
$B \rightarrow \tau \nu$ report for B2TiP

Mario Merola, Elisa Manoni, Guglielmo De Nardo

Belle II Italia

Trieste, 4/5/17

new w.r.t. last meeting

- Theory introduction and recent results overview
- B-tag reconstruction and signal selection
- BR measurement projections for different lumi scenarios
- Comparisons (Belle/BelleII and BGx0/BGx1)
- Conclusions and future plans

B leptonic decays $(B \rightarrow lv)$

- The SM predicts a branching ratio of $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = 0.817^{+0.054}_{-0.031} \times 10^{-4}$

http://ckmfitter.in2p3.fr/

Higgs doublet models predict interference with SM decay with a modification of the branching ratio [PhysRevD.86.054014]

$$Belle II$$

$$H^+,W^+$$

$$V_{ub}$$

$$W_{ub}$$

$$V$$

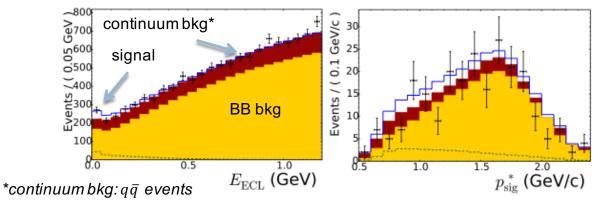
$$T$$

$$B = B_{SM} \times \left(1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}\right)^{40}$$

$$Belle$$

$$Belle$$

$$Belle II$$



Recent results on $B \rightarrow \tau v$

- First evidence at Belle (2006) and Babar (2012)
- Most recent measurement (Belle 2015, using semileptonic tag):
 - use of multivariate techniques (neural network) to reconstruct the tag side
 - the signal side is reconstructed in four modes: $\tau \rightarrow \mu \nu \nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$

- the signal is extracted through a two-dimensional maximum likelihood fit to the E_{ECL} and p^*_{sig} distributions

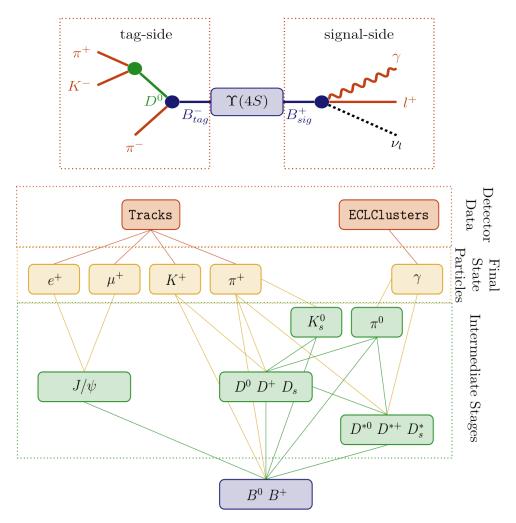
• E_{ECL} (later on called E_{extra}) is the sum of the energies of clusters in the ECL not associated to reconstructed B mesons

• p^{*}_{sig} is the momentum of the signal side particle in the CM

 $\mathcal{B} = [0.91 \pm 0.19 (\text{stat.}) \pm 0.11 (\text{syst.})] \times 10^{-4}$ (evidence at ~4.6 σ level)

http://arxiv.org/abs/1503.05613v2

Tag side reconstruction: Full Event Interpretation (FEI)



5

• Developed by Thomas Keck*, it's an extension of the Full Reconstruction used in Belle, and uses a multivariate technique to reconstruct the B-tag side through lots of decay modes in a Y(4S) decay.

• Hierarchical approach: first train multivariate classifiers (MVC) on FSP, then reconstruct intermediate particles and build new dedicated MVC. For each candidate a signal probability ("sigprob") is defined, which represents the "goodness" of its reconstruction.

