use only digits with E>0.5MeV.

Digits with E>10MeV are seeds.

Neighbours are grouped with the seed.

Overlapping CRs are merged.



Neighbours of digits with E>1.5MeV are added as well (continued).

#### Local Max Finder

- The connected region can contain energy deposits from more than one particle and/or there are many digits that do not belong to a particle
- If a CR contains multiple particles (including beam background) we have to split the energy → search for local maxima (LM)



### Splitter N1 (n photons)

- The digit energy within a CR is shared between different LMs based on the distance to the LM.
   Iterative procedure via recalculation of the shower positions (BaBar-like)
- For each LM within a CR, we choose an optimal number of neighbor crystals within the nearest "5x5 minus corners" crystals
- The optimal number of neighbors depend on the BG level and a raw energy estimation from 3x3 crystals: optimal number per crystal position as f(BG, E<sub>raw</sub>)
- The optimal number minimizes the energy resolution for true photons, the mean will be corrected later



#### Energy Resolution (rel-00-08-00)

#### More details in Mario's talk



#### Position Resolution (rel-00-08-00)



#### **Shower Energy Correction**

Bkg, theta and phi dependent, currently provided for BGx0.0 and BGx1.0



#### Exec. Time & Memory Consumption

#### ECL reconstruction time and file size increase is almost linear with bkg



T. Ferber February 17 B2GM

### $K_{L}$ ID int the ECL: Foreword

- Previous results:
  - Using full Connected Region (CR) information we get improved  $K_{L}$  ID w.r.t. Belle-like showers
  - Improved resolution on  $K_L$  direction is easily obtained already by "cluster reduction" in a similar way as is done for photons
- Unfortunately, the main question, however, was left open:
   Do we actually really need a splitter for N2 hypothesis?
- Which can be translated as:

How many times do we have more than one local maximum (LM)

in a CR which is matched to a  $K_{L}$  which come from other

(i.e. non-K<sub>1</sub> related) physics processes?

#### **CR-MC** Match

MC relations in K<sub>L</sub>-CR matching are non-trivial, direct

matches are (mostly) not sufficient to understand the interaction

- Not necessarily most significant match is to K<sub>L</sub>
- We look for CR with > 1 LM and study associated MC-matches
- Selection: CR Energy > 40 MeV, "strong" MC-match (i.e. MC-match +

K<sub>1</sub> interaction in TOP or ECL), basic timing cut (same as cluster)



\*mostly "daughters" produced interaction, not decay

### pGun KL (w/o bkg)

- Benchmark: single  $K_L$  with E, theta spectrum as  $K_L$  from generic  $B\overline{B}$
- From 1000 events:
  - K<sub>L</sub> interaction rate (ECL+TOP, geometry factorized out): 60.5%





 Going back 2 levels every CR-matched MC particle is seen to originate from the K<sub>1</sub> as it should

#### Bkg effect

• From 1000 pGun  $K_{L}$  events + 12<sup>th</sup> campaign beam bkg:

 no beam bkg
 w beam bkg

 • #CRs: 570
 -> 979

 • #CRs > 1 LM: 162
 -> 537

- #CRs > 2 LM: 27 -> 207
- # of multi-bump CRs grows as function of #bumps
- The effect is energy dependent, i.e. grows with  $K_L$  energy
- No significant change in matching relations for 1<sup>st</sup> peak
- 2<sup>nd</sup> most energetic peak in > 50% cases due to bkg photon
- We interpret this as a pile-up effect

### genericBB (w bkg)

- From 100000 events:
  - #K<sub>L</sub> (mcTruth): 60869
  - #CRs (w match): 72491
  - #CRs (w match) > 1 LM: 34816
  - #CRs (w match) > 2 LM: 12578



- MC mother-daughter relations
- MC-match of <u>highest</u>
   <u>E contribution</u>





Most important contribution to 2<sup>nd</sup> peak from beam bkg

#### Simulation results: overview

- In generic BB events + 12<sup>th</sup> campaign beam-bkg, for CR with at least 2 LM, for a K<sub>L</sub> truth-matched CR:
  - in 17.2% events the most energetic deposit in the CR is due to a photon
  - in 6.9% the photon gives 2<sup>nd</sup> most energetic deposit
  - (photons mostly from  $\pi^0$ )

-> most interesting case

• in 25% of cases the 2<sup>nd</sup> most energetic peak is from a bkg-photon

-> a splitter could help to clean-up

- on average 8.2% of contributions is from a  $\pi^{+/-}$  (most likely split-offs)
- on average 6% of contributions is from a mix of (n, μ, e, p, X)

-> hopeless to recover any useful information

#### Cross check

- To check whether the previously determined overlap probabilities are reasonable we compare mu/gamma overlap probabilities in generic BB (this time make no requirement on track/match)
- We get 9.7% probability that a CR matched to a muon get its most energetic deposit from a π<sup>0</sup> photon, in reasonable agreement with the previous result



#### N2Splitter, prel. conclusions

KL/gamma overlap might be the (only?) physics case to justify an N2Splitter



- Basic option could be a sort of "photon/hadron" splitter, e.g.:
  - under N2 hypothesis try to find a photon in the CR
    - If you find it (with P > x) keep it and assign the remaining of the CR to  $K_{L}$
    - Otherwise assign everything to the  $K_{L}$
- Would also remove beam-bkg
- At a later step we would do dedicated clustering to improve  $K_L$  direction resolution

#### **Pulse Shape Discrimination**

- Basic idea: scintillation response of CsI(TI) varies with particle type for protons and alphas and electrons
- Use this information to improve particle ID in Belle II
- Known to work at low energies O(10 MeV) and for neutron ID @ 100-700 MeV, what about typical BelleII energies?



