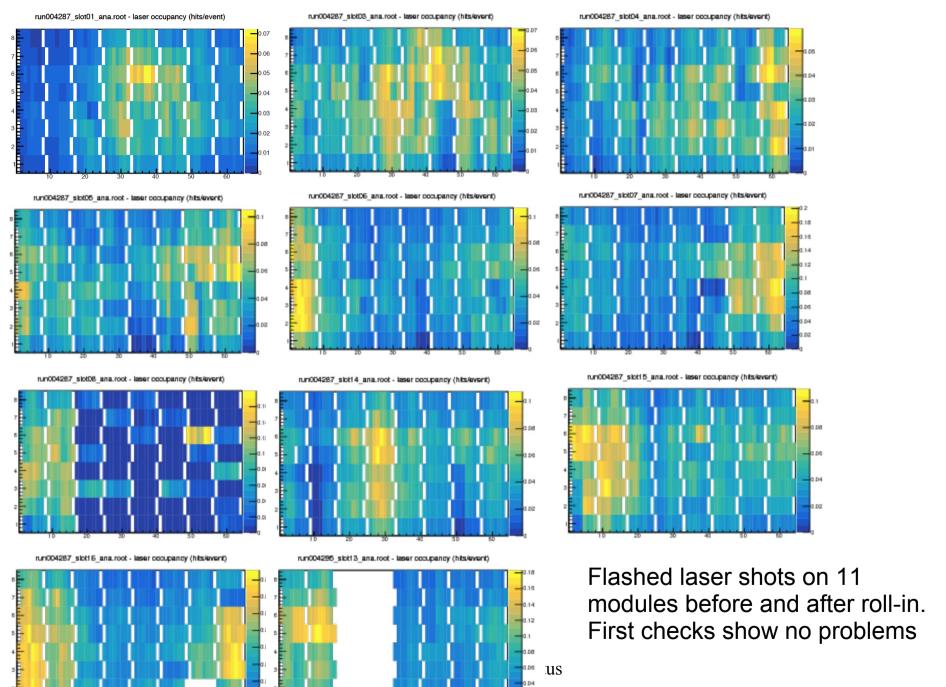
TOP commissioning status

Roberto Mussa


Before vs After Roll-In
Firmware Saga
Rate Capability
TimeBase Calibration
LV struggles
DAQ for Cosmic Ray Running
Plans for MCPPMT replacement

Belle-II Italy 7th Meeting, Trieste, 5/5/2017

Recovery after Roll-in

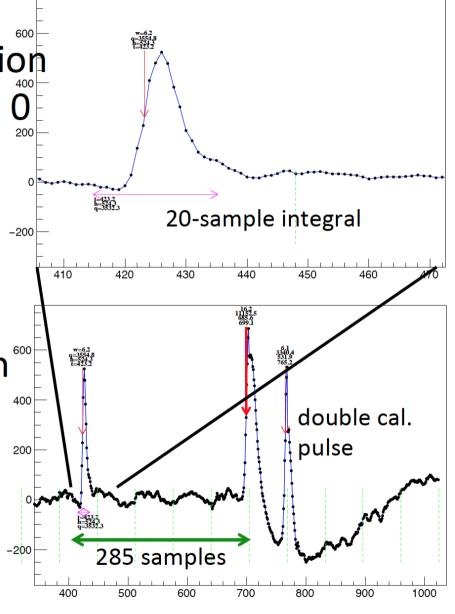
- N2 gas line changed to normal line. Worked with cryogenic group.
 - Current flow rate is about 0.16L/min/module.
- E-hut electricity is recovering.
 - Problem on one big breaker, which affects to 100V of TOP and SVD racks.
 - Connected with temporary lines, by the end of May?
 - Basically recovered TOP racks in E-hut and FTSWs on the detector.
- TOP chiller is working now.
- PC topslc01 moved to E-hut and now working as well as toptest01.
- Network connection of DAQnet is ready.
 - Not ready around HLT, will recover in Apr.28.
 - Pocket DAQ mode should be OK.
- Need to check COPPER/FTSWs in E-hut with DAQ group.