• Training performed on $100*10^6 B^+B^-/B^0 \overline{B}^0$ events of MC5 with beam background (for training on MC8 see my presentation on the grid usage)

Selection (1)

B tag side

Hadronic tag using FEI

- 1) Pre-selection on B-tag kinematics*
- 2) Cut on FEI output discriminant
- 3) Pick the highest sigprob B candidate

* Beam-constrained mass:
$$M_{bc} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$

* Energy difference: $\Delta E = E_B^* - E_{beam}^*$

B sig side

$B \to \tau \nu$

- 4 tau modes: $\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\pi \pi^0 \nu$
- PID, ECL cluster cleaning (see next slide)
- $110 < M(\pi^0) < 160 \text{ MeV}$
- $625 < M(\rho) < 925 MeV$

Require full reconstruction of tag side and only one additional track in the event

Run on MC5 production:

- 100*10⁶ events of $B \rightarrow \tau v \rightarrow generic$ with beam background
- 1 ab^{-1} of $B^+B^-/B^0\overline{B}^0$ and continuum with beam background

https://confluence.desy.de/display/BI/Computing+MC5Release4Physics

PID selection

- Likelihood function based on E/p and dE/dx
- Cut on the LR = L(particle) / (L(e) + L(mu) + L(pi))

Photon selection

 Cluster cleaning (to reject photons from beam background) with cuts on photon energy, cluster timing and E9/E25 (separately in forward, barrel and backward detector regions).

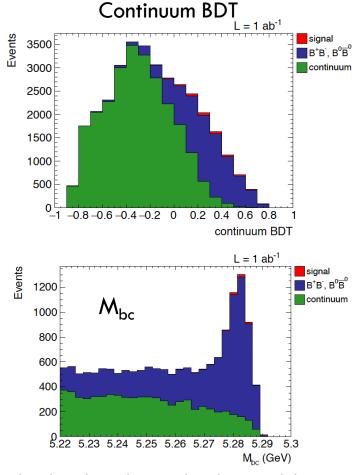
Continuum rejection

MVA with boosted decision trees to separate back-to-back topology from events with spherical symmetry (BB). See backup for details Detailed talk in WG1 meeting: https://kds.kek.jp/indico/event/21392/contributi

on/0/material/slides/0.pdf

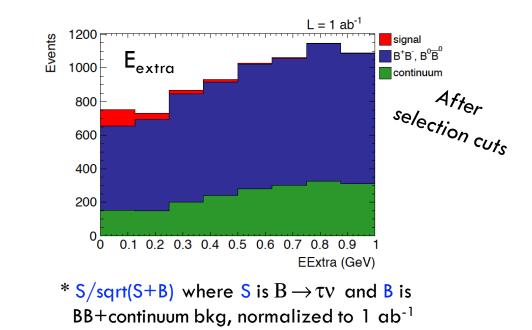
More details at the Twiki page:

<u>https://confluence.desy.de/display/BI/Physics+Pi</u> <u>OReco</u>


To be optimized with new photons and pi0 lists available in release 08 and with the new PID recommendations:

https://confluence.desy.de/display/BI/Physics +StandardParticles

(see my talk on photons and piOs ID this afternoon)

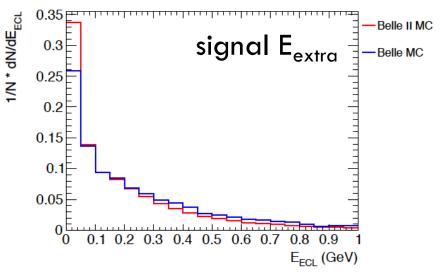

Background rejection

In the plots shown here and in the next slides signal and bkg are normalized to 1 ab⁻¹

Cuts on the BDT, M_{bc} ΔE , missing mass, and signal side track momentum are optimized maximizing the FOM* in the M_{bc} and E_{extra} signal windows (respectively 5.275-5.29 GeV/c² and 0-0.2 GeV). Optimization for hadronic and leptonic tau decay modes separately

