UNIVERSITÀ DI PISA

Measurement of the time dependent asymmetry in the decay $B^0 \longrightarrow K^0_S \pi^0 \gamma$ using the Silicon Vertex Detector of the Belle II experiment

Alberto Martini University of Pisa - BelleII Pisa Group 7th BelleII Italian meeting Trieste, 04 May 2017

OUTLINE

- Misure di asimmetria time-dependent
- Motivazioni canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$
- Stima dei parametri di asimmetria nel canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$
- Conclusioni

Asimmetria di CP time-dependent

La densità di probabilità per un decadimento con intervallo temporale Δt è data da:

$$P_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \Big\{ 1 \pm S \sin(\Delta m \Delta t) \mp C \cos(\Delta m \Delta t) \Big\}$$

Asimmetria di CP time-dependent

La densità di probabilità per un decadimento con intervallo temporale Δt è data da:

$$P_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 \pm S \sin(\Delta m \Delta t) \mp C \cos(\Delta m \Delta t) \right\}$$

Coefficiente di
violazione indiretta Coefficiente di
violazione diretta

Asimmetria di CP nel decadimento $B^0 \longrightarrow K^0_S \pi^0 \gamma$

 $B^0 \longrightarrow K^0_S \pi^0 \gamma$: transizione di corrente neutra $b \longrightarrow s \gamma$ descritta da un diagramma a loop. Sensibile a contributi di nuova fisica.

Nel modello standard il fotone è quasi completamente levogiro (destrogiro) nella transizione $b \longrightarrow s\gamma$ ($\overline{b} \longrightarrow \overline{s}\gamma$)

L'interferenza tra il decadimento diretto e il decadimento dopo il processo di mixing è soppressa

Il formalismo della asimmetria time-dependent viene applicato al decadimento $B^0 \longrightarrow K_S^0 \pi^0 \gamma$ quindi il parametro S indica la violazione.

Canale di decadimento con il maggior potenziale

Branching Fraction (BF) più grande tra i decadimenti descritti da diagrammi a loop:

$$BF(B^0 \longrightarrow K_S^0 \pi^0 \gamma) \simeq 3.8 \cdot 10^{-5}$$

Alberto Martini - Pisa 04/05/2017

Studio dell'asimmetria nel canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$

La presenza di sole particelle neutre nello stato finale rende difficile il processo di ricostruzione del decadimento e di determinazione dei vertici. Posizioni dei vertici dei B⁰ ricostruite in ambiente "pulito" fornito dalle B-factory.

- Determinazione della risoluzione di Δt per eventi di segnale e di background da continuo.
- Stima delle incertezze statistiche dei parametri S e C tramite studi di Toy Monte Carlo (MC).

Ricostruzione B⁰sig

Tagli richiesti per la ricostruzione:

- + 5.0 $GeV/c^2 < M_{B^0}^{reco} < 5.5 \ GeV/c^2$
- Ricostruzione del K_S^0 nel canale: $K_S^0 \longrightarrow \pi^+ \pi^-$ tramite fit al vertice. I pioni carichi sono ricostruiti bene grazie all'utilizzo del rivelatore di vertice.
- Fit al vertice con p-value > 0.001 per rigettare tracce di bassa qualità.

Iptube constraint:

Per ricostruire il vertice del B⁰_{sig}, utilizzo la traiettoria del K_S^0 estrapolata indietro al punto di interazione insieme a un constraint addizionale "iptube", definito come un'ellisse costruito intorno alla direzione del boost di dimensioni traverse: $\sigma_x \approx 6 \ \mu m$, $\sigma_y \approx 42 \ nm$

Risoluzione vertice B⁰sig

Distribuzione dei residui:

Residui=Zreco -Ztruth

I due set ricostruiti possono essere discriminati utilizzando la distanza di volo trasversale del K_S^0 .

I kaoni che decadono prima di ~4cm (raggio interno SVD) appartengono alla Gaussiana centrale.

Necessaria ricostruzione del K_S^0 con il SVD in quanto unica particella utilizzata per la ricostruzione del vertice del B⁰ di segnale.

Risoluzione vertice B⁰sig

Distribuzione dei residui:

Residui=Zreco -Ztruth

I due set ricostruiti possono essere discriminati utilizzando la distanza di volo trasversale del K_S^0 .

