Status report of Italian activity on TOP Calibration studies with testbench system in Padova

S. Lacaprara, A. Mordá, R. Stroili, W. Yuan

INFN - Padova

7th Belle2 Italian meeting

5th May 2017

Outlook

- Top provides PID in the barrel region of the detector
- \blacktriangleright Folding of the Cherenkov cone inside the quartz bar: \rightarrow reconstruct using photon detection time information
- knowing the track direction & the intersection point with the bar is possible to predict the space-time pattern of produced photon
- the observed pattern is compared with the one predicted under different particle hypothesis and a likelihood is built

- This talk
 - calibration strategy
 - laser characterization
 - time spectra characterization
- Focus on italian activities

Time alignment strategy - in principle

- Goal of the time alignment is the measurement of the time offset (T^0 henceforth) of each MCP-PMT pixel
- ▶ T^0 different for each pixel due to electronic & pixel properties
- \blacktriangleright a total of 512 \times 16 channels must be calibrated

The simple case:

Now,

$$t_{(A,B)} = T^0_{(A,B)} + c_n \cdot \ell_{(A,B)}$$

or equivalently:

$$t_B - t_A = (T_B^0 - T_A^0) + c_n \cdot (\ell_B - \ell_A)$$

being

- c_n the speed of light in the propagation medium
- $T^0_{(A,B)}$ the time off-set

measured, known, what we want to measure

- \blacktriangleright "all" what we need is to extract the position t^i through a fit to the photon time-detection spectra
- **>** the time resolution upper limit of the photon path peak should (ideally) be $\sim 100 \text{ ps}$

A. Mordá (INFN Padova)

Time alignment strategy - in quasi-practice

The almost-real case: one light source \oplus quartz prism

- ▶ each pixel receives photons from 2, sometimes 3 (see later), light paths
- the fraction of each path depends on the properties of the lens (difficult to model with MC, need an excellent knowledge of lens properties)
- ▶ many detection times (j=1,2,..) (t_j^i) for a given channel *i*, average separation ~ 200-300 ps
- need to understand which is the better path to be used to get the best t^i

Time alignment strategy - in quasi-practice

The almost-real case: one light source \oplus quartz prism

- ▶ each pixel receives photons from 2, sometimes 3 (see later), light paths
- the fraction of each path depends on the properties of the lens (difficult to model with MC, need an excellent knowledge of lens properties)
- many detection times (j=1,2,..) (t_j^i) for a given channel *i*, average separation ~ 200-300 ps
- need to understand which is the better path to be used to get the best t^i

Time alignment strategy - in practice

The real case:

- each pixel receives photons also from different fibers (\sim 2)
- \blacktriangleright in a given channel, the time distribution of detected photons could consist of up to \sim 6 signal peaks
- the relative position peaks is fixed by the geometry of the propagation
- ...but the electronic noise and laser resolution makes difficult to disentangle each single contribution \Rightarrow worsening of resolution on the measured t^i and, in turn, on the extracted T^0 for that channel

Outlook of calibration

The following actions are mandatory to perform a reliable T^0 calibration:

- Laser characterization:
 - properties strongly depend on the attenuation value (tune henceforth)
 - the tune of the laser affects:
 - time resolution
 - position of the signal pulse
 - the appearance of secondary peaks in the detection time distribution (likely due to the attenuation mechanism)
 - the light yield hasn't a linear dependence on the laser tune
 - need to find the proper working point
- Time spectra analysis:
 - ▶ MC studies : understand what kind of inputs can be extracted from simulation
 - definition of the model
 - validation of the T^0 extraction procedure
- a test-bench system has been set up in Padova

Padova test bench system

• Why a bench-test system?