Belle II

Selection efficiency and comparison with Belle MC


9

Signal and background event yields in 1 ab⁻¹

	E_{ECL}	$< 1 \mathrm{GeV}$	$< 0.25{\rm GeV}$	
Belle II	# background events	7420	1348	+
	# signal events	188	136	
	signal efficiency $(\%)$	2.2	1.6	
Belle*	# background events	2160	365	-
	# signal events	97	60	
	signal efficiency $(\%)$	1.2	0.7	_

*PRL 110, 131801 (2013)

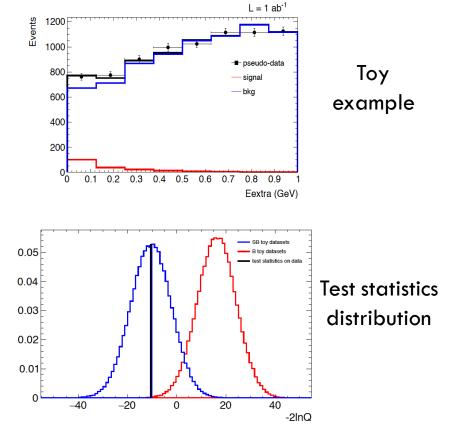
- In Belle II we have higher bkg contamination and higher signal efficiency
- Statistical improvement (S/sqrt(S+B)), but we need to evaluate the systematics impact (e.g. uncertainty on the peaking background)

 E_{extra} has a narrow peak at 0 for Belle II MC → better extra clusters reconstruction despite higher beam background

Toy MC and branching ratio measurement

10

Perform a 1D fit to the E_{extra} distribution


- Generate a pseudo-dataset according to the signal + background MC expectations
- $\circ~$ Perform a template maximum likelihood fit to E_{extra} with PDFs taken from MC
- Toy MC with 20000 pseudo-datasets:

 $BR(B \to \tau \nu) = 0.82 \pm 0.24 \times 10^{-4}$

~30% precision

• p-value determination: define the test statistics Q = L(s+b)/L(b) and generate pseudo-datasets sampled from S+B and B only E_{extra} distributions. From the left tail of the B only distribution:

p-val = 0.000385 \rightarrow significance: 3.4 σ

Projections at 1, 5 and 50 ab⁻¹ with systematic uncertainties

- The main systematic uncertainties are: signal and background E_{Extra} PDFs, branching fractions of the peaking backgrounds, tagging efficiency, and K⁰_L veto efficiency (followed by the signal efficiency and others)
- Extrapolation based on Belle measurement and dedicated Belle II note*: systematic uncertainties splitted into a part behaving as statistical and a part which is expected to be limited (as the branching ratios of the peaking backgrounds).

Integrated Luminosity (ab^{-1})	1	5	50
statistical uncertainty $(\%)$	29.2	13.0	4.1
systematic uncertainty $(\%)$	12.6	6.8	4.6
total uncertainty $(\%)$	31.6	14.7	6.2

luminosity needed for $B \rightarrow tau nu$

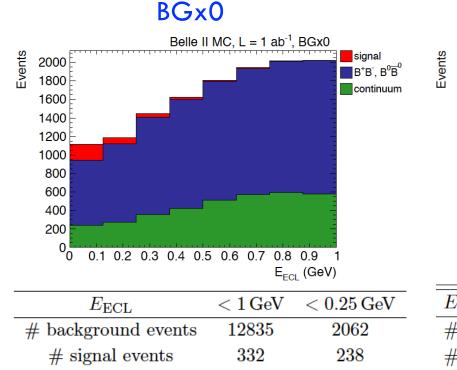
 5σ observation is 2.6 ab⁻¹

* Belle2-note-0021

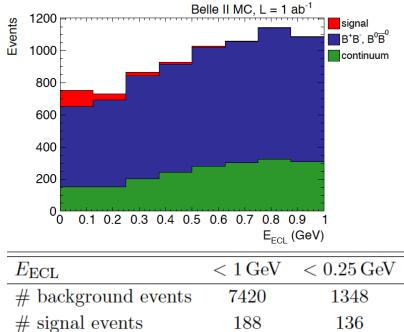
https://confluence.desy.de/download/attachments/35838603/belle2-note-0021.pdf?version=1&modificationDate=1468937879217&api=v2