Laser Calibration: signal spread across modules

Signal processing: Feature extraction (FE)

 fit charge or height distribution to extrapolate the it close to 0

efficiency =


 (# of events after selection)
 /(integral of P(x))

update

use new parameterization by Marko

$$P(x) = p_0(x/x_0)^{p_1} \exp(-(x/x_0)^{p_2})$$

fitting height distribution

Firmware Saga: feature extraction

FE Data Reduction

- Oskar implemented spreadsheet to evaluate data rates, based on expected rates in global cosmic ray test
 - Feature extraction reduced data rate, but still too large for proper running in global DAQ (expects 96MB/sec max from iTOP)
 - Recall that we're still outputting waveforms when a pulse is found
- In current FW, 64-byte FE header produced for every channel, whether a pulse is present or not – ok for debug, but wasteful
- Lynn implemented "short" FE header (12 bytes) when no pulse found
 - Total data rate ~1/3 of the worst-case for iTOP ok for global CRT?
 - Testing at PNNL and KEK now
- Other low-hanging fruit:
 - No reason to output 4 windows when only 2 are relevant now
 - Lynn looking into this improvement (fairly straightforward)

DAQ issues on 30 kHz running

30kHz Support

- Luca has resolved compiling and timing issues in the design
- Testing underway on actual boardstack
- This version uses new AXI-DMA updates to copy raw data from carrier to UART for debugging
- Next steps:
 - Start working on other modules that need to be included
 - Proposed (carrier-SCROD) data format needs to be supported

Configuration Script Rewrites (python → C)

- Tobias has written C versions of all the python configuration scripts
 - 2x faster overall (some delays required in the configuration process)

HSLB Firmware Update

- DAQ group provided new version of HSLB firmware to resolve CRC errors seen on multiple subdetectors
- Tested at KEK on iTOP; some CRC errors still seen?
 - Reported to DAQ group

DAQ issues on 30 kHz running

30kHz Support

- Luca has resolved compiling and timing issues in the design
- Testing underway on actual boardstack
- arrier This version uses new AXI-DMA updates to copy ray to UART for debugging

- aration scripts
 - iguration process)
- Lettura di tutti gli siots attualmente utili Zzabili Supplies della Wiener)

 Lettura di tutti gli siots attualmente utili Zzabili

 Quasi stabile fino a un massimo di 400 Hz. Lettura di tutti gli slots attualmente utilizzabili che la la comi ai I comi voltario che la comi contra che la Lettura effettuata in modalita ibrida, per validazione (256 bins - 91 ns). A windows (256 bins - 91 ns) Lettura effettuata in modalita ibrida, per validazione (256 bins - 91 ns) della Feature Extraction (FE). Letura effettuata in modalita' ibrida, per validaziones (256 hins da windows (256 hins da win Quasi stabile fino a un massimo di 400 HZ. of HSLB firmware to resolve CRC

DAQ issues for Cosmic Ray Running

Local CalPulse + Laser Runs

- Less data size reduction than assumed last week
- Still significant (~factor 4) reduction in data size to previous baseline
 - Assuming shortened headers, 128samples/pulse, one calpulse/carrier

Proposal:

- One large laser dataset before the start of GCRT
 - ~3M events -> ~120k photons/channel -> 1TB data set
 - Few hours of data taking
- Daily crosscheck runs
 - ~250k events -> ~10k photons/channel -> 75GB data set
 - <15minutes of data taking
 - Should be enough to see significant deviations in TBC (if occuring)
- Reminder: data taking limited by disk I/O
 - -> reduction in file size = less time needed for calibration runs

DAQ issues for Cosmic Ray Running

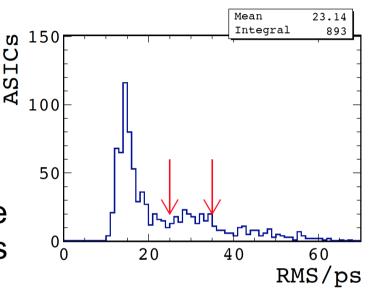
Cosmics Running

- Assuming 100Hz cosmic trigger rate
 - Shortened headers, 128samples/pulse
 - Injecting calpulse into each carrier on cosmic trigger
- 20MB/s for full TOP system during GCRT
 - 15MB/s when not injecting calpulses
 - Linear dependence on actual cosmic trigger rate
 - <<96MB/s as assumed by DAQ group for full B2 running</p>

LV struggles

In the last months only 11 slots were running, due to LV supply problems: s01, s03, s04, s05, s06, s07, s08, s13, s14, s15, s16

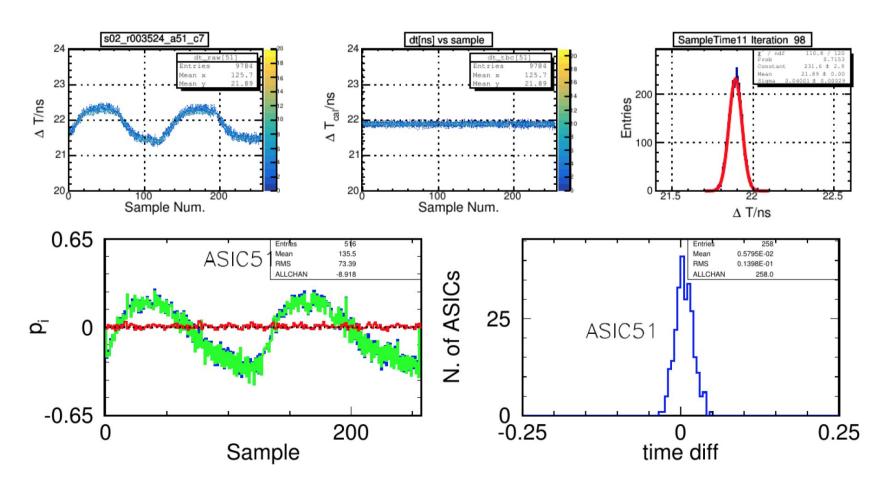
- s02 was out for a broken LV module
- s09,10,11,12 were out due to o broken LV crate


