
CHARM PHYSICS WG ACTIVITIES & OPPORTUNITIES

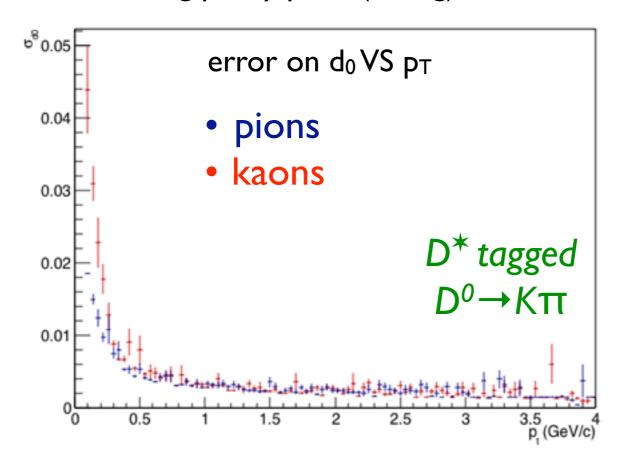
Giulia Casarosa

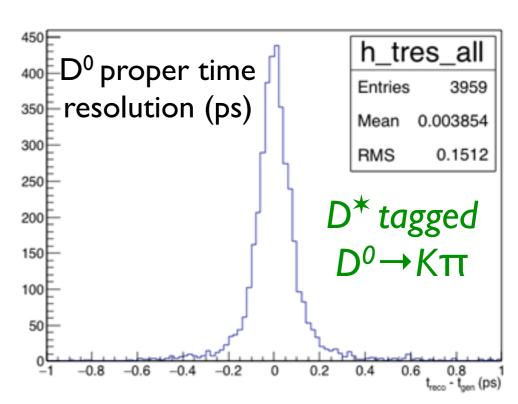
Overview of the Current Activities

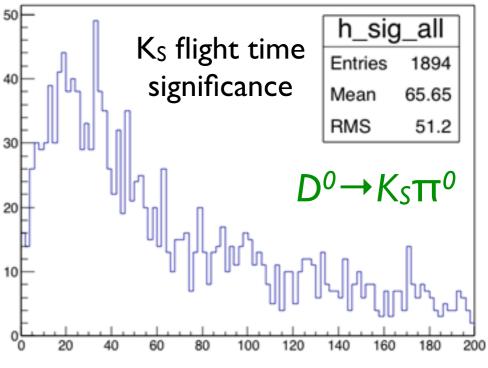
- → charm generation, skims & validation
- → physics of the B2TiP
 - reconstruction performances
 - reconstruction techniques
 - golden channels
- → what can we do with PHASE II data

group members: R. Briere, G.C., A. Schwartz, J. Bennett, D. Last^(student), G. De Pietro^(?), T. Nanut^(LHCb), J. Yelton.

Generator Tuning & Skims

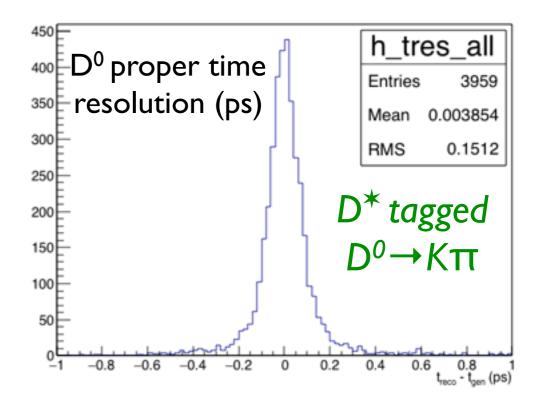



- → New set of **Pythia parameters** for continuum charm generation, needed after Pythia upgrade.
 - a bug caused a big loss of D* production
 - David Last, CMU bachelor student
 - details will be shown at the next Charm Meeting, 9th May (see Charm Confluence Page)
- → Skims become important for MC 8: "all events" not available, only skimmed samples
 - no one working specifically on this, no one working on a specific signal channel...
 - I put together skims for a few channels of interest. They are probably OK to start, but more time should be dedicated to skim preparation
 - No real optimisation of the skims:
 - cut on center-of-mass momentum of the D
 - PID of particle lists
 - No skims available for feasibility studies, e.g. on D reconstruction
 - no skims for ROE-tagging method


