
Status of Cloud Toy,
a Computing Solution

Belle2 Meeting, Trieste, 4 May 2017

Jacopo Pellegrino

MaintenanceCloud Toy

● Hardware
● Optimisation
● Improvements

Other R&D
Activities

● Current Tests
● Running Instances

Conclusion

2

Overview Development Test Conclusion

● Cloud Computing
● The Aim
● How it Works

Cloud Toy

Overview
● Cloud Computing

● The Aim

● How it works

3

Cloud Computing

4

The cloud computing paradigm provides access to a shared pool of
computational and storage resources.

Setting a cloud infrastructure up may not be trivial by the providers’ point
of view.

Cloud computing is widely adopted for HEP purposes.

The goal for:
● users is to be able to access computational resources when needed.
● providers is to maximize the efficiency

of the cloud infrastructure.

The Aim

The main idea behind this work is to address two common issues of cloud
infrastructures:

● Usability: simplifying the setup and installation process.

● Efficiency: making the usage of resources more dynamic, flexible and
efficient.

The aim is to improve existing cloud infrastructures and give sites with
limited manpower/knowledge easier access to cloud technologies.

5

The Aim

● Usability: simplifying the setup and installation process:

setting up a OpenNebula hypervisor minimizing the user interaction during
the installation process.

● Efficiency: making the usage of resources more dynamic, flexible and
efficient:

allow for a dynamic use of resources according to actual needs of users
within a multi-tenants cloud infrastructure.

6

http://opennebula.org

Automatization of Installation process:

● Creation of kickstart file.

● Preparation of customized ISO.

● Preparation of bootable usb drive.

● Installation on server.

● Test of the installation.

7

How it Works - Automatic Installation

● Creation of kickstart file: configuration parameters, software
packages, disks partitioning, and the like...

● Preparation of customized ISO: start from a standard netinstall iso
file, make it look for the kickstart at boot time.

● Preparation of bootable usb drive: burn the iso into a usb drive so that
it is possible to boot from it.

● Installation on server: plug the usb drive and reboot.

● Test of the installation: the server is ready in about 1 hour.

8

How it Works - Automatic Installation

9

Schematic of the
infrastructure resulting

from the automatic
installation.

Public Network

Private Network

How it Works - Automatic Installation

NAS (optional)

Open Ports:
9869 Sunstone
4567 OCCI
11443 rOCCI
29876 proxy VNC

Elasticity:

● An infrastructure used by
different stakeholders.

● The aim is to dynamically
change the quota of resources.

● A “private” infrastructure is introduced.

10

T
1

T
2

T
4

T
3

T2 has 100 cores
T4 has 200 cores
Together they
have 300

The aim is to
manage these 300
cores dynamically
for T2 and T4

T
3

T
2

T
4

T
2

T
4

T
1

How it Works - Elasticity

● The “public” OpenNebula only knows that T2 and T4 have 300 cores
(user-level control).

● The “private” OpenNebula can dynamically change quotas between T2
and T4 according to actual needs (full sys-man control).

● Variations of quotas can be performed via oneadmin user.

● The ONE-cloudbursting-driver is currently under test.
Aim: start VMs on Public OpenNebula from the Private

OpenNebula.

11

T
2

T
4

T
2

T
4

T
1

How it Works - Elasticity

https://github.com/JINR-LIT/ONE-cloudbursting-driver

12

PRIVATE ON PUBLIC ON

ONE
cloudbursting
driver

remote
VMDIRAC

rOCCI
server

OCCI
client

rOCCI
server

Instantiate
new VM

Instantiate
new VM

change
quotas

How it Works - Elasticity

https://github.com/JINR-LIT/ONE-cloudbursting-driver
https://github.com/JINR-LIT/ONE-cloudbursting-driver
https://github.com/JINR-LIT/ONE-cloudbursting-driver
https://github.com/JINR-LIT/ONE-cloudbursting-driver
https://github.com/JINR-LIT/ONE-cloudbursting-driver
https://github.com/JINR-LIT/ONE-cloudbursting-driver

Development
● Hardware

● Optimisation

● Improvements

13

Hardware

Aim: setting up a OpenNebula hypervisor minimizing the user interaction
during the installation process.

