Status report $B^0 o \eta' K^0_S$ First look at $\eta' o
ho^0 \gamma$ mode

S. Lacaprara, A.Mordá

INFN - Padova

7th Belle 2 Italian meeting 4th May 2017

Outlook

- ullet TD CPV in ${\cal B}^0 o \eta' (o
 ho^0 \gamma) {\cal K}^0_{\cal S}$
 - remind of motivation
 - \blacktriangleright the $\eta^\prime \to \rho^0 \gamma$ final state
 - skim & reconstruction efficiencies
 - selection & efficiency
 - time resolution
- latest results for B2TIP

4th May 2017 2 / 15

 Δt probability parametrization: $\mathcal{P}(\Delta t, q) = \frac{e^{-\Delta t/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t\right)\right]$

A. Mordá (INFN Padova)

 $B^0 \rightarrow \eta' \kappa_S^0$

4th May 2017 3 / 15

A. Mordá (INFN Padova)

 $B^0 \rightarrow \eta' \kappa_s^0$

4th May 2017 3 / 15

The
$$\eta^\prime o
ho (o \pi^+\pi^-) \gamma$$

The following decay channels have been fully studied for the B2TIP:

- ▶ total $\mathcal{BR}(\eta' K_S^0 \rightarrow \textit{final state}) \sim 11\%$

A preliminary study has been done also for

$$\blacktriangleright \ \eta_{\gamma\gamma} K_{S}^{0}(00): \ B^{0} \to \eta' (\to \eta (\to \gamma \gamma) \pi^{+} \pi^{-}) K_{S}^{0} (\to \pi^{0} \pi^{0})$$

- ▶ rising the total $\mathcal{BR}(\eta' K_S^0 \rightarrow \textit{final state}) \sim 14\%$
- need still some work and has not been finalized for B2TIP
- \blacktriangleright we'd like to wait for a more stable framework for the π^0 reconstruction

Today we'll present a preliminary analysis chain set up for

$$B^0 o \eta' (o
ho^0 (o \pi^+ \pi^-) \gamma) K^0_{\mathcal{S}} (o \pi^+ \pi^-)$$

- ▶ no π^0 reconstruction
- $\blacktriangleright \ \mathcal{BR}(\eta' \to \pi^+ \pi^- \gamma) = 0.291$
- includes a non-resonant $\eta' \to \pi^+ \pi^- \gamma$ contribution (not measured)
- gives by far the most abundant yield:

mode	BR (%)
$\eta'_{\gamma\gamma}K^0_{\mathcal{S}}(\pm)$	5.8
$\eta_{3\pi}^{\prime}K_{S}^{0}(\pm)$	4.9
$\eta'_{\gamma\gamma}K^0_{\mathcal{S}}(00)$	2.9
$\eta'_{\rho\gamma}K^0_S(\pm)$	10.1

skim & reconstruction efficiencies

Studies based on release-00-08-00 & MC8 production campaign

Analyzed beam background samples

Full BG1 MC8 signal sample production (1.6 Mevts)

Generic background samples studied: uubar, ccbar, charged, mixed. Missing: ddbar, ssbar

Standard particle lists used:

- gamma:good
- ► pi-:all
- K_S0:mdst

Skim selection

- $ho^0
 ightarrow \pi^+\pi^-$ with 0.400 $< M_{
 ho^0} < 1.1\,$ GeV
- $\blacktriangleright~\eta^\prime \rightarrow \rho^0 \gamma$ with 0.200 $< {\it M}_{\eta^\prime} < 1.5~{\rm GeV}$
- $B^0 \rightarrow \eta' K_S^0$ with $M_{bc} > 5.0$ GeV & $|\Delta E| < 0.5$ GeV

Impact of beam background (on top of 1 Kevt):

	BG0	BG1
ε	0.64	0.54

- expected drop
- \blacktriangleright (very!) roughly \sim 4% drop for each charged track
- \blacktriangleright to be compared with \sim 8% of rel-00-07-01 (computed with $\eta'_{\gamma\gamma}$ channel)

skim & reconstruction efficiencies

Reconstruction:

- vertex rave for ρ^0 , K_S^0
- massKFit for η'
- vertex rave with IPtube constraint for B^0

Skim & reconstruction efficiencies:

	Skim	Reco	$Skim \otimes Reco$
Sig	0.54	0.85	0.46
иū	0.06	0.41	0.023
сē	0.09	0.42	0.038
charged	0.0058	0.24	0.0015
mixed	0.0075	0.30	0.0023

Efficiencies of missing $q\bar{q}$ modes expected to be at the same level

Average multiplicity \sim 4.5 cands/evt

Fraction of reco events containing a true signal \sim 0.75

Most of the signal misreco events are due to bad η^\prime reco:

- ▶ in 0.95 of all wrong events
- mismatched γ is responsible for 0.47
- wrong ρ^0 reco causes the remaining 0.53