Indiana has ordered:

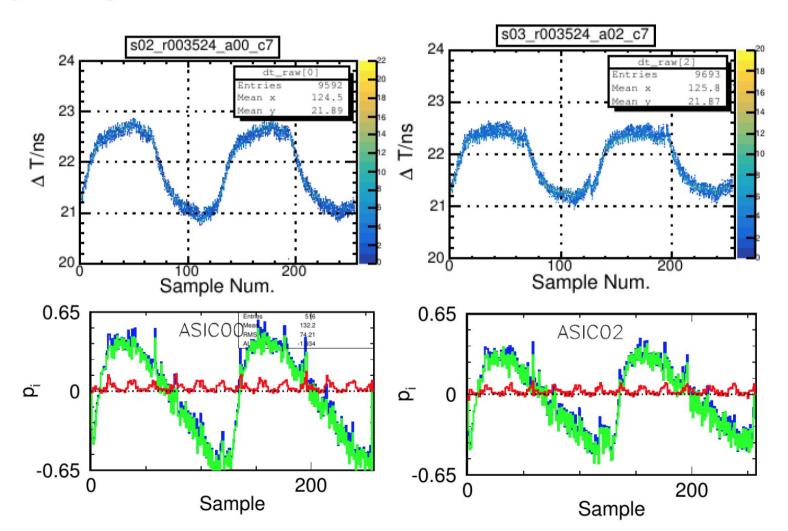
- 3 spare 10Amp modules (Wiener MPV8008): 2.6 k\$ each
- 2 spare 20Amp modules (Wiener MPV4008): 2.9 k\$ each
- 1 spare crate power supply (Wiener UEP6021): 3.6 k\$

Torino is ordering one more Wiener UEP6021

Repaired modules from Wiener arrived at KEK on May 1st.


- All the 960 ASCIs of the 16 SLOTs except SLOT09 have been checked
- 893 of the 960 ASICs have TBC constants.
- RMS < 25:"agree"</p>
- 25 < RMS < 35: "acceptable"</p>
- RMS > 35: "bias"
- Analysis based on TBC of Calibration Pulse on data taken before the failure of LV supplies

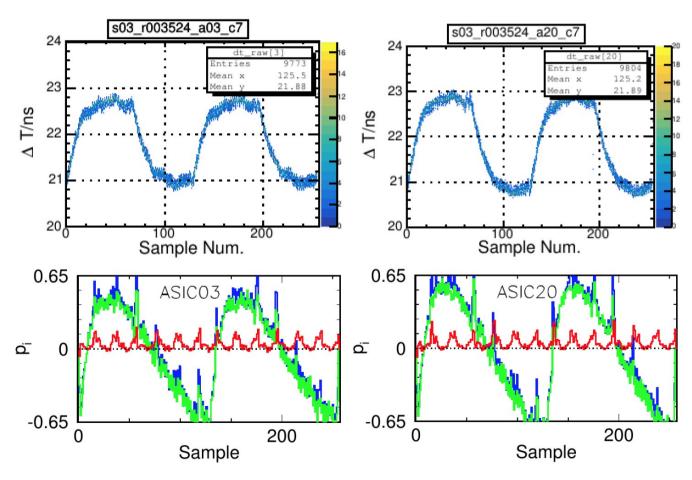
- All the 960 ASICs have been checked manually with TBC.
 - We should automate this process.
 - About 751 ASICs with their TBC constants are reliable in the testing.
 - 142 ASICs have bias in input-output testing.
 - 67 ASICs have no TBC constants. → Criteria used to mask?


