

Hors D'Oeuvre: Résumé

- Status report on VXDTF2
- Status report on other activities
- Status report on open issues, pending activities

Tracking

Trieste maggio 2017

0) Pattern Recognition: Complexity of the Problem

Given a set of 374 clusters (average Y4s event with background, present simulation) in how many way you can partition it in 12 non overlapping subsets?

@11 tracks +

ø background

StirlingS2 [374, 12] =

roughly

$8.58 10^{394}$

And just a single one of these partitions is the correct one. How to find it in milliseconds?

Do not consider unlikely combinations

Subsets with more than 2 – 4 clusters per layer

Subsets whose clusters are scattered over erratically

Just consider "reasonable combination" to reduce the haystack

Can we better define "reasonable combination"?

1) The Sector: Divide et Impera

We divide the sensor active surface in sectors
The active surface is mapped to a square
The square is partitioned in rectangular areas, e.g:

 The charged particles trajectories define how sectors are connected:
 E.g: Sector 8 and Sector 11 are
 Parconnected by this track

Sectors connected by a significant number of tracks are said "friends sectors"

The Sector Connection: Il braccio violento della legge. Al CINEMA!

heuristic | hyoo'ristik |

adjective

enabling a person to discover or learn something for themselves: a "hands-on" or interactive heuristic approach to learning.
Computing proceeding to a solution by trial and error or by rules that are only loosely defined.

Let's define "friends" two sectors connected by more than 100 tracks in 900k Y4S events this requirement cuts 2/3 of the friendship 10⁴ relations (false ami?) but 99.66% of the track segments are retained 0 1000 100 10 # tracks connecting 2 sectors 10^{4} 10⁵ 1000 10 100

12

14

The Friendship relation matrix

Who takes care of the creation of the sectors?

The SectorMapBootstrapModule in module/vxdtfRedesign

At present all the sectors are partitioned in the very same way (3x3 / sensor, that is 1548 sectors / SVD)

We need to investigate how close to the optimum this is (trade off memory foot print / speed)

We can tailor the sector to cope with sensor defects (broken APV, clusters of broken strips, etc.)

3) Filters

Filters for SpacePoints combination

We define a filter for each pair of friend sectors in order to select reasonable SpacePoints pair combinations (aka Segments).

2 Space point Filters type

Training

At present the implementation of the training is not yet very terse

One module collects the data from simulated events: VXDTFTrainingDataCollector

One module merges the data, it defines the friendship relations and it trains the filters: RawSecMapMerger

From Segments to Triplets

- Each friendship relation is treated as a node in a graph.
- By a MC sample we define the edges of the graph, i.e. the allowed combinations of segments sharing the mid VXD hit

Let's have a look at the segment connection

Let's have a look at the segment connection

24

Ok... what are the performances?

Profile of finding efficiency by p, from MCSideTrackingValidationModule

26

Profile of finding efficiency by p, from MCSideTrackingValidationModule

Profile of fake rate by seed ϕ from PRSideTrackingValidationModule

We are almost there to say "Good farewell VXDTF"

VXDTF2 will be optional in the next release and standard in the next to next one

We have to:

use the condition database for storing the sector map

optimize the training procedure of the VXDTF2

test the VXDTF2 resilience against dead channels, dead APV, etc...

replicate in BelleII the efficiency studies done in BaBar

CDC track finding

CDC track finding efficiency vs pt vs multiplicity

Number of tracks: (1, 7)

Number of tracks: (8, 11)

Open issues :' (

Multiple mass hypothesis fit is not working as advertised.

ø pion mass hypothesis always give the best results ??

Iack of expertise on Genfit2

Motivation

CKF

Primarv

A <u>Combinatorial Kalman Filter</u> uses the principles of the Kalman Filter for track finding. Starting with a seed, it adds hits with some kind of <u>Monte</u> <u>Carlo Tree Search</u> algorithm.

First implementation: extrapolate from CDC to VXD (SVD).

- Reduction of fakes
- Reduction of SpacePoint combinations
- Increased finding efficiency

All MC tracks	10325							
MC track has VXD hits	Yes					No		
	10241					84		
VXD part was found	Yes			No			No	
	8340 1901					84		
MC track has CDC hits	Yes No		No	Yes		No	Yes	
	79	55	385	1622		279	84	
CDC part was found	Yes	No	No	Yes	No	No	Yes	No
	7023	932	385	1321	301	279	38	46
	Merging Efficiency	CKF	Criteria?	CKF	Very bad!	VXDTF Must help	Criteria?	CDCTF Must help

Conclusions

Lot of work done
The work done is paying the dividends
Lot of exciting work to do
Join the tracking group, work with us!