I kaoni che decadono prima di ~4cm (raggio interno SVD) appartengono alla Gaussiana centrale.

Necessaria ricostruzione del K_S^0 con il SVD in quanto unica particella utilizzata per la ricostruzione del vertice del B⁰ di segnale.

Alberto Martini - Pisa 04/05/2017

con

Ricostruzione vertice B0_{tag}

Stima della risoluzione del Δt

Alberto Martini - Pisa 04/05/2017

Caratterizzazione degli eventi di fondo

Fonti di background:

• continuo (adronizzazione u,d,s,c) $pdf_{bkg} = R_{bkg}(\delta t | \sigma_{\Delta t})$. R_{bkg} è la funzione di risoluzione che tiene in considerazione l'effetto sperimentale. Contributo inserito nello studio finale.

 $\cdot B\bar{B}$ ($B^+B^- \in B^0\bar{B}^0$) pdf complessa. Contributo non inserito nello studio finale.

Procedura Toy Monte Carlo per la stima delle incertezze sui parametri di violazione C ed S:

- Generazione di eventi distribuiti secondo la *pdf*;
- Fit degli eventi che seguono l'andamento della pdf generata;
- Estrazione delle incertezze statistiche dei parametri coinvolti nella funzione di fit.

Risultati studio Toy MC

Eventi generati secondo la *pdf* finale:

$$pdf(\Delta t) = f_{sig}(P_{\pm}^{sig} \otimes R_{sig}) + (1 - f_{sig})R_{bkg}$$

f_{sig} = frazione di eventi di segnale finali. Valore ottenuto dall'analisi precedente in BaBar

Risultati dello studio dei Toy MC estrapolati ad una luminosità integrata di 50 ab⁻¹

Confronto risultati precedenti

Valore di S predetto dal modello standard: $-0.1 \lesssim S_{K_s^0 \pi^0 \gamma}^{MS} \lesssim 0.1$

Sensibilità minore dello 0.1 ---> conferma o meno delle predizioni del modello standard.

Conclusioni

Studio dell'asimmetria time-dependent nel canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$

- Ricostruzione dei vertici di decadimento dei mesoni B^o utilizzando il rivelatore di vertice SVD e determinazione della risoluzione in Δt
- Stima delle incertezze statistiche sui parametri di asimmetria tramite sudi di Toy Monte Carlo
- Primo confronto con i risultati precedenti di BaBar: miglioramento di un fattore ~20 sull'incertezza statistica, ottenuta con la massima luminosità integrata prevista dall'esperimento Belle II di 50 ab⁻¹(~100 volte quella dell'esperimento BaBar).

Sviluppi futuri:

- Inserimento della sorgente di fondo $B\bar{B}$
- Implementazione di tagli di selezione dell'evento ottimizzati e fit multiplo includendo il Δt + le variabili di selezione.

BACKUP SLIDES

Mixing e violazione di CP

ndiretta

Mixing:

Particelle neutre con gli stessi numeri quantici eccetto il sapore oscillano l'una nell'altra se gli autostati di flavour non coincidono con quelli di massa.

Violazione di CP:

Diverso comportamento di particelle e anti-particelle sotto la trasformazione congiunta di C e P.

Meccanismi di violazione:

- nel decadimento diretto: $\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$
- nel mixing: $P(B^0 \to \overline{B}^0) \neq P(\overline{B}^0 \to B^0)$

 nell'interferenza tra decadimento con e senza mixing in uno stato finale comune.
Tale violazione è osservata da misure time-dependent.

Esperimenti alle B-factories

Scopo principale: misure di precisione di possibili effetti di nuova fisica.