Type 1: Excellent agreement

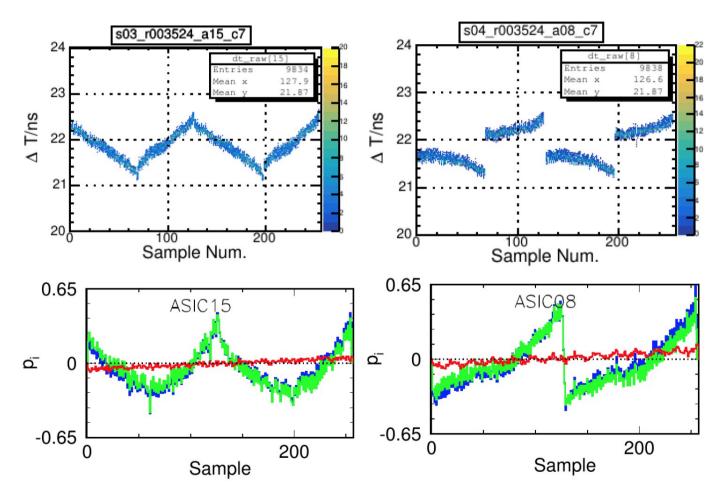
- Good ΔT input data: changing with samp smoothly, small spread $(\Delta T_{max} \Delta T_{min})$.
- Excellent agreement in input-output testing.
- Number of the ASICs: 597.
- 'Quality = 1' asigned.

Type 2: Acceptable agreement

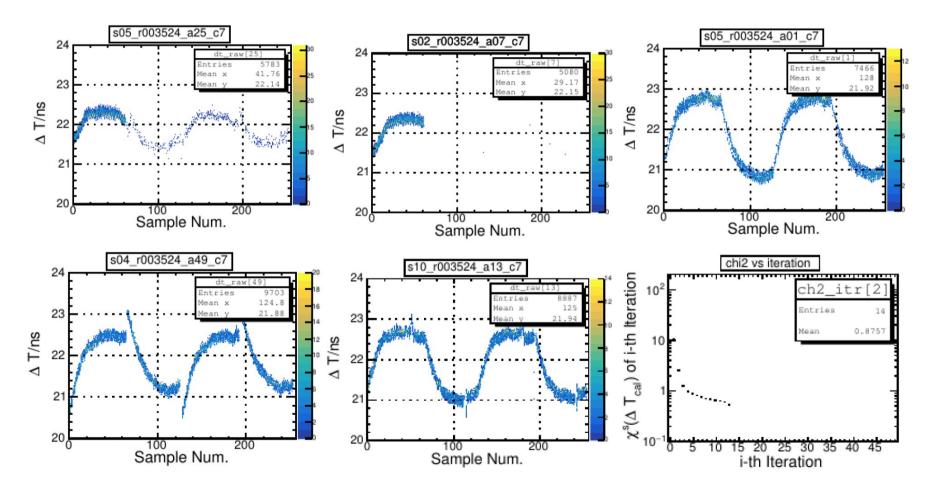
- Shape of ΔT input from data is not perfect, typically having spikes and/or large $\Delta T_{max} \Delta T_{min}$ spread.
- The difference from input-output testing looks acceptable.
- Number: 154.
- 'Quality = 1' asigned.


Type 3: Bias due to spikes

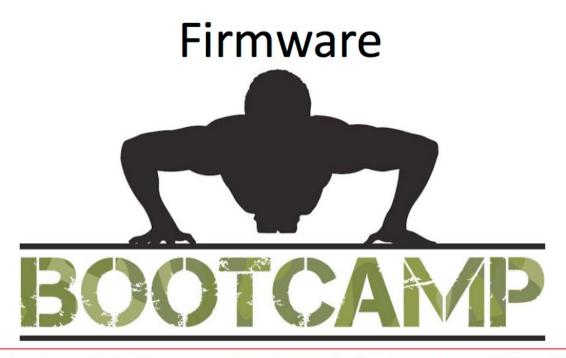
- Serious spikes in ΔT input shape leads to bias in input-output testing.
- Not all spikes cause bias.
- 'Quality = 2' asigned.


Type 4: Bias due to large $\triangle T$ spread

- ΔT ($\Delta T_{max} \Delta T_{min}$) could be quite large in some ASICs, and cause bias in input-output testing.
- 'Quality = 3' asigned.
- More popular than the cases of spikes.


Type 5: slope bias of TBC constants

- Some cases, ΔT shape looks divided.
- 'Quality = 4' asigned.



Type 6: no TBC constants

- Negative integer asigned for Quality.
- Number: 67.