version 1 <u>svd</u> only					
Name	Calls	VMemory(MB)	Time(s)	Time(n	ns)/Call
RootInput	10000	0	48.05	4.81 +-	18.69
EventInfoPrinter	10000	0	0.02	0.00 +-	0.00
Gearbox	10000	0	j 0.00	j 0.00 +-	0.00
Geometry	10000	0	0.00	0.00 +-	0.00
EventCounter	10000	0	0.50	0.05 +-	0.02
SetupGenfitExtrapolation	10000	0	0.01	0.00 +-	0.00
VXDTF	10000	0	45.59	4.56 +-	25.06
RecoTrackCreator	10000	0	3.52	0.35 +-	0.10
MCRecoTracksMatcher	10000	0	9.68	0.97 +-	0.32
CombinedTrackingValidationModule (3 modules):	10000	0	0.73	0.07 +-	0.06
EventwiseTrackingValidationModule	10000	0	29.71	2.97 +-	9.97
PRSideTrackingValidationModule	10000	0	130.26	13.03 +-	5.71
MCSideTrackingValidationModule	10000	0	71.11	7.11 +-	2.08

==

Total

===:

VXDTF SVD: 4.56 ms/Events

10000

35.63

35.30 +-

353.02

0

====

Name	Calls	VMemory(MB)	Time(s)	Time(ms)/Call
RootInput EventInfoPrinter Gearbox Geometry	10000 10000 10000 10000	0 0 0 0	58.09 0.02 0.00 0.00	5.81 + 25.98 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00
SpacePointCreatorSVD	10000	0	6,24	0.00 + 0.02 0.62 + 0.55
SectorMapBootstrap	10000	0	0.01	0.00 +- 0.00
SegmentNetworkProducer	10000	0	8.02	0.80 +- 2.47
TrackFinderVXDCell0Mat	10000	0	6,06	0.61 + 1.16
QualityEstimatorVXDCircleFit	10000	0	1.22	0.12 +- 0.27
SPTCvirtualIPRemover	10000	0	0.04	0.00 + 0.01
SVDOverlapChecker	10000	0	39.46	3.95 + 75.36
TrackSetEvaluatorHopfieldNNDEV	10000	0	43.56	4.36 +- 89.43
SPICmomentumSeedRetriever	10000	0	8.30	0.83 +- 1.6/
SPICZRIConverter	10000	0	4.34	0.43 +- 0.15
MURECOI racksmatcher	10000	0	10.77	1.08 +- 0.45
Compined (a modules):	10000	0	0.81	0.08 +- 0.07
EventwiserrackingvalidationModule	10000	0	32.04	3.20 +- 9.8/
PRSideTrackingValidationModule	10000	0	145.22	14.52 +- 0.01
mcsiderrackingvalidationmodule	10000	<u>ا</u> ۷	//.10	/./2 +- 2.40
Total	10000	0	462.52	46.25 +- 171.20

VXDTF SVD: 11.7 ms/Events

V(AC) mont with and without hashmand

	$\mathcal{O}(1\mathbf{C})$	-		$\mathcal{O}(AC) + DC$	$\mathcal{O}(\mathbf{AC}) + \mathcal{O}(\mathbf{DC})$
Case	1 (45)-only		BG-only	1(45) + BG	$1(45) + 2 \times BG$
L3 strips u/v	49.2/36.7		260.0/121.7	308.1/158.0	562.2/278.8
L3 clusters u/v	11.8/11.8		39.0/37.9	50.3/49.3	87.0/86.1
L3 SPs	26.1		233.9	318.0	791.0
L4 strips u/v	39.4/29.1		120.3/61.2	159.1/90.1	277.8/150.6
L4 clusters u/v	12.7/12.6		29.9/26.7	42.5/39.2	71.8/65.3
L4 SPs	22.5		100.5	143.1	320.4
L5 strips u/v	37.3/28.5		122.7/67.2	160.1/95.8	282.7/162.9
L5 clusters u/v	12.3/12.1		35.0/30.5	47.3/42.7	82.0/72.9
L5 SPs	19.2		99.3	132.3	299.3
L6 strips u/v	38.3/28.6		134.6/76.8	172.9/105.4	307.1/182.0
L6 clusters u/v	12.4/12.2		42.1/36.3	54.4/48.5	96.2/84.5
L6 SPs	17.0		100.8	127.9	283.1
Average strips/layer u/v	164.3/122.8		159.4/81.7	200.1/112.3	1429.8/774.4
Total clusters u/v	49.2/48.7		146.0/131.3	194.4/179.6	337.1/308.9
Total SPs	84.8		534.6	721.3	1693.8
	Signal		Noise		

- SP : Space Points. "u" is the local r φ direction. "v" is the local z direction.
- The combinatorial problem is dominated by background hits

StirlingS2 [85, 12] = 1113945763407827137023789730064528043043368344819719470457284061526615 18248995703170

more than

1.11 1083