Need further study to figure out the reason

Variable distributions

A. Mordá (INFN Padova)

 $B^0 \rightarrow \eta' \kappa_S^0$

4th May 2017 7 / 15

Selection criteria

Efficiencies for studied samples:

Requirements on reconstructed candidates:

Variable	Requirement
M_{P^0}	[5,5.6] GeV
M _K ⁰	[0.44,0.55] GeV
M ₀	[0.3,0.95] GeV
P_{γ}^{r}	> 0.15 GeV
$ \Delta E $	[-0.4,0.4] GeV
M _{bc}	[5.25,5.3] GeV
$ \theta_{hel} $	< 0.9
DLLKaon	> -10
$\pi^{\pm}~(ho^{0})$ TrPval	> 0.01

	ε
sig	0.27
иū	$\sim~2.0\cdot10^{-3}$
сē	$\sim~2.7\cdot10^{-3}$
mixed	$\sim~8.2\cdot10^{-5}$
charged	$\sim~1.4\cdot10^{-4}$

- ▶ For signal there are as many true as s×f candidates
- Overall a too high background rate (compare with $\varepsilon_{\gamma\gamma,3\pi}^{generic} \sim 10^{-6}$)
- ▶ Need to go to a ''NLO" refinement of selection criteria

8 / 15

The sig efficiency reasonably matches the values we extrapolated for B2 from Belle & BaBar (for the B2TIP):

	ε
B2 measured	0.27
B2 estimated	0.29
Belle	0.291
BaBar	0.285

A. Mordá (INFN Padova)

Channel	ε
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K^{(\pm)}_{S}$	23.0 %
$\eta'(\eta_{3\pi}\pi^{\pm})K^{(\pm)}_{\mathcal{S}}$	8.0 %

N.B. for $\eta_{\gamma} \underset{B^0 \to \eta' K_c^0}{\gamma_{\alpha}}$ a dedicated strategy to deal with sxf was applied!

Selection criteria - π^{\pm} TrPval cut efficiency

A not well understood behavior is seen when changing the requirement on $\pi^\pm~(\rho^0)$ TrPval:

π^{\pm} (ho^{0}) TrPval	ε^{sig}
0.001	0.270
0.075	~ 0.216
0.1	~ 0.210

 (π^+,π^-) TrPval (true signal, before selection)

The same behavior is observed on the $\eta_{\gamma\gamma}$ mode

A. Mordá (INFN Padova)

 $B^0 \rightarrow \eta' \kappa_s^0$

Vertex resolution - ΔZ Tag and Sig side

 ${\it B}^{\rm 0}$ vertex fitted with the π^{\pm} from $\rho^{\rm 0}$ decay (ok, plus ${\it K}_{\it S}^{\rm 0}$ & IPtube)

Resolution on the vertex expected to be in the same ballpark of $\eta_{\gamma\gamma}$

A bug fix make the shoulder seen in ΔZ reasonable: it's not in the tag side, but in the signal side and for sxf

A. Mordá (INFN Padova)

Time resolution with beam background

The time resolution is computed looking at $\delta_{\Delta T} \equiv \Delta T - \Delta T^{Truth}$ and fitting with the following \mathcal{PDF} :

 $\mathcal{PDF} = \alpha \cdot \mathcal{G}_{\mathcal{C}}(\mu_{\mathcal{C}}, \sigma_{\mathcal{C}}) + (1 - \alpha) \cdot [\beta \cdot \mathcal{G}_{\mathcal{T}}(\mu_{\mathcal{T}}, \sigma_{\mathcal{T}}) + (1 - \beta) \cdot \mathcal{G}_{\mathcal{O}}(\mu_{\mathcal{O}}, \sigma_{\mathcal{O}})]$

superposition of a core $(\mathcal{G}_{\mathcal{C}}(\mu_{\mathcal{C}},\sigma_{\mathcal{C}}))$, a tail $(\mathcal{G}_{\mathcal{T}}(\mu_{\mathcal{T}},\sigma_{\mathcal{T}}))$, and an outlier $(\mathcal{G}_{\mathcal{O}}(\mu_{\mathcal{O}},\sigma_{\mathcal{O}}))$

Time resolution with beam background

 true signal
 sxf

 $\sigma(\delta_{\Delta T})=1.15 \pm 0.25 \text{ ps}$ $\sigma(\delta_{\Delta T})=2.64 \pm 0.79 \text{ ps}$
 $\mu(\delta_{\Delta T})=0.10 \pm 0.07 \text{ ps}$ $\mu(\delta_{\Delta T})=0.09 \pm 0.11 \text{ ps}$

A bias in $\delta_{\Delta T}$ is observed, both for true signal and sxf \rightarrow improve fit procedure(?)