Impact of beam background

12


- Impact of beam background evaluated re-performing the study described above on MC5 samples without beam background
- Continuum background rejection and signal selection optimized for the new configuration
- Caveat: use the old FEI trained on BGx1 samples and use the extra cluster cleaning optimized on BGx1 samples

Impact of beam background: E_{extra} and efficiencies



13

3.8

signal efficiency (%)

2.2

1.6

signal efficiency (%)

BGx1

• Toy MC: expected precision for BGx0 is 20% (30% for BGx1) with a significance $> 5\sigma$

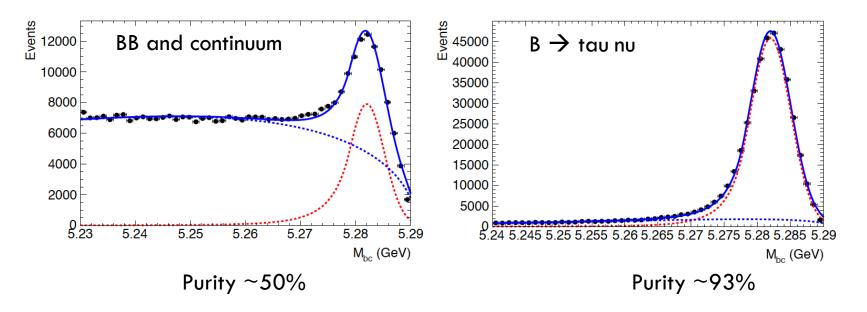
2.7

Summary and plans

- B→ tau nu sensitivity study performed on 1 ab⁻¹ of MC5 production w and w/o beam background superimposed to physics events (12th bkg campaign)
- Precision of the branching ratio measurement at 1 ab^{-1} of collected luminosity is found to be 30% (3.4 σ stat. only) with beam bkg, and 20% (>5 σ stat. only) without beam bkg
- Extrapolation of sensitivity with higher luminosity scenarios and including systematic uncertainties has been included in the B2TiP report. With the current performances the $B \rightarrow \tau v$ observation (5 σ) is expected at 2.6 ab⁻¹

Summary and Plans

- Comparison with Belle MC (hadronic tag measurement) shows that the E_{extra} distribution is robust against increasing of beam background, and that our selection leads to higher efficiencies resulting in higher S/sqrt(B) in the signal window
- To do list:
 - Analyse MC8 (on the grid):
 - more realistic beam background estimation
 - profiting from new ecl reconstruction optimize extra clusters and pi0 selection (see photons and pi0 presentation later on)
 - optimize FEI output discriminant cut
 - optimize the PID (problem related to running on the grid, see my talk on gbasf2)
 - Study the Eextra peaking background

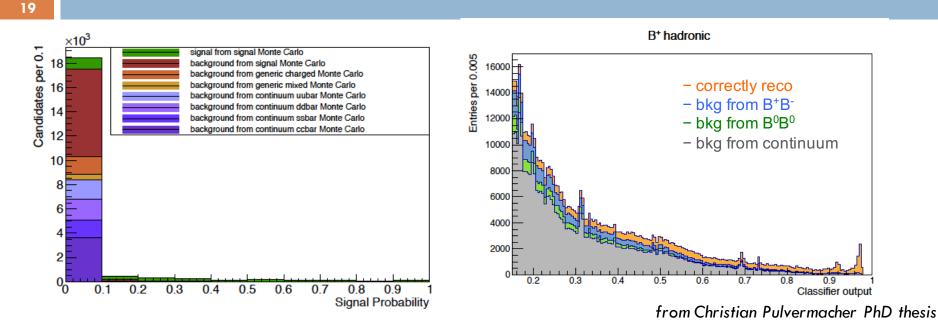


Purity after FEI reconstruction

17

• Purity of the background and signal samples is evaluated via fit to M_{bc} distribution with Argus (combinatorics) + double gaussian (true B candidates)

