

TDCPV in B -> K_{L} J/Psi with release-00-08-00/gbasf2

B. Oberhof LNF-INFN, Italy

Belle2 Italy Meeting 4th May 2017

Analysis basics

Analysis basics (2)

- Analysis tuned & code tested on release-00-08-00 @ KEKCC then adapted to gbasf2
- Use J/Psi -> e e, J/Psi -> mu mu (stdLooseMu, stdLooseE)
- Use std K_L0 list (KLM)
- Preliminary selection:
 - Rave Vertex J/Psi: $3.0 < M_{J/Psi} < 3.15 \text{ GeV/c}^2$
 - Recalculate K_L and B momenta from reconstructed K_L direction constraining nominal K and B mass
 - Reconstruct ROE
 - Apply: TagV (+ FlavorTagger, not used yet)

Reconstruction

10000 signal events for each: J/Psi -> e e, J/Psi -> mu mu

Full selection

- Final selection:
 - Take best B⁰ candidate per event from vertex fit
 - M_JPsi: 3.08 < M < 3.12 (mu mu),
 3.0 < M < 3.12 (mu mu)
 - PID(e,mu) > 0.9 both candidates
 - Pcms_JPsi: p > 1.6
 - Pcms_K_L0: 1.5
 - M_bc > 5.27 (mu mu), 5.26 (e e)
 - IDeltaE| < 0.01</p>

DeltaE

- ~14M generic $B^0\overline{B}^0$ events, corresponding to ~28 fb⁻¹
- std Belle .dec decay file

All cuts applied except DeltaE and M_{bc} (M_{bc} >5.2)

Yields comparison

	BaBar 1*	BaBar 2**	Belle***	This	This, sum
Luminosity (fb^-1)	23	32	29	~28	~28
Candidates (both LFs)	256	273	569	170 (mu mu) 152 (e e)	322
Purity (%)	39	51	61	42 (mu mu) 37.5 (e e)	40
Yield/fb^-1	11.1	8.5	19.6	7.2 (mu mu) 7.6 (e e)	11.5
Notes	No CPV Evidence	1 st CPV Evidence	1 st CPV Evidence	~14M B ⁰ B ⁰	~14M BºBº

*Phys.Rev.Lett.86:2515-2522,2001 **Phys.Rev.Lett.87:091801,2001 ***Phys.Rev.Lett.87:091802,2001

Asymmetries: first results

Analysis on grid

- Almost all bkg from B decays which contain a real J/Psi in final state
- Use centrally produced MC8 J/Psi cocktail, i.e. events in which one B has a J/Psi in the final state, whether as direct decay product or not, and the other B decays generically
- Instead of dedicated .dec file skim generic BB at generator level in order to get an inclusive J/Psi sample -> relatively fast and we can rely on default_Belle.dec
- ~80M events in final sample, equivalent luminosity: 48 ab⁻¹!
- The analysis includes user-defined modules which have been compiled with release8 and then linked with gbasf2 -f option
- We also cloned some default .py scripts to include the modules in std analysis path

Analysis on grid (2)

 Output looks in reasonable agreement with proto-analysis on release-00-08-00, however..

	GRID	release8
Luminosity (fb^-1)	~48000	~28
Candidates (both LFs)	532898	322
Purity (%)	50.4	40
Yield/fb^-1	11.1	11.5
Notes	~24x10³ M BºBº	~14M B ⁰ B ⁰

Analysis on grid (3)

• ..there is no CPV at all!

gbasf2, computing remarks

- Running the analysis is a rush, I got my 80M events done in ~1 hour w bkg (0.4 h w/o bkg), however downloading mdst to KEKCC is much slower (~5/6 hours, O(1Gb) total)
- Folder structure of MC8 production not so user friendly in our case: /belle/MC/release-00-08-00/DB00000208/MC8/prod00001998/s00/e0000/4S/r00000/1191820000/sub00

Usually just 2 folders (w and w/o bkg), I had 48 folders (from 1998 to 2045, due to skimming) and for each I had to launch the job individually

- gb2_ds_get * does not work (i.e. It's bugged), I had to download every project (i.e. folder) individually
- Rescheduling function is bugged (terminal), low max limit via DIRAC

• Some (few) sites have much higher job failure rates -> makes rescheduling quite

useless	49578398	Failed	Ma Failed Input Data	LCG.CESNET.cz	mdst_000012_prod00002	2017-04-30 21:16:37
	49578397	Done	Exe Done	LCG.CESNET.cz	mdst_000011_prod00002	2017-04-30 17:21:04
	49578396	Failed	Ma Failed Input Data	LCG.CESNET.cz	mdst_000010_prod00002	2017-04-30 21:00:19
	49578395	Done	Exe Done	LCG.CESNET.cz	mdst_000009_prod00002	2017-04-30 17:12:36
	49578394	Failed	Ma Failed Input Data	LCG.CESNET.cz	mdst_000008_prod00002	2017-04-30 21:40:58

gbasf2, software remarks

- Own defined modules are quite straightforward to implement in gbasf2
- Not so straightforward how to implement user-defined quantities in NtupleTools: user variables have to be defined in analysis/VariableManager and are than linked in libanalysis.so
 -> major showstopper
- Flavor tagger does not work on grid, usual problem with weight files input

Outlook

- Analysis output looks reasonable so far
- Next steps:
 - Understand why the grid is CP-conserving
 - Use tag from FlavorTagger instead of MCTag
 - Include "K_L-crash" from ECL -> will need new NeutralCluster object
 - Refine and optimize selection cuts
- Remarks:
 - Yield difference between BaBar and Belle is puzzling, not yet understood (KLM?)