

1

Search for $B \rightarrow K^{(*)}vv$ against hadronic tag

Belle II Italia May 4th-5th, 2017

C.Cecchi ^[1], G. De Nardo^[2], <u>E. Manoni^[3]</u>, M. Merola^[4]

[1] University di Perugia & INFN Perugia [2] University "Federico II" di Napoli & INFN Napoli [3] INFN Perugia [4] INFN Napoli

THEORETICAL AND EXPERIMENTAL STATUS

 SM predictions ([1] JHEP 02 184,2015) updated in D. M. Straub (BELLE2-MEMO-2016-007[2]):

Mode	\mathcal{B} [10 ⁻⁶] Ref. [2]	\mathcal{B} [10 ⁻⁶] Ref. [1]
$B^+ \to K^+ \nu \bar{\nu}$	$3.98 \pm 0.43 \pm 0.19$	4.68 ± 0.64
$B^0 o K^0_{ m S} u ar{ u}$	$1.85 \pm 0.20 \pm 0.09$	2.17 ± 0.30
$B^+ o K^{*+} \nu \bar{\nu}$	$9.91 \pm 0.93 \pm 0.54$	10.22 ± 1.19
$B^0 \to K^{*0} \nu \bar{\nu}$	$9.19 \pm 0.86 \pm 0.50$	9.48 ± 1.10

- NP effects:
 - non standard Z-couplings
 - new sources of missing energy

 In connection to the the anomaly, wrt the SM expectation, in the B→K*ll channels observed by LHCb, several NP models ([1], <u>arXiv:1704.06188</u> [hep-ph]) foreseen deviations also in the B→K^(*)vv observables

Belle II $B \rightarrow K^{(*)}vv$: experimental search (II) INFN BaBar hadronic BaBar semileptonic Belle hadronic SM prediction this work expected this work observed ∇ Δ 10^{-4} limit on *B* @ 90% CL . Δ . . Δ $\stackrel{\Delta}{\nabla}$ ∇ X ∇ Δ ♦ ⇔ 10^{-5} XX ∇ Belle SL tagged analysis, 10^{-6} arXiv:1702.03224 [hep-ex] $K^0_S u ar{ u} K^{*+} u ar{ u} K^{*0} u ar{ u} \pi^+ u ar{ u}$ $K^+ \nu \bar{\nu}$ $\pi^0 \nu \bar{\nu}$ $\rho^0 \nu \bar{\nu}$ $\rho^+ \nu \bar{\nu}$ B decay channel

~ 1/2 order of magnitude far from SM expectation

$B \rightarrow K^{(*)}vv$: perspectives at Belle-II

- We performed a cut-and-count analysis on MC5 samples reconstructing $B^+ \rightarrow K^{*+}(K^{+0}\pi)vv$, in order to test the different steps of the reconstruction/ selection and to evaluate the impact of machine background
- The reach of this simple and incomplete (missing K* modes) is well below the most recent Belle/BaBar measurements.
- For the B2TIP report, an extrapolation using the most recent measurement and assuming improvements in the hadronic B reconstruction have been computed
- In the near future, using MC8 we'll perform a more sophisticated analysis also adding the mission K* decay modes, both charged and neutrals.

MCS studies on $B^+{\rightarrow}K^{*+}\nu\nu$ and B2TIP extrapolation

Samples & strategy

- SIGNAL SAMPLES:~1M evts for BGx1 and BGx0 configs (private production with release-00-05-03), K*⁺ \rightarrow K⁺ π^{0} only
- GENERIC MC SAMPLES: (MC5 production, release-00-05-03) corresponding to 1 ab⁻¹ both for BGx0 and BGx1
- @ reco level:
 - Hadronic tag side reconstructed with FEI algorithm (B_{tag} signal probability > 0.05%)
 - Best Y candidate selected according to highest Btag signal probability and K* with smallest $|m_{K^{\star},reco}\text{-}m_{K^{\star},PDG}|$
 - dedicated clustering cleaning optimised on BGx1 sample
- Apply pre-selection cuts on m_{BC}, ΔE; optimise cuts on R2, m_{K*} using S/sqrt(B) as figure of merit; apply cuts on cos*θ_{miss}, cp*_{miss}+E*_{miss}
- Define a signal window on E_{extra} and evaluate signal efficiency and expected number of background events
- Estimate UL with Bayesian approach and extrapolate at higher luminosities