continuum rejection applied


Full Event Interpretation: variables

- Input variables used to train the multivariate classifiers:
 - PID, tracks momenta, impact parameters (charged FS particles);
 - cluster info, energy and direction (photons);
 - invariant mass, angle between photons, energy and direction (π^0) ;
 - released energy, invariant mass, daughter momenta and vertex quality ($D^{(*)}_{(s)}$, J/ψ);
 - the same as previous step plus vertex position, ΔE (B);
 - additionally, for each particle the classifier output of the daughters are also used as discriminating variables.

Full Event Interpretation (FEI) performances

Total reconstruction efficiency compared with Belle I

Belle II

${ m B}^+$ (hadronic)	0.78 %	B ⁺ (semileptonic)	1.05 %
${ m B}^0$ (hadronic)	0.59 %	${ m B}^0$ (semileptonic)	1.17 %

Belle I

- B^+ (hadronic)
 0.39 %

 B^0 (hadronic)
 0.28 %
- B⁺ (semileptonic) 0.80 %
- ${
 m B}^0$ (semileptonic) 0.86 %

Belle paper

20

Belle paper, hadronic tag, PRL 110, 131801 (2013)

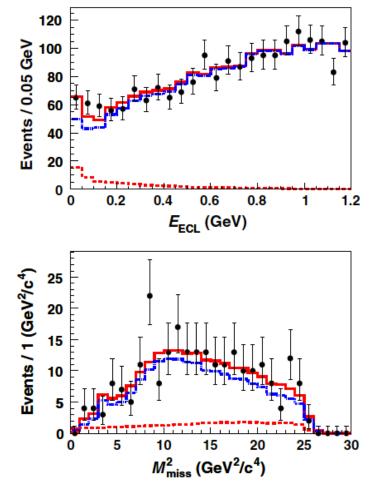

Entire Belle data sample $\sim 700 \text{ fb}^{-1}$

TABLE I. Results of the fit for $B^- \rightarrow \tau^- \bar{\nu}_{\tau}$ yields $(N_{\rm sig})$, detection efficiencies (ϵ), and branching fractions (\mathcal{B}). The efficiencies include the branching fractions of the τ^- decay modes. The errors for $N_{\rm sig}$ and \mathcal{B} are statistical only.

Submode	$N_{ m sig}$	ϵ (10 ⁻⁴)	$\mathcal{B}(10^{-4})$
$\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$	16^{+11}_{-9}	3.0	$0.68\substack{+0.49\\-0.41}$
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	26^{+15}_{-14}	3.1	$1.06\substack{+0.63\\-0.58}$
$\tau^- \to \pi^- \nu_\tau$	8^{+10}_{-8}	1.8	$0.57\substack{+0.70 \\ -0.59}$
$ au^- ightarrow \pi^- \pi^0 u_ au$	14^{+19}_{-16}	3.4	$0.52\substack{+0.72 \\ -0.62}$
Combined	62^{+23}_{-22}	11.2	$0.72\substack{+0.27 \\ -0.25}$

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = [0.72^{+0.27}_{-0.25}(\text{stat}) \pm 0.11(\text{syst})] \times 10^{-4}$$