Trying to spread Firmware Know-how

Partecipazione italiana:

TO: U.Tamponi+1 Tech

PD: 1 Tech

Are you ready? (no experience needed – but you will work)

- → Goal is to expand group of people functional at different levels
 - Read/basic understanding of code and how it works
 - Simulate/verify existing/new functionality
 - Debug problems encountered in the future
 - Develop new code for improved performance, new functionality
- Week after June B2GM (June 26-30)
- Intro/warm-up session Saturday, June 24

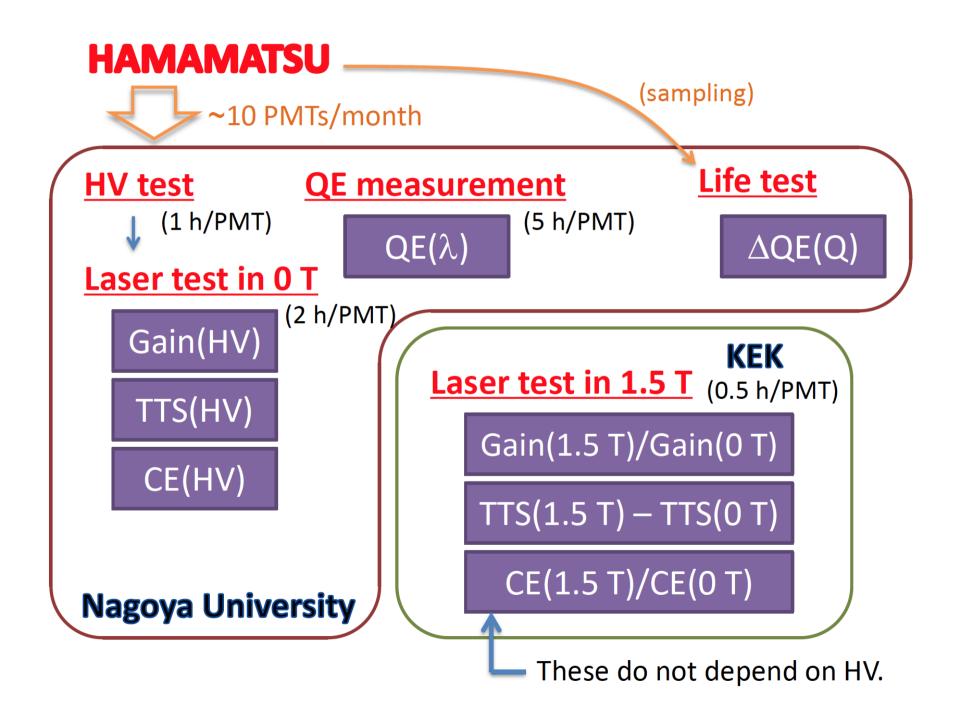
The 224 conventional MCP-PMTs in the 7 slots have to be replaced due to the QE degradation by the beam background.

In 2015 the time of the replacement was estimated as the 2020 summer shutdown.

> Revisit the estimation.

Need additional mass production of the MCP-PMTs for the replacement.

→ Discuss the production plan.



Viewed from the forward to the backward

₹Z⁺×

Higher background

S01

Test plan (draft)

Year	201	7			201	8			201	9		2020			
Month	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7
Global schedule					Phas	e 2			Phys	ics rı	un	Phy	sics r	un	
	Curr	ent p	rodu	ıctio	n										
PMT production			Anot	ther	smal	pro	ducti	on							
							Mas	s pro	duct	ion i	fnec	essa	ry		
New PMTs (prospect)	28	26		5 /	mon	th	10 F	MTs	/moi	nth					
PMT test at Nagoya	1	0 /m	onth	5 /	mon	th	10 F	MTs	/moi	nth					
PMT test at KEK							~1	.00 P	MTs		~1	.00 P	MTs		
PMT installation													Ass	y Ir	stall
Available PMTs	37	63	Unc	lear	(dep	ends	on b	udg	et sit	uatic	n)				

Maximum rate:

- QE measurement: 2 PMTs/day = 40 PMTs/month
- HV test: 8 PMTs/day = 160 PMTs/month
- Laser test in 0 T: 5 PMTs/day = 100 PMTs/month

Test plan in 2017 (draft)

Year	2017																												
Month	3		4	4		5			6				7			8			9				10						
Events			Ro	oll-	in	Н	oli	day	/S			B2	2GI	M					H	lol	ida	ays	5	JPS	•		B2	GN	1
PMT production	С	ur	rer	nt	pro	od	uc	tio	n																				
															Α	no	th	er	sn	na	IJβ	rc	dι	ıct	ioi	า			
New PMTs (prospect)	2	28			1	LO			1	.0			(6				5				5				5			5
QE measurement			10		10	8		10			10				6				5				5				5		
HV test			28					10			10				6				5				5				5		
Laser test in 0 T			25		3			10			10				6				5				5				5		
Available PMTs	3	7											63	3	U	nc	lea	ar	(de	ере	enc	ls o	on	bu	dg	et s	situ	atio	on)

Maximum rate:

- QE measurement: 2 PMTs/day = 10 PMTs/week
- HV test: 8 PMTs/day = 40 PMTs/week
- Laser test in 0 T: 5 PMTs/day = 25 PMTs/week

- HV, laser (0 T), QE tests at Nagoya
 - Test PMTs after delivery as quickly as possible to find out and feed back any problem to the production.
 - Measure the QE of each PMT at least two times (just after delivery and several months later) to check the QE stability.
- Laser (1.5 T) at KEK
 - Need two persons to use the magnet (safety regulation).
 - Test a batch of PMTs (>100 PMTs/month), one month in 2018 and another month in 2019.
 - This is because the setup has to be uninstalled when other groups use the magnet, and a large overhead is needed to reinstall and tune the set up.