Charm Validation

WG DUTIES & maintenance

- Set of plots produced automatically in the validation framework
- → Allows to monitor observables that are important for charm reconstruction/analyses
- → First set of plots are provided (waiting for approval of branch merging)
 - missing efficiency plots
 - missing purity plots (w bkg)


Charm B2TiP Chapter

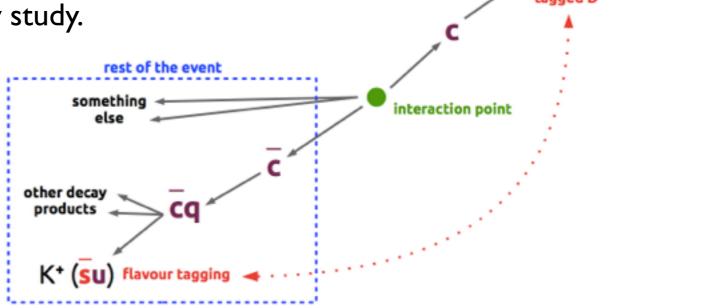
		Contents	PAGE
1	Cha	1	
	1.1	Introduction	1
	1.2	Experimental Techniques	3
		1.2.1 Flavour Tagging Methods	3
		1.2.2 D Proper Time Resolution	6
	1.3	Leptonic and semileptonic decays	8
		1.3.1 Theory	8
		1.3.2 Experiment	11
	1.4	Rare decays	15
		1.4.1 Theory	15
		1.4.2 Experiment	19
	1.5	Charm mixing	22
		1.5.1 Theory	22
		1.5.2 Experiment	33
	1.6	CP asymmetries of $D \to PP'$ decays	40
		1.6.1 Theory	40
		162 Experiment	48

- → Despite the limited number of people of the WG, we were able present results based on simulations or ToyMC in each experimental section.
- → Predictions are kept conservative

Improved Proper Time Reconstruction

- → Proper time resolution for D* tagged and prompt D is a factor 2 better than BaBar
- Impact on time-dep measurements of mixing and CPV evaluated with ToyMC on:
 - $D^0 \rightarrow K\pi$
 - $D^0 \rightarrow K\pi\pi$ (no bkg included)

WHAT'S NEXT?


- 1. can the improved flight distance measurement be used in the selection criteria to reject combinatorial background?
- 2. Perform the analysis on a generic MC sample + signal MC sample and confirm the sensitivity obtained with Toys
 - optimize the skim
 - optimize the reconstruction (vertexing, PID lists) and the selection
 - study the difference (efficiency, proper time reconstruction) between D* tagged and ROE tagged D⁰ mesons

targeting PHASE III

ROE Flavour Tagging Method

ROE = Rest Of Event

- → Giacomo has completed the feasibility study.
 - 35% equivalent luminosity increase, useful in A_{CP} analyses
- → Promising results, need to be confirmed with a beginning-to-end A_{CP} analysis

WHAT'S NEXT?