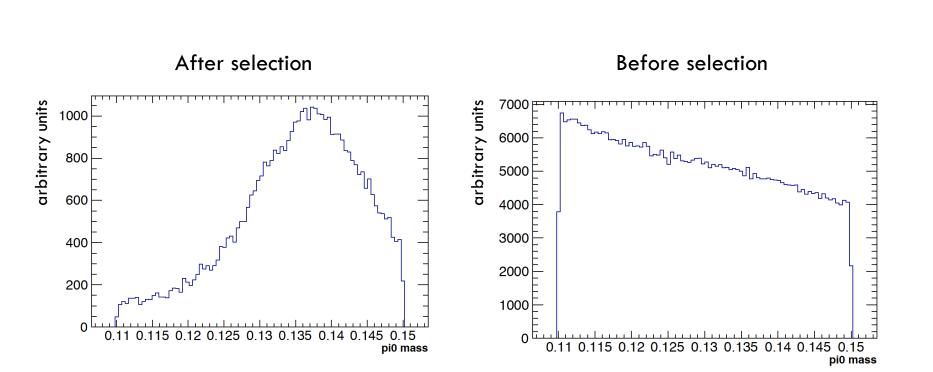
Significance: 3.0 σ

Photon cuts

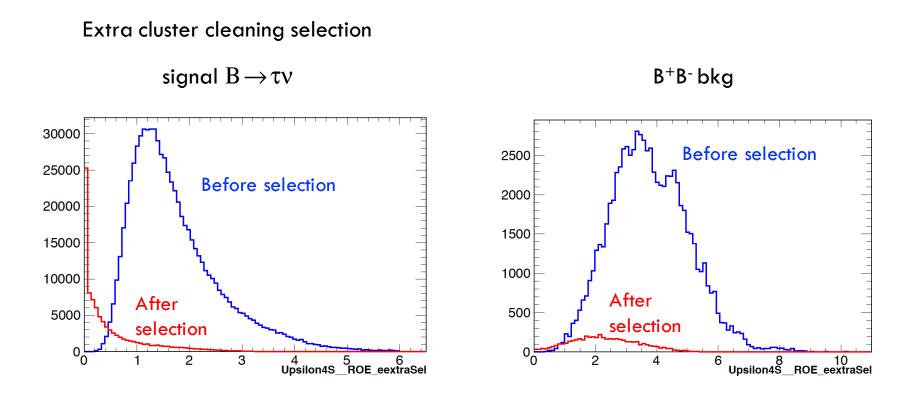
Y4S photons

- E > 72 MeV, -114 < clusterTiming < -46, E9E25>0.800, minC2HDist>39 cm forward
- E > 71 MeV, -112 < clusterTiming < -48, E9E25>0.805, minC2HDist>29 cm barrel
- E > 66 MeV, -142 < clusterTiming < -18, E9E25>0.710, minC2HDist>23 cm backward

Each cut corresponds to an efficiency of photons form physics of 95%


Extra photons

- E > 48 MeV, -121 < clusterTiming < -39, E9E25>0.665, minC2HDist>32 cm forward
- E > 51 MeV, -123 < clusterTiming < -37, E9E25>0.685, minC2HDist>22 cm barrel
- E > 49 MeV, -151 < clusterTiming < -9, E9E25>0.650, minC2HDist>24 cm backward Each cut corresponds to an efficiency of photons form physics of 90%



Signal $B \rightarrow \tau \nu$ sample

Photon and PID selection eff: 12.2 %

N.B. before PID selection we have a lot of multiple candidates (particle reconstructed as mu and ele and pi)

Continuum rejection - BDT

24

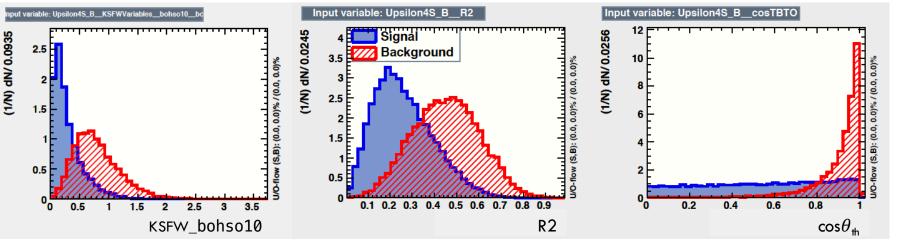
Input Variables: R2, $Cos\theta_{th}$, Cleo Cones and Kakuno Super Fox-Wolfram (KSFW) moments: 30 variables