$5.27 \text{ GeV/c}^2 < m_{BC} < 5.29 \text{ GeV/c}^2$

0<u>C</u>L

0.1 0.2 0.3

Events

may, _ , _ _ . .

0.1

R2

R2

coso*miss cut

• Missing momentum in CM frame:

 $-P_{MISS}^{*} = P_{Y4S}^{*} - P_{Btag}^{*} - P_{K^{*}}^{*}$

- At reco level, # extra tracks = 0 is required
- →missing momentum related to extra neutrals only
- Cut not optimised with significance scan, $|\cos\vartheta^*_{miss}| < 0.85$

• Cut not optimised with significance scan, E*_{miss}+cp*_{miss}> 4.5 GeV

Belle T

INFN

Cp*miss + E*miss (II)

- In order to have a model-independent analysis, variables correlated with $\nu\nu$ kinematics shouldn't be used (e.g. K* momentum)
- A 2-D fit to extra neutral energy & missing quantities can be use to extract signal and bkg yield, small correlation among the two variables is desirable

BGx1, K*+ \rightarrow K+ π ⁽

• Cut not optimised with significance scan, ROE E_{extra} < 0.5 GeV

Belle T

Extra neutral energy after cut (II)

0.4 0.45 0.5

signal MC

Summary and UL using MCS sample

	BGx0	BGx1
Lumi (ab ⁻¹)	1	1
N _{exp, bkg}	6415 ± 80	3687 ± 61
signal eff (10 ⁻⁴)	10.3 ± 0.3	5.38 ± 0.23
N _{sig} /sqrt(B)	0.16	0.15
UL @ 90% C.L.	2.6 x 10 ⁻⁴	3.8 x 10 ⁻⁴
	U.L. extrapolation	
5 ab ⁻¹	1.12 x 10 ⁻⁴	1.7 x 10 ⁻⁴
50 ab ⁻¹	3.9 x 10 ⁻⁵	2.6 x 10 ⁻⁵

Extrapolation for the B2TIP report

- Consider SL and HAD tag Belle analysis, assume two times better hadronic tagging
- Expected precision on the Branching fraction :

	$B^+ \rightarrow K^+ \nu \nu$	$B^0 \rightarrow K^{\star 0} \nu \nu$
5 ab ⁻¹	38%	35%
50 ab ⁻¹	12%	11%

- Measurement of fraction of longitudinally polarised K*, sensitive at NP [2], feasible @ 10% level with full statistics
- Numbers and text in process of being finalised.

Conclusions

- SM prediction for $B^+ \rightarrow K^{*+} \nu \nu$ branching fraction at 10^{-5} level
 - latest Belle searches 1/2 order of magnitude away from SM expectation
 - for someNP scenarios, connection with $B^+ \rightarrow K^{*+}$ II channels and anomalies measured at LHCb
- Impact of machine background evaluated on MC5 samples using $K^{*+} \rightarrow K^{+} \pi^{0}$ channel
 - Cut-And-Count analysis with reconstruction cuts optimised on BGx1 sample
 - higher signal efficiency and expected bkg on BGx0, higher N_{sig} /sqrt(B) for BGx0
 - (bkg rejection on BGx0 could be improved by optimising reconstruction cuts)
 - machine bkg for MC5 production has a small effect on both UL and extra neutral energy distribution
- Extrapolation based on most recent Belle measurement for B2TIP report
 - 10% level precision on branching fraction with full statistics

EXTRA SLIDES

-0.08 GeV < ΔE < 0.05 GeV

Selection summary: BGx0 vs BGx1

charged

signal MC