Esperimento Belle II utilizza il collisore SuperKEKB presso KEK

• E_{CM} al picco di produzione della $\Upsilon(4S)$

• Boost del centro di massa: $\beta \gamma = 0.28$

Fasci asimmetrici:

Luminosità integrata massima attesa: $\mathcal{L}^{int} = 50 \text{ ab}^{-1}$

 $\beta \gamma \simeq 0.06 \longrightarrow \Delta r \simeq 30 \mu m$ $\beta \gamma \simeq 0.28 \longrightarrow \Delta z = \beta \gamma \cdot c \cdot \tau \simeq 130 \mu m$

Incremento di statistica di un fattore ~100 rispetto all'esperimento BaBar e ~50 rispetto a Belle

Fasci simmetrici:

20

Difficoltà sperimentali del canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$

Nel canale $B^0 \longrightarrow K_S^0 \pi^0 \gamma$ la presenza di sole particelle neutre nello stato finale rende difficile il processo di ricostruzione del decadimento.

Posizione del vertice del B⁰ ricostruita in ambiente "pulito" fornito dalle B-factory in cui i contributi del fondo sono molto minori rispetto ad un collisore adronico.

Ricostruzione del vertice del $B^0 \longrightarrow K_S^0 \pi^0 \gamma$:

- Traiettoria del K^0_S estrapolata indietro dal decadimento $K^0_S \to \pi^+\pi^-$
- Utilizzo di un constraint addizionale che sfrutta le ridotte dimensioni della beam spot.

Ricostruzione standard del vertice del B⁰:

Utilizzo di almeno 2 particelle cariche provenienti dallo stesso vertice di decadimento.

Asimmetria nell'interferenza

Ricostruzione decadimento $B^0 \longrightarrow K_S^0 \pi^0 \gamma$

Validazione processo di ricostruzione delle particelle figlie:

Software in via di sviluppo:

Nuove definizioni di fotoni e pioni da testare con la release-00-08-00

Validazione ricostruzione B⁰sig

Massa "beam constraint":

$$M_{bc} = \sqrt{(E_{beam}^*)^2 - |\vec{P}_B^*|^2}$$

"Energy difference":

 $\Delta E = E_B^* - E_{beam}^*$

Il processo di ricostruzione deve ancora essere migliorato a livello di software e può essere rifinito con tagli ottimizzati per le particelle figlie del B⁰_{sig}.

Efficienza nel canale $B^0 \longrightarrow K^0_S \pi^0 \gamma$

Ho effettuato studi di efficienza su un campione di puro segnale in cui ho generato e ricostruito 10000 eventi di $\Upsilon(4S) \longrightarrow B\bar{B}$ con $B_{sig} \longrightarrow K_S^0 \pi^0 \gamma$ e l'altro B⁰ decade in $B^0 \longrightarrow \nu \bar{\nu}$

	Ks	π ^o	γ	₿⁰ _{sig}
€ ^{reco} (%)	58.6	53.7	87.4	26.2

No cross-feed \rightarrow efficienze massime fornite dall'apparato di rivelazione.

Nessun taglio considerato e dipendente dal tipo di analisi effettuata.

Risultati del processo di tagging

Quantità importanti estratte dal processo di tagging:

 $\Delta \omega$ = differenza tra probabilità di mistag per il B⁰ ed il \overline{B}^0

 ω = probabilità di mistag inclusiva per il B⁰ ed il \overline{B}^0

 μ = differenza dell'efficienza di tagging tra il B⁰ ed il \overline{B}^0

Valori ottenuti nel canale di decadimento studiato

μ	ω	$\Delta\omega$
0.0213	0.2512	0.0104

Efficienza di tagging inclusiva per entrambi i B⁰: ~ 45%

Pdf inclusiva delle informazioni di tagging

$$P_{\pm}^{sig}(\Delta t) = (1 \mp \Delta \omega \pm \mu(2\omega)) \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \Big\{ 1 \pm S[\pm(1-2\omega) + \mu(1 \mp \Delta \omega)] \sin(\Delta m \Delta t) \\ \mp C[\pm(1-2\omega) + \mu(1 \mp \Delta \omega)] \cos(\Delta m \Delta t) \Big\}$$

 $\Delta \omega$ = differenza tra probabilità di mistag per il B⁰ ed il \overline{B}^0

 ω = probabilità di mistag inclusiva per il B⁰ ed il \overline{B}^0

 μ = differenza dell'efficienza di tagging tra il B⁰ ed il \overline{B}^0

Correzioni fini della pdf di segnale finale

Risultati toy MC (I)

Risultati toy MC (I)

Grazie dell'attenzione!

Alberto Martini - Pisa 04/05/2017