PMT to be replaced: 161 PMT Production: 200

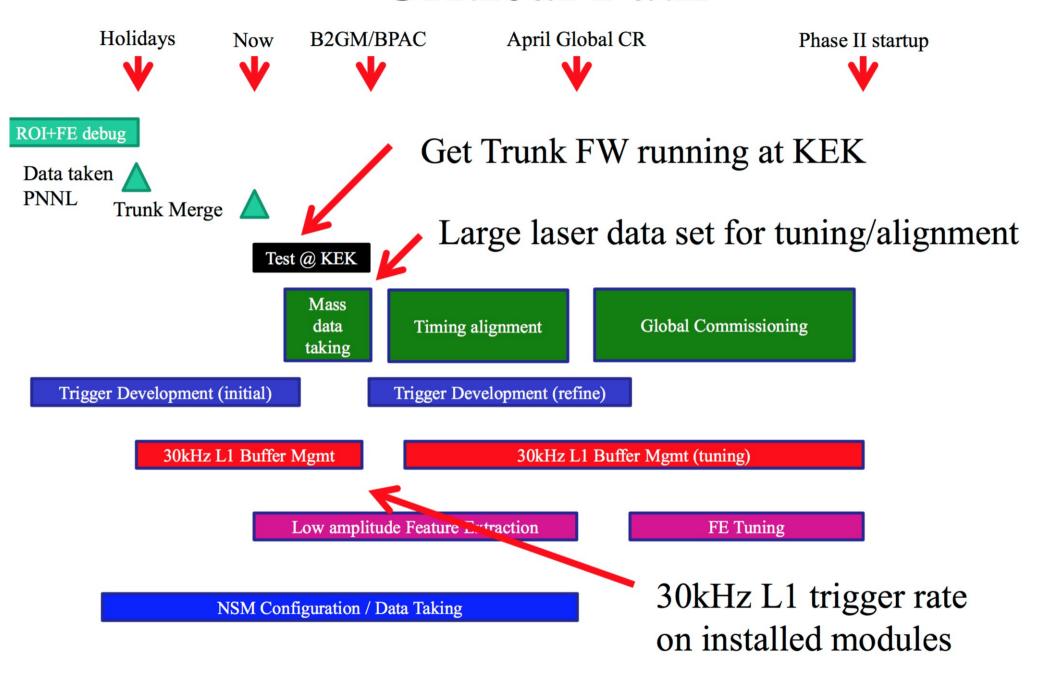
Test at Nagoya: Continuous test starting from April 2017 for 3 years Test at KEK: 100 PMT Oct.-Dec. 2018, 100 PMT Oct.-Dec. 2019

Man Power:

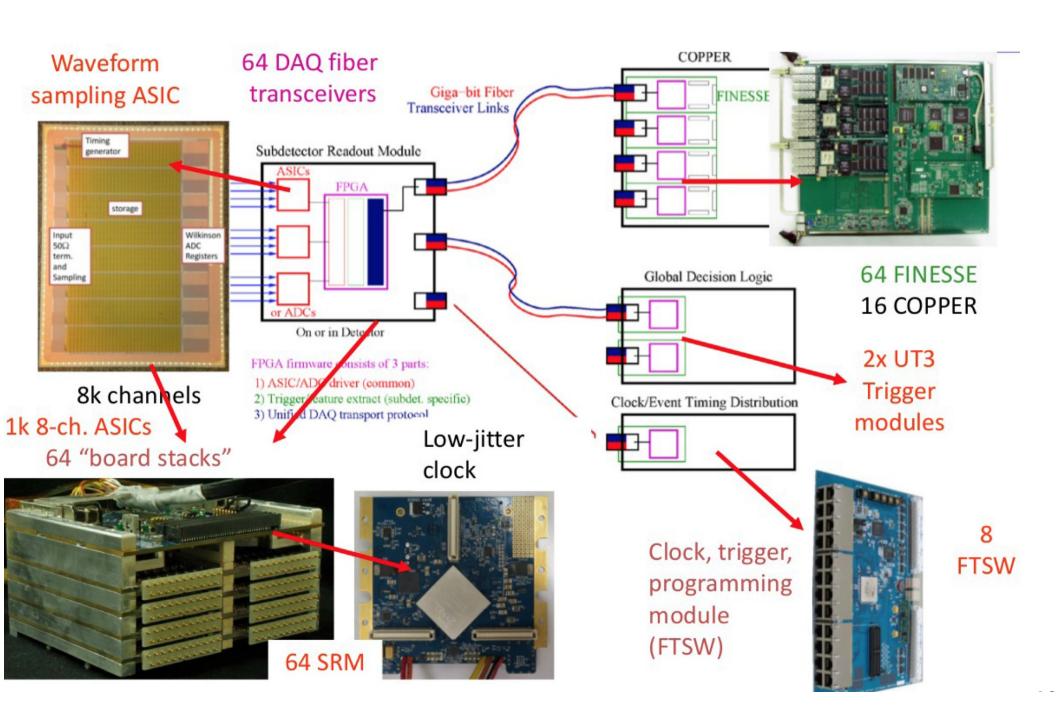
Test at Nagoya: 36 months * (2/3 working weeks when PMTs are