- 1. Implement the module & corresponding analysis tool to allow the analysts to apply the method. Update documentation.
- 2. Define the procedure to establish the cuts in the multivariate analyses (xxx% efficiency, hhh% purity, ...)
- 3. Do we need dedicated skims?
- 4. Apply the method on generic MC samples, end/or A_{CP} signal MC samples
 - what is the background from Y(4S) events? and from uds continuum?
 - what is the "real" gain in precision on A_{CP} measurements? Take into account differences in background composition and resolution.

targeting PHASE III

B → Charm Events

$\begin{array}{c} B^0 \rightarrow D^{*+} \ell^- \nu, \\ \downarrow D^0 \Pi^+ \end{array}$

background

- → reject D from B decays in order to have an unbiased measurement of the D flight length (the B is not reconstructed)
- → apply a cut on the D CMS momentum
 - great reduction of B bkg $\sim 10^{-5}$
 - non negligible impact on signal: $\epsilon = 70\%$

- Partial reconstruction B → D decays provides an additional sample of flavourtagged D⁰
 - a D⁰ is in the sample, can be reconstructed in any final state (e.g. invisible, rare/forbidden decays)
 - expect 13 D⁰ every 100 obtained with the D* method

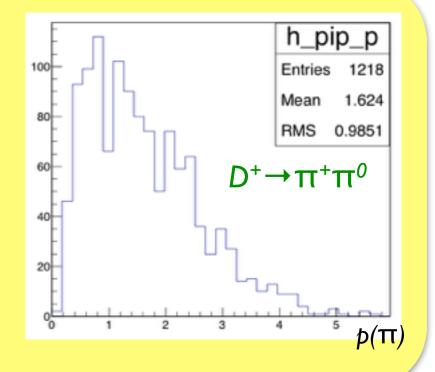
WHAT'S NEXT?

- 1. Can we find other selection criteria, (base on multivariate analysis), with a softer impact on signal events?
 - Giacomo has performed a preliminary study, he achieved promising results

WHAT'S NEXT?

- 1. Need a basf2 module to implement the reconstruction.
 - I have started the implementation of a module that has the basic features and allows the reconstruction

Time-Integrated CP Violation


- \rightarrow D⁰ \rightarrow K_SK_S:
 - SM A_{CP} up to 1%, could give first evidence of CP in charm
 - precision ~0.2% at 50 ab⁻¹ (scaled from a Belle analysis)
 - important for the optimization of the K_S reconstruction

- \rightarrow D⁺ $\rightarrow \pi^+\pi^0$:
 - $SMA_{CP} = 0$, search for NP with straightforward interpretation of the results
 - precision ~0.2-4% at 50 ab⁻¹ (scaled from a not-published BaBar analysis)
 - important for the optimisation of the π^0 reconstruction

WHAT'S NEXT?

- 1. Final state particles are suitable for PHASE II reconstruction
 - K_S and π^+ are well reconstructed in the CDC
 - π⁰ do not need VXD
- 2. Beginning-to-end A_{CP} analysis
 - with PHASE II geometry and then PHASE III
 - will automatically reserve you the right to perform the analysis in *PHASE III!*

Other Possibilities

- → Leptonic & Semileptonic Decays
 - J. Bennett started the semileptonic reconstruction with promising results
 - lack of time due to his responsibilities in Bellell + this project is a very long-term one → this project is on hold
- → Radiative Decays
 - T. Nanut (Ljubljana) performed some feasibility studies connected to her Belle analysis (D→Vγ) but she left Bellell
- → Baryon Search
 - Recent interest of J. Yelton (UFI) & students
 - "My plan would be to reconstruct as many charmed baryon modes as possible"
 - this is just the starting point, the next natural step would be to search for CP violation in baryon decays

Conclusions

- → Activities are growing, the WG size is not.
 - we need the WG to grow to meet its duties to the collaboration
- No clear channel suitable for publication in PHASE II − as many other WGs −
 - other interesting things to do with PHASE II data: boost for PHASE III analyses
- → Clear set of interesting channels for PHASE III
 - first evidence of CPV in charm
 - new reconstruction and flavour-tagging techniques
- → Phase III is not far...it looks like, but it's not.
 We need to get there prepared.

"No experience necessary. We'll train you!"