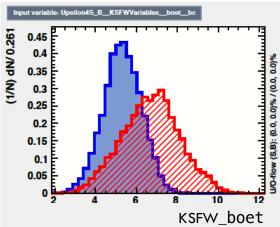
• R2:
$$R_2 = H_2/H_0$$
 where $H_l = \sum_{i,j} \frac{|\vec{p_i}||\vec{p_j}|}{W^2} P_l(\cos \vartheta_{ij})$ are the Fox-Wolfram moments

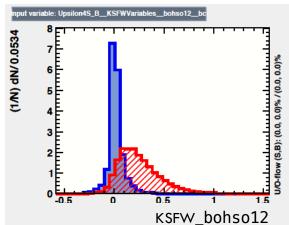
- $\cos\theta_{\text{th}} \colon \left|\cos(\vartheta_{thrust})\right| = \frac{|\vec{p}_B \cdot \hat{T}|}{|\vec{p}_B|}$ where T is the thrust axis of the rest of the event
- Cleo Cones: momentum flow around the B thrust axis in 9 angular bins

• KSFW:
$$KSFW = \sum_{l=0}^{4} R_l^{so} + \sum_{l=0}^{4} R_l^{oo} + \gamma \sum_{n=1}^{N_t} |(P_t)_n|$$
 so: particles from b-tag and ROE are considered on particles from ROE only are considered scalar sum of the transverse momentum of each particle memory of each particle $R_l^{so} = \sum_i \sum_{jx} Q_i Q_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$ [odd $R_l^{oo} = \sum_j \sum_k \beta_l Q_j Q_k |p_j| |p_k| P_l(\cos \theta_{j,k})$]
l even $H_{xl}^{so} = \sum_i \sum_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$ [even $R_l^{oo} = \sum_j \sum_k \beta_l |p_j| |p_k| P_l(\cos \theta_{j,k})$]

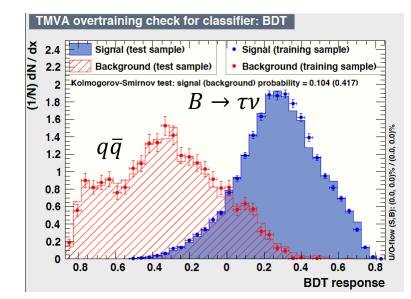
Continuum rejection - BDT


- BDT training
 - Preselection cuts on M_{bc} (5.27-5.29 GeV/c²) and E_{extra} (< 0.3 GeV)
 - 20000/3000 events used for signal/background training (~3/10% of the entire samples)
 - Remove the "less powerful" (according to the BDT variable ranking) and highly correlated variables → 20 variables left with a negligible degradation of the BDT performances (i.e. ROC curve integral)




Highest ranked variables

26


Signal: $B \rightarrow \tau \nu$ Background: $q \bar{q}$

Training results

27

Background rejection 6.0 8.0 8.0 0.75 0.7 MVA Method: 0.65 BDT 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 Signal efficiency

Background rejection versus Signal efficiency

ROC curve

Overtraining under control Limited statistics for the backgrounds

Good separation power

$B \rightarrow$ tau nu projections

28

	Integrated Luminosity (ab^{-1})	1	5	50
Hadronic tag	statistical uncertainty (%)	29.2	13.0	4.1
Hadronic tag	systematic uncertainty $(\%)$	12.6	6.8	4.6
	total uncertainty $(\%)$	31.6	14.7	6.2
	Integrated Luminosity (ab^{-1})	1	5	50

Integrated Luminosity (ab^{-1})	1	5	50
statistical uncertainty (%)	19.0	8.5	2.7
systematic uncertainty $(\%)$	17.9	8.7	4.5
total uncertainty $(\%)$	26.1	12.2	5.3

Semileptonic tag