available ?) * 1 person = 24 FTE per month

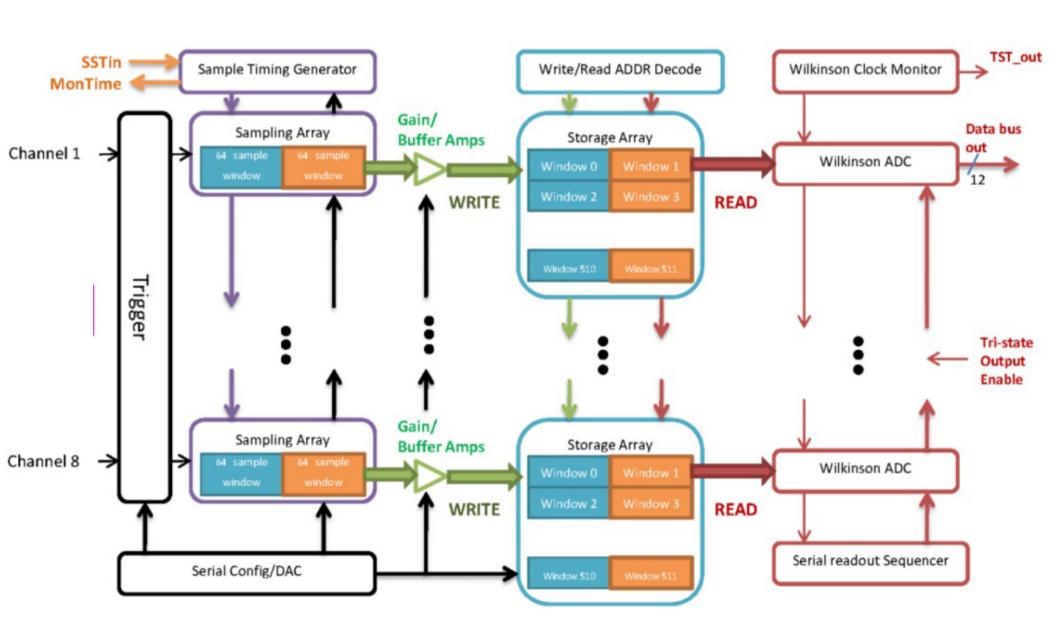
Test at KEK: 6 months * 2 persons = 12 FTE per month