#### Savino Longo & Mike Roney

#### Hadron ID using PSD

 First successful test at higher energies made @ TRIUMF M11 test facility using CsI(TI) crystal + PMT on p=100-300 MeV e, mu, pi beam (fall 2016)





#### PSD, Shaper



#### PSD, recent development

- Method has been improved by using 3-component model based on data
- 3<sup>rd</sup> (fast) component is called PSD component



#### Charge Ratio Method (old method)





#### PSD outlook

- Feature branch feature/ecl-PSD with (particle dependent) signal shape simulation and PSD signal extraction now available in git
- First promising result on cosmic data



 @LNF we will collaborate to develop new clustering algorithms which use PSD information to improve particle ID



#### Contributors for LM > 2, single $K_{I}$

- We look for MC-matches of 1<sup>st</sup> and 2<sup>nd</sup> most energetic deposits in CR if they are not matched to the K<sub>L</sub>, in previously defined sample:
- Total CR = 570 (1077) (without any selection)
- CR LM > 1 = 162
- CR LM > 2 = 27



### Single KL

- Now we look for mcMothPDG and mcGMothPDG of 1<sup>st</sup> and 2<sup>nd</sup> mostE
- At 2<sup>nd</sup> generation (almost) all contributors are seen to come from KL (as expected)





#### Single KL + bkg (2)

- Bkg has a pile-up effect on particle deposits, no bkg-bkg CRs found
- All contribution coming either from KL or bkg, as expected



#### Generic BB (w bkg) (1000 evts)

- True KL CRs (i.e. w KL-Match) : 707
- LM > 1 : 339



#### Generic BB (w bkg) (1000 evts) (2) Main contribution from physical photons coming from pi0s and bkg ۲ Residual contribution from pi+/pi-۲ TM2 TM1 TM<sub>2</sub> TM1 Entries 122 Entries 198 <sup>90</sup><sup>⊢</sup>2<sup>nd</sup> Mean 92.95 Mean 37.68 22 333 Std Dev 240.6 Std Dev 80 mcGMothPDG <sup>18</sup><sup>1</sup><sup>st</sup> mcGMothPDG MCGMother of 70 bkq matched particle 60 pi0s from $B\overline{B}$ physics if !=K, && 50 12 10 40 MCMother !=K, 8 6 4 2 30 F 20 10F 0 \_\_600 0 -600 200 200 400 -400-2000 400 600 -400 -200600 NM1 NM2 NM1 NM<sub>2</sub> Entries 99 Entries 159 <sup>90</sup> **2**<sup>nd</sup> Mean 6.674 -7.682Mean 60 Std Dev 98.35 98.72 Std Dev 80 **mcPDGNoKL mcPDG** <sup>50</sup><sup>1<sup>st</sup> mcPDGNoKL</sup> 70

of particles not matched to K<sub>1</sub>

40

30

20

10

-200

-150



34

## Generic BB (w bkg) (3)



- Main non-KL matches to CR in generic BB are: photons from pi0s, bkg photons, pi+/pi-
  - pi+/pi-: most likely split-offs (we require trackMatch==0 during selection), no useful information from splitting (and difficult to do)
  - bkg: is it useful for K<sub>L</sub> reconstruction to split the CR in order to separate the (low E) bkg contribution?
  - photons from pi0s: interesting case

#### **Conclusion at October B2GM**



- This study suggests K<sub>L</sub>/gamma overlap might be the physics case to justify a splitter for neutral hadron hypothesis
- Usefulness for a splitter to subtract bkg contribution has also to be understood (also in higher bkg environment)
- A "photon/hadron N2splitter": would do both jobs

#### "Strict" MC match

- To remove annoying multiple associations due to interactions or to distant split-offs
- We require the CR to be matched either to a KL which has interacted in the TOP or the ECL or to a daughter of a KL which has interacted in the TOP or the ECL



#### Resolution

#### • pGun KL + bkg (EvtGenLike E spectrum)

Phi Resolution Theta Resolution PhiRes ThetaRes Entries 594 35 F Entries 594 Mean -0.002426 Mean 0.0001853 40 Std Dev 0.05106 Std Dev 0.05442  $\chi^2$  / ndf 62.07 / 44  $\chi^2$  / ndf 61.76/44 30 Prob 0.03748 Prob 0.0397 35 Constant  $23.6 \pm 1.8$ Constant 26.58 ± 2.08 Mean -0.001655 ± 0.001310 -0.0003005 ± 0.0011839 Mean Sigma  $0.02495 \pm 0.00146$ Siams 0.02314 ± 0.00139 25 30 25 20 20 15 15 10 10 5 5 . n<u>. 11 I. m. n. 11 I</u>. 0<sup>世」</sup> -0.2 -0.2 -0.05 0 0.05 0.15 0.2 -0.15 -0.1 0.1 -0.15 -0.1 -0.050 0.05 0.1 0.15 0.2