The error on $\sigma \& \mu$ is quite large (only a part of the available stat has been used for fit)

Channel	True	S×F	All
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K^{(\pm)}_{S}$	1.22 <i>ps</i>	2.87 <i>ps</i>	1.45 <i>ps</i>
$\eta^\prime(\eta_{3\pi}\pi^\pm)K^{(\pm)}_S$	1.17 <i>ps</i>	2.36 <i>ps</i>	1.50 <i>ps</i>
$\eta'_{ ho^0\gamma} K^{(\pm)}_{\mathcal{S}}$	1.15 <i>ps</i>	2.64 <i>ps</i>	—

Comparison with time resolution of the $\eta_{\gamma\gamma}$ and $\eta_{3\pi}$

Error on ΔT

25000

20000

15000

10000

5000

▶ a new tool computes the error on ΔT event-by-event (available in the head of basf2)

A terror (ps)

- can be used as a weight in the ML fit
- applied out-of-the-box
- needs a bit more of investigation

 h07err.best_SIG

 Enrics
 324240

 Mean
 1.305

 Std Dav
 1.371

true signal

sxf

Analysis of systematics in $B^0 \rightarrow \eta' K^0$ for B2TIP

The current measurement by Belle divides the sources of systematics uncertainties for S in two classes:

- ▶ irreducible: vertexing (±0.014), tag-side interference (±0.001)
- reducible: Δt resolution, signal fraction, background Δt pdf, flavour tagging, fit bias, ± 0.038 (sum in quadrature). Source of improvement:
 - ▶ reducible systematics will scale with the luminosity (evaluated via control samples & MC simulation)
 - vertex related systematics, tracking and alignment algorithm possibly reduced by a factor two thanks to improved Pixel Vertex detector
 - ▶ ...but, differently from $b \rightarrow c$, expected background level higher for $b \rightarrow s$ modes

Two scenario have been considered:

- vertex related systematics are reduced (optimistic)
- no improvement in vertex related systematics (pessimistic)

L	stat.	syst.	total
(ab^{-1})	(10^{-2})	(10^{-2})	(10^{-2})
5	2.7	2.1 (1.7)	3.4 (3.2)
50	0.85	1.8 (1.3)	2.0 (1.5)

For $B^0 \to \eta' K^0$ systematic ~ statistical uncertainty on S for L = 10 (20) ab^{-1} $B^0 \to \eta' K^0$ is the first $b \to q\bar{q}s$ mode for which statistical ~ systematic uncertainties

A. Mordá (INFN Padova)

$$B^0 \rightarrow \eta' K$$

4th May 2017 14 / 15

Conclusions ...

- \blacktriangleright an analysis chain has been set up for the $\eta' \to \rho^0 \gamma$ final state
- ▶ is the channel with the higher yield (accounting for almost all the $\eta_{\gamma\gamma}$ & $\eta_{3\pi}$)
- ▶ the efficiency of the preliminary selection well matches the one estimated for the B2TIP
- \blacktriangleright the level of background & sxf is too high \rightarrow need a refinement of the selection
- an estimation of the systematic uncertainty has been presented

& prospects ...

- add the $d\bar{d} \& s\bar{s}$ bkg samples
- refine the selection criteria
- define the strategy to deal with sxf
- finalize the sensitivity studies with toys MC

Backup

Efficiencies

Table: Expected yields of continuum and peaking $(B\bar{B})$ events passing the selection for the different channels. The equivalent luminosity of the generic MC sample used is 1 ab⁻¹. The continuum background yield is before any cut on the continuum suppression variable (BDT)

Channel	Continuum	ВĒ	B^+B^-
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K^{(\pm)}_{\mathcal{S}}$	16413	1834	57
$\eta'(\eta_{3\pi}\pi^{\pm})K^{(\pm)}_{S}$	4508	304	13

Estimated resolution

Table: The estimated resolutions from toy MC studies for CP-violating S_f and A_f parameters for an integrated luminosity of 1 and 5 ab^{-1} for different channels.

Channel	yield	$\sigma(S_f)$	$\sigma(A_f)$
	$1 \ ab^{-1}$		
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(\pm)}$	969	0.13	0.08
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(00)}$	215	0.27	0.17
$\eta'(\eta_{3\pi}\pi^{\pm})K_{S}^{(\pm)}$	283	0.25	0.16
$\eta'(ho\gamma) {\cal K}^{(\pm)}_{S}$	2100	0.06	0.07
$\eta'(ho\gamma)K_{S}^{(00)}$	320	0.10	0.17
$K_{\rm S}$ modes	3891	0.065	0.040
K_{I} modes	1546	0.17	0.11
$K_{S} + K_{L}$ modes	5437	0.060	0.038
	5 ab^{-1}		
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K^{(\pm)}_S$	4840	0.06	0.04
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_{S}^{(00)}$	1070	0.12	0.09
$\eta'(\eta_{3\pi}\pi^{\pm})K^{(\pm)}_S$	1415	0.11	0.08
$\eta'(ho\gamma)K_{S}^{(\pm)}$	10500	0.04	0.03
$\eta'(ho\gamma)K_{S}^{(00)}$	1600	0.10	0.07
K_{S} modes	19500	0.028	0.021
K_L modes	7730	0.08	0.05
$K_{S} + K_{L}$ modes	27200	0.027	0.020