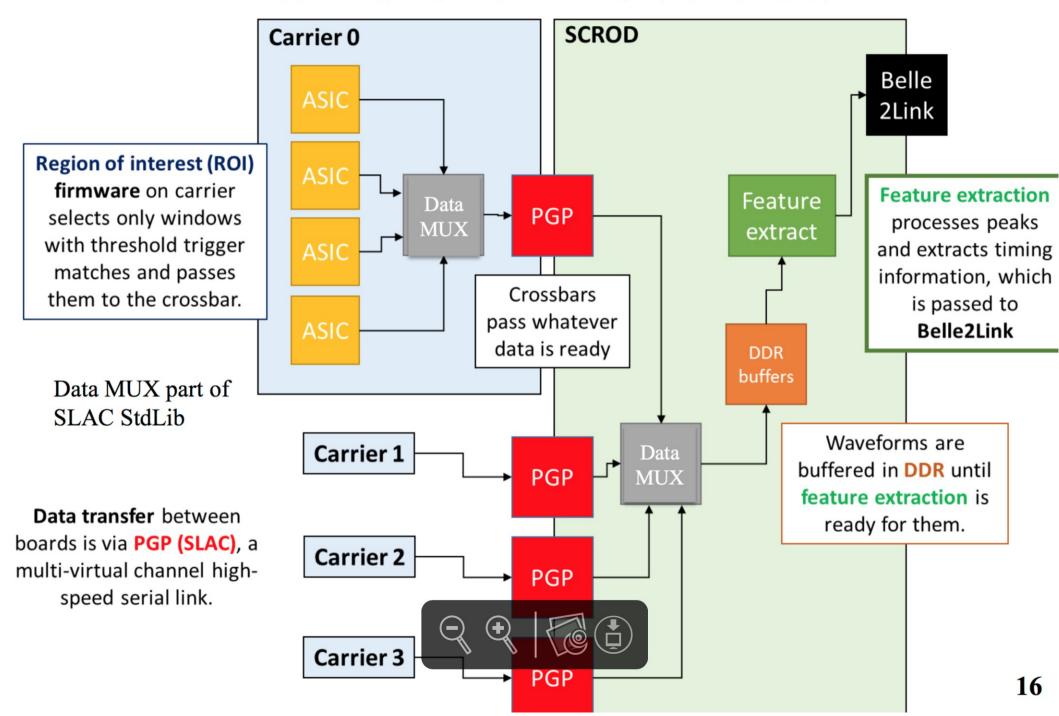

Tot: 36 FTE per month

Italian proposal for manpower (baseline: 25% of the activity):

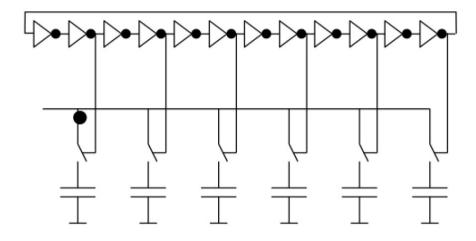

9 FTE per month = 1 person x 1.5 months x 3 years (Padova) + 1 person x 1.5 months x 3 years (Torino)

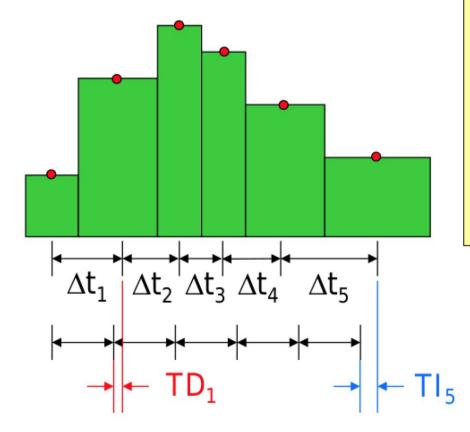
Backup


Critical Path


TOP DAQ

TOP FEE: a scope on a chip

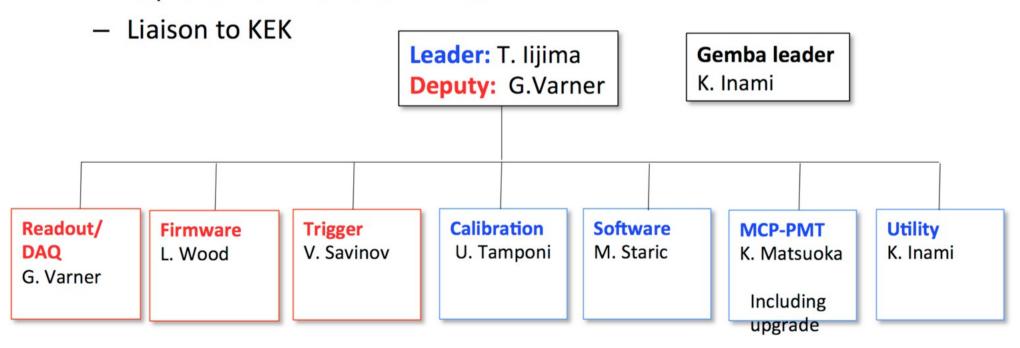

FW Functional Overview



TOP tomography: real data

Reality is quite different from the ideal MC Reflected Direct $\times 10^3$ 200 180 → Bimodal distribution 160 → bad resolution 140 → analysis artifacts 120 100 → Electronic mis-configurations 80 60 40 20 0 -120 100 -80 -60 -40 -20 T_hit - T_pulse [ns] entries 10³ 10² 10 -60 100 -80 -40 -20 -120 T_hit - T_pulse [ns]

TOP readout: Time base calibration



- Inverter chain has transistor variations
 - $\rightarrow \Delta t_i$ between samples differ
 - → "Fixed pattern aperture jitter"
- "Differential temporal nonlinearity" $TD_i = \Delta t_i - \Delta t_{nominal}$
- "Integral temporal nonlinearity" $TI_{i} = \Sigma \Delta t_{i} i \cdot \Delta t_{nominal}$
- "Random aperture jitter" = variation of ∆t_i between measurements

TOP Organization

- Leader: Toru lijima
- Deputy: Gary Varner
- Gemba leader: Kenji Inami
 - Supervision to all Gemba works