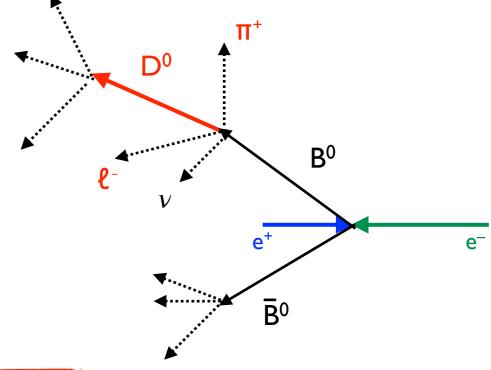
Charm Confluence Page

mailing list subscription

study the efficiency and purity of this reconstruction technique

Charm from B Decays

$$B^0 \to D^{*+} \ell^- \nu,$$


$$\downarrow \qquad \qquad D^0 \pi^+$$

Partial Reconstruction of the B assuming...

- ⇒ B^0 is at rest in the center-of-mass of the Y(4S) (p=380MeV/c)
- → D⁰ produced at rest in the center-of-mass of the D*+, therefore:
 - $p(D^{*+}) = \alpha + \beta p(\pi_s)$
 - D^{*+} and π_s have the same direction

...allows to compute the M_v^2 peaking at 0 for signal.

- increase statistics providing independent D⁰ samples
- the D⁰ is not reconstructed in a particular channel!
 - $D^0 \rightarrow$ invisible searches
 - rare decays, ...

Estimate from BABAR (200fb⁻¹onPeak + 22 fb⁻¹ offPeak): [M.Rotondo, F.Simonetto]

tag	# signal	purity	I ab ⁻¹
е	2150	52%	6M
μ	1740	55%	4.8M

IOM/ab tagged D⁰

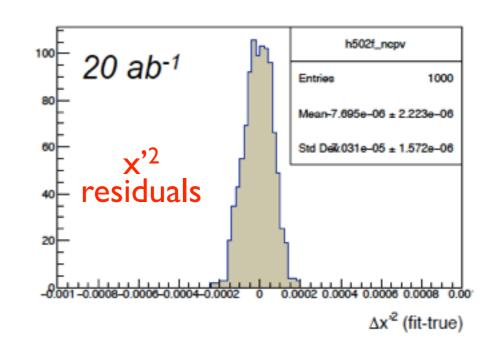
VS

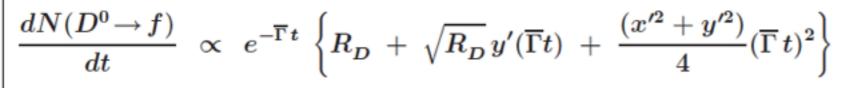
~ 80M/ab from D*+ tagging

Giulia Casarosa 7th B2ITA ~ Trieste (depends on the final state)

Time-Integrated CP Violation

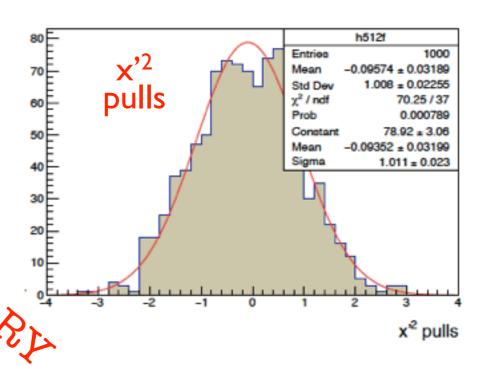
Mode	\mathcal{L} (fb $^{-1}$)	A_{CP} (%)	Belle II 50 ab^{-1}
$D^0 o K^+K^-$	976	$-0.32\pm0.21\pm0.09$	±0.03
$D^0 o \pi^+\pi^-$	976	$+0.55\pm0.36\pm0.09$	± 0.05
$D^0 o\pi^0\pi^0$	966	$-0.03\pm0.64\pm0.10$	± 0.09
$D^0 o K^0_S\pi^0$	966	$-0.21\pm0.16\pm0.07$	± 0.03
$D^0 o K^0_S\eta$	791	$+0.54\pm0.51\pm0.16$	± 0.07
$D^0 o K^0_S\eta'$	791	$+0.98\pm0.67\pm0.14$	± 0.09
$D^0 o \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 \rightarrow K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	± 0.04
$D^+ o \eta \pi^+$	791	$+1.74\pm1.13\pm0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12\pm1.12\pm0.17$	± 0.14
$D^+ o K^0_S\pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ o K^0_S K^+$	977	$-0.25\pm0.28\pm0.14$	± 0.05
$D_s^+ o K_S^0 \pi^+$	673	$+5.45\pm2.50\pm0.33$	± 0.29
$D_s^+ o K_S^0 K^+$	673	$+0.12\pm0.36\pm0.22$	± 0.05


