TOP commissioning status ## Roberto Mussa Before vs After Roll-In Firmware Saga Rate Capability TimeBase Calibration LV struggles DAQ for Cosmic Ray Running Plans for MCPPMT replacement Belle-II Italy 7th Meeting, Trieste, 5/5/2017 #### Recovery after Roll-in - N2 gas line changed to normal line. Worked with cryogenic group. - Current flow rate is about 0.16L/min/module. - E-hut electricity is recovering. - Problem on one big breaker, which affects to 100V of TOP and SVD racks. - Connected with temporary lines, by the end of May? - Basically recovered TOP racks in E-hut and FTSWs on the detector. - TOP chiller is working now. - PC topslc01 moved to E-hut and now working as well as toptest01. - Network connection of DAQnet is ready. - Not ready around HLT, will recover in Apr.28. - Pocket DAQ mode should be OK. - Need to check COPPER/FTSWs in E-hut with DAQ group. ### Laser Calibration: signal spread across modules ### Signal processing: Feature extraction (FE) fit charge or height distribution to extrapolate the it close to 0 efficiency = (# of events after selection) /(integral of P(x)) update use new parameterization by Marko $$P(x) = p_0(x/x_0)^{p_1} \exp(-(x/x_0)^{p_2})$$ fitting height distribution #### Firmware Saga: feature extraction #### FE Data Reduction - Oskar implemented spreadsheet to evaluate data rates, based on expected rates in global cosmic ray test - Feature extraction reduced data rate, but still too large for proper running in global DAQ (expects 96MB/sec max from iTOP) - Recall that we're still outputting waveforms when a pulse is found - In current FW, 64-byte FE header produced for every channel, whether a pulse is present or not – ok for debug, but wasteful - Lynn implemented "short" FE header (12 bytes) when no pulse found - Total data rate ~1/3 of the worst-case for iTOP ok for global CRT? - Testing at PNNL and KEK now - Other low-hanging fruit: - No reason to output 4 windows when only 2 are relevant now - Lynn looking into this improvement (fairly straightforward) ### DAQ issues on 30 kHz running #### 30kHz Support - Luca has resolved compiling and timing issues in the design - Testing underway on actual boardstack - This version uses new AXI-DMA updates to copy raw data from carrier to UART for debugging - Next steps: - Start working on other modules that need to be included - Proposed (carrier-SCROD) data format needs to be supported #### Configuration Script Rewrites (python → C) - Tobias has written C versions of all the python configuration scripts - 2x faster overall (some delays required in the configuration process) #### **HSLB Firmware Update** - DAQ group provided new version of HSLB firmware to resolve CRC errors seen on multiple subdetectors - Tested at KEK on iTOP; some CRC errors still seen? - Reported to DAQ group ### DAQ issues on 30 kHz running #### **30kHz Support** - Luca has resolved compiling and timing issues in the design - Testing underway on actual boardstack - arrier This version uses new AXI-DMA updates to copy ray to UART for debugging - aration scripts - iguration process) - Lettura di tutti gli siots attualmente utili Zzabili Supplies della Wiener) Lettura di tutti gli siots attualmente utili Zzabili Quasi stabile fino a un massimo di 400 Hz. Lettura di tutti gli slots attualmente utilizzabili che la la comi ai I comi voltario che la contra Lettura effettuata in modalita ibrida, per validazione (256 bins - 91 ns). A windows (256 bins - 91 ns) Lettura effettuata in modalita ibrida, per validazione (256 bins - 91 ns) della Feature Extraction (FE). Letura effettuata in modalita' ibrida, per validaziones (256 hins da windows win Quasi stabile fino a un massimo di 400 HZ. of HSLB firmware to resolve CRC ### DAQ issues for Cosmic Ray Running #### Local CalPulse + Laser Runs - Less data size reduction than assumed last week - Still significant (~factor 4) reduction in data size to previous baseline - Assuming shortened headers, 128samples/pulse, one calpulse/carrier #### Proposal: - One large laser dataset before the start of GCRT - ~3M events -> ~120k photons/channel -> 1TB data set - Few hours