- validate simulation
- independent cross-check of T calibration operations
- inspect the contribution due to each fiber to the time spectrum of each PMT

• Padova equipment

- 1 MCP-PMT Hamamatsu
- 1 SiPM fbk
- HV = 2500 V
- digitizer CAEN V1742 @5 GHz
- ▶ fibers + final bundle
- nominal lens used in the experiment

Detection time computed with constant fraction method

One photon event in MCP-PMT (ADC counts vs Digitizer bin $[\propto t]$), trigger signal:

Setup in Padova

Quartz prism equal to those installed in KEK (rejected 'cause of production damage on a corner)

A dedicated support for fibers is in production

current precision on fiber position \sim mm

Laser tune studies

Dependence of detection time shape & position vs attenuation (using SiPM)

Appearance of secondary peaks (likely due to attenuation mechanism) (using MCP-PMT) **T80 Compared to attenue to atten**

Laser tune studies

Dependence of detection time shape & position vs attenuation (using SiPM)

Appearance of secondary peaks (likely due to attenuation mechanism) (using MCP-PMT) T80 T77

Laser tune studies - T^0 , δt , secondary peaks

A strong dependence between T^0 , δT , and the fraction of good-signal and laser attenuation is observed

- \blacktriangleright at tune values $\lesssim 76$ the single photon regime is lost
- ▶ in this region laser time resolution and good-signal fraction saturates
- current values are \sim 80

Time spectra analysis

The goal is to extract, for each PMT channel, the position of the arrival time of a (properly) chosen photon path:

- this needs to perform a fit to the detection time spectrum
- \blacktriangleright due to the large number of photon paths (\sim 6) we need to fix some quantities
- ▶ the time separation between peaks can be fixed (looking at MC), depending only by the geometry
- \blacktriangleright this require our confidence in simulation being strong \rightarrow studies to understand the best use of simulation

With the test-bench system in Padova we validated the T^0 computation procedure using data:

- fix the time separation looking at the spectrum from one single fiber
- extract a T^0 through the fit to the many fiber spectra

Study of single path detection time shape

Time detection spectrum acquired by directly illuminating the MCP-PMT with the laser photons, without quartz prism

x-axis range [26-27.8] ns

Full model, background

signal shapes are non-gaussian, highly asymmetric 'cause of a tail at large times
modeled by a Crystal Ball (CB henceforth)

(Gaussian core \oplus power-law tail at high times):

- the width σ indicates the best case scenario for time resolution (*i.e.* the better we can do)
- $\sigma\sim 50-80 ps$, depends on acquisition chain
- the prism will cause an increase in the time spread

Time spectra from data (for illustration!! - x-axis range [8,9.8] ns)

Data acquired with PMT in same position (top-left) and with two fibers in two positions:

- **pos.0 : 9 mm** from the left border
- pos.1 : 57 mm from the left border

Time spectra from data (for illustration!! - x-axis range [8,9.8] ns)

Data acquired with PMT in same position (top-left) and with two fibers in two positions:

- **pos.0 : 9 mm** from the left border
- **pos.1** : **57** mm from the left border

Time spectra from data (for illustration!! - x-axis range [8,9.8] ns)

Data acquired with PMT in same position (top-left) and with two fibers in two positions:

- **pos.0 : 9 mm** from the left border
- pos.1 : 57 mm from the left border

Time distribution model

2 signal CB/fiber \oplus 1 polynomial background:

•
$$\mathcal{P}_{Sig}^{pos.i}(T|t) = f_{L}\mathcal{CB}(t - \Delta_{H}^{i}, \delta t_{L}) + (1 - f_{L})\mathcal{CB}(t, \delta t_{H})$$

where

- μ is the mean detection time of the reflected photon path (*i.e* T^0), which has the higher stat
- Δ_H is the time interval between the reflected and the direct photon path
- $\blacktriangleright \delta_{L,H}$ are the time resolutions
- f_L are the fraction of direct and reflected paths

• $\mathcal{P}_{bkg}(T)$: 2^{nd} degree Chebychev polynomial • $\mathcal{P}(T) = f_{sig} \mathcal{P}_{Sig}(T|t) + (1 - f_{sig}) \mathcal{P}_{bkg}(T)$