Estimation of Mixing Parameters

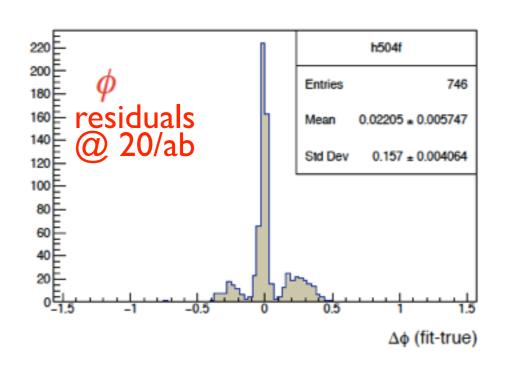

- → ToyMC study triggered from the x2 improvement in the t resolution of D^0 with respect to Belle/ B_AB_{AR}
- → Use the Golden Channel WS $D^0 \rightarrow K^-\pi^+$, flavour tagged with D^{*+} decays, measures x^{*2} and y^*

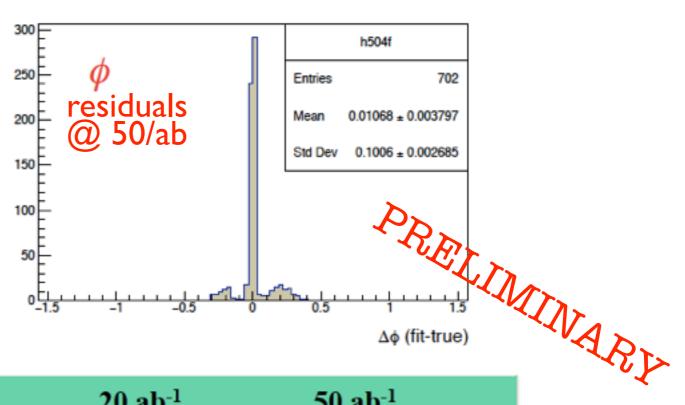
$$x' = x \cos \delta + y \sin \delta$$
, $y'=y \cos \delta - x \sin \delta$

Toy MC study #1 (ROOT): no CPV


- generate $D^0 \rightarrow K^+\pi^-$ decays with mixing
- smear decay times according to resolution (σ = 0.14 ps)
- fit decay time distribution for mixing parameters R_D , x^{2} , y^{2}
- statistics: 43863 (5 ab⁻¹) 175450 (20 ab⁻¹) 438630 (50 ab⁻¹)
- generate ensembles of 1000 experiments
- use same PDF for D^0 and D^0 bar:

convolved with a Gaussian resolution function

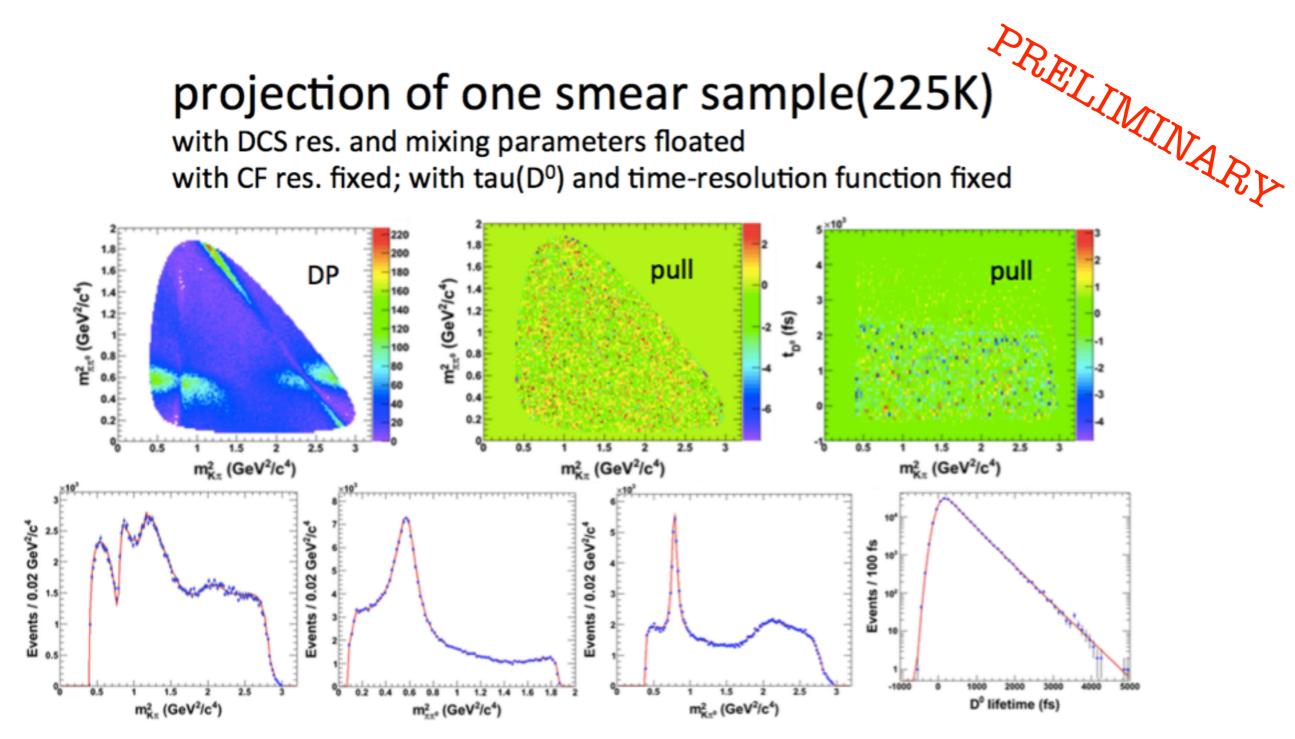

			, \Q\	
fromToyMC	5 ab-1	20 ab ⁻¹	50 ab-1	
x'2 (x 10-5)	14.4	7.0	4.4	WIN
y' (%)	0.156	0.075	0.047	



S)

Estimation of Mixing & CPV Parameters

- → Pulls and residuals not as good as in the mixing-only measurement
- → the fit is anyway comfortable in finding the minimum, average of minos errors agrees with the RMS of the residual distribution
- ⇒ ambiguity in the definition of ϕ : (x', y', ϕ) \rightarrow $(-x', -y', \phi+\pi)$



fromToyMC	5 ab ⁻¹	20 ab ⁻¹	50 ab ⁻¹
x' (%)	0.37	0.23	0.15
y' (%)	0.26	0.17	0.10
q/p	0.197	0.089	0.051
ϕ (degrees)	15.5	9.2	5.7

Mixing Parameters from $D^0 \rightarrow K^-\pi^+\pi^0$

projection of one smear sample(225K)

with DCS res. and mixing parameters floated with CF res. fixed; with tau(D0) and time-resolution function fixed

For 225,000 signals of WS sample, we estimate its time-dep. Dalitz fitting error is 0.060% for x and 0.049% for y under (delta=10° R=13.8) fixed.

Giulia Casarosa

17