Installation performed via usb drive.

Server used for test:

14

Machine Dell PowerEdge R630

CPU 2 x Intel(r) Xeon(r) E5-2650 v3 @ 2.30 GHz

Cores 20 physical, 40 hyper threading

RAM (GB) 160

Machine HP ProLiant DL360G7

CPU 2 x Intel(r) Xeon(r) E5-506 v3 @ 2.13 GHz

Cores 4 physical, 8 hyper threading

RAM (GB) 12

http://opennebula.org

Repeating the installation in few months brought to issues concerning
missing software packages and ruby gems required by OpenNebula:

● Installed software packages are downloaded and saved to avoid
dependencies issues in the future.

● A dedicated web repository can be
created to store all the required software.

Optimisation

15

Improvements

Some improvements:

● Creation of a Kickstart Template that users can easily customize via a
dedicated script.

● Possibility to install a host to be added to an existing infrastructure.

● Creation of a web repository where images, kickstart files and
templates are stored. By now is accessible with credentials since
under test.

● PBS installation on hypervisor and nodes.

● VMDirac + rOCCI for job submission.

16

See the Cloud Toy webpage

http://besiiicgem.to.infn.it/tempBelle2/belle_index.html

17

Cloud Toy

The tool has been presented in a
Poster at IFAE2017.

The contribution and the full-size pdf
of the poster can be found here.

Special thanks to Marco, Flavio,
Antonio and Marco Maggiora for the
support during the development of
the tool.

18

http://ifae2017.ts.infn.it
https://agenda.infn.it/contributionDisplay.py?contribId=52&sessionId=22&confId=12289

Test
● Current Tests

● Running Instances

19

Test

An installation and operation guide has been published on the Cloud Toy
web page.

● The tool has been tested several times in Torino.

● Belle II groups are currently performing beta testing as well.

● The submission via VMDirac is under test on the Turin infrastructure.

● BesIII groups may contribute as testers in the future to test elasticity.

20

Test

The tool is adopted in Torino to quickly set up small cloud infrastructures
to provide computational power for students:

● Three master students are currently working
with several VMs hosted by two Cloud Toy
infrastructures.

● This kind of test helps for spotting any installation error or
misconfiguration.

21

See the cloud section of my
webpage

http://personalpages.to.infn.it/~japelleg/index.html#research
http://personalpages.to.infn.it/~japelleg/index.html#research
http://personalpages.to.infn.it/~japelleg/index.html#research

Conclusion

22

Conclusion

The automatic installation tool is ready and is under test.

To Do:

● implement elasticity;
● create and test the software repository;
● add BesIII groups as testers.

… and keep testing the tool in order to improve it.

23

Question Time

24

Automatic set-up - kickstart.cfg

A kickstart file contains the information needed to perform the
installation in order to avoid the user providing them.

Some parameters may be left to user input (network parameters,
keyboard layout, ...).

It is possible to specify which packages or additional software have to
be installed.

Software installed via kickstart: OpenNebula, squid proxy, and rOCCI.

25

Automatic set-up - customized ISO

Starting from a kickstart and a standard iso it is possible to modify the
iso so that it will look for the given kickstart at installation time.

The standard iso adopted during the test are:
➔ CentOS- 6.7-x86_64-netinstall.iso
➔ CentOS-7-x86_64-NetInstall-1511.iso

Pay attention to the location of the kickstart: a good idea is to refer to
the usb drive using its “label”.

26

Automatic set-up - bootable usb drive

Format (FAT32, mbr) a usb drive (2GB is enough).

It's important to give it the name indicated in the customized iso
creation process. Otherwise the kickstart will not be found when the
installation begins.

Make the usb bootable either via command line or using an
application such as Unetbootin.

27

https://unetbootin.github.io

Automatic set-up - install on server

Start or reboot the machine and plug in the bootable usb drive, choose
the boot from usb drive option.

The installation will ask the user to provide the parameters not
specified within the kickstart file, then the installation will proceed
autonomously. For instance, the network parameters have been left to
the user input.