of data taking - Daily crosscheck runs - ~250k events -> ~10k photons/channel -> 75GB data set - <15minutes of data taking - Should be enough to see significant deviations in TBC (if occuring) - Reminder: data taking limited by disk I/O - -> reduction in file size = less time needed for calibration runs ### DAQ issues for Cosmic Ray Running ## Cosmics Running - Assuming 100Hz cosmic trigger rate - Shortened headers, 128samples/pulse - Injecting calpulse into each carrier on cosmic trigger - 20MB/s for full TOP system during GCRT - 15MB/s when not injecting calpulses - Linear dependence on actual cosmic trigger rate - <<96MB/s as assumed by DAQ group for full B2 running</p> #### LV struggles In the last months only 11 slots were running, due to LV supply problems: s01, s03, s04, s05, s06, s07, s08, s13, s14, s15, s16 - s02 was out for a broken LV module - s09,10,11,12 were out due to o broken LV crate #### Indiana has ordered: - 3 spare 10Amp modules (Wiener MPV8008): 2.6 k\$ each - 2 spare 20Amp modules (Wiener MPV4008): 2.9 k\$ each - 1 spare crate power supply (Wiener UEP6021): 3.6 k\$ Torino is ordering one more Wiener UEP6021 Repaired modules from Wiener arrived at KEK on May 1st. - All the 960 ASCIs of the 16 SLOTs except SLOT09 have been checked - 893 of the 960 ASICs have TBC constants. - RMS < 25:"agree"</p> - 25 < RMS < 35: "acceptable"</p> - RMS > 35: "bias" - Analysis based on TBC of Calibration Pulse on data taken before the failure of LV supplies - All the 960 ASICs have been checked manually with TBC. - We should automate this process. - About 751 ASICs with their TBC constants are reliable in the testing. - 142 ASICs have bias in input-output testing. - 67 ASICs have no TBC constants. → Criteria used to mask? ### **Type 1: Excellent agreement** - Good ΔT input data: changing with samp smoothly, small spread $(\Delta T_{max} \Delta T_{min})$. - Excellent agreement in input-output testing. - Number of the ASICs: 597. - 'Quality = 1' asigned. ### Type 2: Acceptable agreement - Shape of ΔT input from data is not perfect, typically having spikes and/or large $\Delta T_{max} \Delta T_{min}$ spread. - The difference from input-output testing looks acceptable. - Number: 154. - 'Quality = 1' asigned. #### Type 3: Bias due to spikes - Serious spikes in ΔT input shape leads to bias in input-output testing. - Not all spikes cause bias. - 'Quality = 2' asigned. #### Type 4: Bias due to large $\triangle T$ spread - ΔT ($\Delta T_{max} \Delta T_{min}$) could be quite large in some ASICs, and cause bias in input-output testing. - 'Quality = 3' asigned. - More popular than the cases of spikes. #### Type 5: slope bias of TBC constants - Some cases, ΔT shape looks divided. - 'Quality = 4' asigned. #### Type 6: no TBC constants - Negative integer asigned for Quality. - Number: 67. ## Trying to spread Firmware Know-how Partecipazione italiana: TO: U.Tamponi+1 Tech PD: 1 Tech Are you ready? (no experience needed – but you will work) - → Goal is to expand group of people functional at different levels - Read/basic understanding of code and how it works - Simulate/verify existing/new functionality - Debug problems encountered in the future - Develop new code for improved performance, new functionality - Week after June B2GM (June 26-30) - Intro/warm-up session Saturday, June 24 The 224 conventional MCP-PMTs in the 7 slots have to be replaced due to the QE degradation by the beam background. In 2015 the time of the replacement was estimated as the 2020 summer shutdown. > Revisit the estimation. Need additional mass production of the MCP-PMTs for the replacement. → Discuss the production plan. Viewed from the forward to the backward ₹Z⁺× Higher background S01 ## Test plan (draft) | Year | 201 | 7 | | | 201 | 8 | | | 201 | 9 | | 2020 | | | | |---------------------|------|-------|------|-------|------|------|-------|-------|--------|--------|------|-------|--------|------|-------| | Month | 1 | 4 | 7 | 10 | 1 | 4 | 7 | 10 | 1 | 4 | 7 | 10 | 1 | 4 | 7 | | Global schedule | | | | | Phas | e 2 | | | Phys | ics rı | un | Phy | sics r | un | | | | Curr | ent p | rodu | ıctio | n | | | | | | | | | | | | PMT production | | | Anot | ther | smal | pro | ducti | on | | | | | | | | | | | | | | | | Mas | s pro | duct | ion i | fnec | essa | ry | | | | New PMTs (prospect) | 28 | 26 | | 5 / | mon | th | 10 F | MTs | /moi | nth | | | | | | | PMT test at Nagoya | 1 | 0 /m | onth | 5 / | mon | th | 10 F | MTs | /moi | nth | | | | | | | PMT test at KEK | | | | | | | ~1 | .00 P | MTs | | ~1 | .00 P | MTs | | | | PMT installation | | | | | | | | | | | | | Ass | y Ir | stall | | Available PMTs | 37 | 63 | Unc | lear | (dep | ends | on b | udg | et sit | uatic | n) | | | | | #### Maximum rate: - QE measurement: 2 PMTs/day = 40 PMTs/month - HV test: 8 PMTs/day = 160 PMTs/month - Laser test in 0 T: 5 PMTs/day = 100 PMTs/month ## Test plan in 2017 (draft) | Year | 2017 |---------------------|------|----|-----|------|-----|----|-----|-----|----|----|----|----|-----|---|---|----|-----|----|-----|-----|-----|------|----|-----|-----|------|------|------|-----| | Month | 3 | | 4 | 4 | | 5 | | | 6 | | | | 7 | | | 8 | | | 9 | | | | 10 | | | | | | | | Events | | | Ro | oll- | in | Н | oli | day | /S | | | B2 | 2GI | M | | | | | H | lol | ida | ays | 5 | JPS | • | | B2 | GN | 1 | | PMT production | С | ur | rer | nt | pro | od | uc | tio | n | Α | no | th | er | sn | na | IJβ | rc | dι | ıct | ioi | า | | | | | New PMTs (prospect) | 2 | 28 | | | 1 | LO | | | 1 | .0 | | | (| 6 | | | | 5 | | | | 5 | | | | 5 | | | 5 | | QE measurement | | | 10 | | 10 | 8 | | 10 | | | 10 | | | | 6 | | | | 5 | | | | 5 | | | | 5 | | | | HV test | | | 28 | | | | | 10 | | | 10 | | | | 6 | | | | 5 | | | | 5 | | | | 5 | | | | Laser test in 0 T | | | 25 | | 3 | | | 10 | | | 10 | | | | 6 | | | | 5 | | | | 5 | | | | 5 | | | | Available PMTs | 3 | 7 | | | | | | | | | | | 63 | 3 | U | nc | lea | ar | (de | ере | enc | ls o | on | bu | dg | et s | situ | atio | on) | #### Maximum rate: - QE measurement: 2 PMTs/day = 10 PMTs/week - HV test: 8 PMTs/day = 40 PMTs/week - Laser test in 0 T: 5 PMTs/day = 25 PMTs/week - HV, laser (0 T), QE tests at Nagoya - Test PMTs after delivery as quickly as possible to find out and feed back any problem to the production. - Measure the QE of each PMT at least two times (just after delivery and several months later) to check the QE stability. - Laser (1.5 T) at KEK - Need two persons to use the magnet (safety regulation). - Test a batch of PMTs (>100 PMTs/month), one month in 2018 and another month in 2019. - This is because the setup has to be uninstalled when other groups use the magnet, and a large overhead is needed to reinstall and tune the set up. PMT to be replaced: 161 PMT Production: 200 Test at Nagoya: Continuous test starting from April 2017 for 3 years Test at KEK: 100 PMT Oct.-Dec. 2018, 100 PMT Oct.-Dec. 2019 #### Man Power: Test at Nagoya: 36 months * (2/3 working weeks when PMTs are available ?) * 1 person = 24 FTE per month Test at KEK: 6 months * 2 persons = 12 FTE per month Tot: 36 FTE per month Italian proposal for manpower (baseline: 25% of the activity): 9 FTE per month = 1 person x 1.5 months x 3 years (Padova) + 1 person x 1.5 months x 3 years (Torino) ## Backup ## Critical Path #### TOP DAQ ## TOP FEE: a scope on a chip ## FW Functional Overview ### TOP tomography: real data Reality is quite different from the ideal MC Reflected Direct $\times 10^3$ 200 180 → Bimodal distribution 160 → bad resolution 140 → analysis artifacts 120 100 → Electronic mis-configurations 80 60 40 20 0 -120 100 -80 -60 -40 -20 T_hit - T_pulse [ns] entries 10³ 10² 10 -60 100 -80 -40 -20 -120 T_hit - T_pulse [ns] #### TOP readout: Time base calibration - Inverter chain has transistor variations - $\rightarrow \Delta t_i$ between samples differ - → "Fixed pattern aperture jitter" - "Differential temporal nonlinearity" $TD_i = \Delta t_i - \Delta t_{nominal}$ - "Integral temporal nonlinearity" $TI_{i} = \Sigma \Delta t_{i} i \cdot \Delta t_{nominal}$ - "Random aperture jitter" = variation of ∆t_i between measurements #### TOP Organization - Leader: Toru lijima - Deputy: Gary Varner - Gemba leader: Kenji Inami - Supervision to all Gemba works