For each PMT channel, the T^0 (i.e. t) is extracted in two conditions:

- fitting the spectra acquired with the each fiber separately
- ▶ fitting the spectrum obtained by merging the previous 2 spectra, using the PDF :

$$\mathcal{P}(T|t) = \mathcal{F}_{sig}(f_0 \mathcal{P}_{Sig}^0(T|t) + (1 - f_0) \mathcal{P}_{Sig}^1(T|t + \Delta)) + (1 - \mathcal{F}_{sig}) \mathcal{P}_{bkg}(T)$$

and fixing, $\Delta_{H}^{(0,1)}$ and Δ extracted with the previous fits

N.B At present the same fit model is used for all PMT channels, for all fiber configurations

A. Mordá (INFN Padova)

Time distribution model

N.B At present the same fit model is used for all PMT channels, for all fiber configurations

This is still a rough approximation e.g.:

A. Mordá (INFN Padova)

Example of time spectra analysis from single fiber - pos 0

$$\mathcal{P}_{Sig}^{pos,0}(T|t) = f_{L}\mathcal{CB}(t - \Delta_{H}^{0}, \delta t_{L}) + (1 - f_{L})\mathcal{CB}(t, \delta t_{H})$$

clearly evident the two main paths in the first three rows

in the last row the two photon paths get too close and are not resolved

A. Mordá (INFN Padova)

Example of time spectra analysis from single fiber - pos 0

Time resolution of the two paths: low, high time

Fraction of low time component

 Δ_H^0

Example of time spectra analysis from single fiber - pos 1 $\mathcal{P}_{Sig}^{pos.1}(T|\Delta) = f_{L}\mathcal{CB}(t + \Delta - \Delta_{H}^{1}, \delta t_{L}) + (1 - f_{L})\mathcal{CB}(t + \Delta, \delta t_{H})$

t fixed with fit of pos.0 spectrum

There's one main path (the reflected one)

Tails are not well modeled: hint of another high time path(?)

Example of time spectra analysis from single fiber - pos 1

Time difference between the main photon paths from the two fibers, *i.e.*

Time resolution of the two paths: low, high time

The high time peak has a resolution $\sim 70~\text{ps}$

Full time spectra comparison - pos.0 \cup / \oplus pos.1

It is now possible to compare the full spectra obtained in two ways:

- ▶ simple merging of the pos 0 & 1 spectra (pos.0 ∪ pos.1)
- \blacktriangleright true data acquisition with both fibers illuminating the PMT (pos.0 \oplus pos.1)

needs more work to understand the fit model

Crucial to understand which quantities can be fixed (in addition to time separations) from simulation (e.g. the relative weights)

Full time spectra comparison - pos.0 \cup/\oplus pos.1

Comparison with absolute position obtained from fit pos.0 time spectrum

Absolute position consistent for some channels, less for others

dependence on the statistics & the time separation between the various signals

MC studies

- Simulate the light emission from all the 9 fiber
- Study the detection time vs the pixel position
- Clear geometrical pattern but ...
- \blacktriangleright ... time separation is not constant within a pixel (due to its finite size \sim 5 mm): in the worst case

strongly related with the relative yield

Time shift between adjacent fibers

MC studies

Check the effect of a different lens model on the path fractions

Lens opening angle effect not negligible

50

40

20

20

10

Conclusions

• A large effort is being carried for the Time alignment of the MCP-PMT detectors

- Many tasks are required:
 - characterization of laser device
 - definition of a procedure to fit the time spectra
 - study and understanding of simulation
- A test-bench system has been set up in Padova
 - \blacktriangleright laser behavior understood \rightarrow need to fix the working point
 - definition & cross-check of the time calibration procedure
- Next steps
 - ▶ repeat the laser characterization with the laser device installed in the experiment
 - > apply, optimize, and tune the fit procedure to the true data collected in the experiment
 - > plan to report the procedure in an internal note

Backup