The machine will reboot when the installation is over. Remove the usb
drive and let the machine boot normally.

28

Automatic set-up - test the installation

Once the machine is up and running, users may control that the
parameters have been properly set (network interface is up, disks are
mounted, ...).

To verify that OpenNebula is working check the hypervisor status via
the Sunstone interface.

The entire installation process requires about 1 hour (on the hardware
used for the test).

29

http://archives.opennebula.org/documentation:archives:rel2.2:sunstone

Automatic set-up - test the installation

Test the installation running a customized VM to check that all the
installed software run properly.

Create a new image in OpenNebula: a file .one will be provided with
the proper path.

Create a new template in OpenNebula: a file .txt will be provided, insert
image and network number.

Instantiate a new VM: the machine is ready in less than 1 minute and
can be used, software mounted via CVMFS used in combination with
the squid proxy.

30

Automatic set-up - about VMs

There are no constraints on OS: SL5, SL6, Ubuntu 14, ...

Strict requirements on storage space: the VM image has to be copied
over the net each time a new VM is instantiated. It could be a
bottleneck.

● QCOW2 image format: Dynamic increase of the storage

● Minimal OS installation: Only the required software is installed

31

Elasticity of the
infrastructure

Elasticity of the infrastructure

33

Aim: provide inter-experiment elasticity.

The CI is used by different stakeholders, the aim is to dynamically
change quotas

TEN1 TEN2

TEN
4

TEN3

TEN2 has 100 cores
TEN4 has 200 cores
Together they have 300

The aim is to manage these
300 cores dynamically for
TEN2 and TEN4

Directly change quotas may not be safe (different stakeholders are
involved)

A “private” OpenNebula is introduced

Elasticity of the infrastructure

34

TEN3

TEN
2

TEN4

TEN2

TEN
4

TEN1

Elasticity of the infrastructure

The “public” OpenNebula only knows that TEN2 and TEN4 have 300
cores (user-level control).

The “private” OpenNebula can dynamically change quotas between
TEN2 and TEN4 according to actual needs (full sys-man control).

Variations of quotas can be performed via oneadmin.

35

Elasticity of the infrastructure

A script has been written to perform the quota variation

It takes as arguments:
● $1 the user
● $2 the new value

of CPU for it

36

#!/bin/bash
echo "Changing CPU Quotas of user: $1. New value: $2"
#1)
sleep 100

#2)
touch ./tempQuotas

#3)
cat > tempQuotas << EOF
VM = [
 VMS = "-1",
 MEMORY = "-1",
 CPU = "$2",
 VOLATILE_SIZE = "-1"
]
EOF

cat tempQuotas

#4)
oneuser quota $1 ./tempQuotas
rm -f tempQuotas
echo "done.”

Elasticity of the infrastructure

#1) wait for 100ms

#2) create a new temporary file

#3) writes the proper commands
into the file and prints them

#4) perform the changes

37

#!/bin/bash
echo "Changing CPU Quotas of user: $1. New value: $2"
#1)
sleep 100

#2)
touch ./tempQuotas

#3)
cat > tempQuotas << EOF
VM = [
 VMS = "-1",
 MEMORY = "-1",
 CPU = "$2",
 VOLATILE_SIZE = "-1"
]
EOF

cat tempQuotas

#4)
oneuser quota $1 ./tempQuotas
rm -f tempQuotas
echo "done.”

Elasticity of the infrastructure

So far both the “private” and “public” OpenNebula have been set-up for
testing purposes.

Interaction between them is a work-in-progress:
The ONE-cloudbursting-driver provided by N. Balashov (JINR), is
currently under test.

38

https://github.com/JINR-LIT/ONE-cloudbursting-driver

Elasticity of the infrastructure

The ONE-cloudbursting-driver is currently under test.

It enables OpenNebula-based cloud to "burst" Virtual Machines (VM) to
external OpenNebula clouds using built-in OpenNebula XML-RPC and
OCCI interfaces.

Aim: start VMs on Public OpenNebula from the Private OpenNebula

39

https://github.com/JINR-LIT/ONE-cloudbursting-driver

