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Detect Cherenkov or scintillation light from large-mass bolometers  
to search for double beta decay or dark matter.
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Motivation
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ΔE of present NTD-based light detectors is too high (100 eV RMS)               
need a new technology.     

Light detector Requirements:

✓ Active area = 5x5 cm2 

✓ ΔE  < 20 eV RMS

✓ 10 < Twork < 20 mK 

✓ Scalable to ~1000 detectors
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Cooper pairs (cp) in a superconductor  act as an inductance (L).  
Absorbed photons change cp density and L.  

High quality factor (Q) resonating circuit biased with a microwave (GHz):
signal from amplitude and phase shift. 

L C

Kinetic Inductance Detectors (KIDs)



• Different resonators can be coupled to the same feedline by making 
them resonate at slightly different frequencies.

• The resonant frequency can be changed by modifying the capacitor (C) 
or the inductor (L) pattern of the circuit.  
 

• A single cryogenic amplifier can be used to read up to 1000 detectors.
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Multiplexed readout of a KID array
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O
. Bourrion et al, JIN

ST 6 P06012 (2011)
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Good energy resolution
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FIG. 1: [Color online] (a) Pulse response in the complex S21

plane. The blue circle represents the resonance loop from a
frequency sweep. The red line is the averaged response pulse
after photon absorption and the red arrow shows the rising-
edge of the pulse. This response can be projected to frequency
and dissipation responses, with directions tangent and normal
to the resonance loop. (b) The frequency and dissipation
responses of the pulse in time domain. (c) A schematic of the
MKID design. The resonator has a lumped-element design,
with a small volume of inductive strip (red) in parallel with
a large interdigitated capacitor (IDC), which is capped by a
layer of aluminum (blue). (d) Homodyne detection scheme
used to read out MKIDs.

formance on the absorber geometry. All the resonance
frequencies are designed to be around 6 GHz and all the
resonators are coupled to a common microstrip feedline
with coupling quality factor Qc ⇡ 1.5⇥ 104.

The detectors are cooled in a dilution refrigerator to
a base temperature of 40 mK. At this temperature, the
internal quality factors of the resonators are measured
to be around 105. A 1550 nm laser diode driven by a
function generator at room temperature is used to gen-
erate optical pulses with a width of 200 ns at a repeti-
tion frequency of 120 Hz. The incident photons are then
attenuated and guided into the device box mounted at
the mixing chamber stage through a bare optical fiber.
In this demonstration experiment, we did not optimize
the optical coupling to the absorber and the light ex-
iting the fiber flood illuminates the entire chip instead
of being focused only onto the absorber area. As a re-
sult, the optical e�ciency is rather low, which we plan
to improve in future experiments. As shown in Fig. 1(d),
the standard homodyne scheme is used to read out the
resonators. We probe the resonators at a microwave fre-
quency that maximizes the frequency response �S21/�fr
and the microwave power is chosen to be 2 dB below bi-

furcation power to avoid the strong non-linear e↵ects [17]
in the resonator. For each optical pulse, the correspond-
ing response of the detector is digitized at a sampling
rate of 2.5 Ms/s. The raw data are converted to the fre-
quency and dissipation responses. Only the frequency re-
sponse data are further analyzed, because the dissipation
response is smaller compared to the frequency response
and the pulse decay time is much faster (see Fig1. (b))due
to the anomalous electrodynamic e↵ect found previously
in TiN films [20, 22, 24]. We analyze the pulse data by
using standard Weiner optimal filter procedures and the
filtered pulse height data are used to generate photon-
counting statistics.
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FIG. 2: [Color online] (a) A histogram of the optimally filtered
(O.F.) pulse height (normalized by the template pulse) using
frequency readout. A 4-peak Gaussian fit to the data is shown
by the red line. Inset: the probability of the n-photon event
(calculated by the area in each Gaussian peak normalized by
the total area) fit to a Poisson distribution with � = 0.61. (b)
Photon counting histogram (� = 1.95), fit by a superposition
of 6 Gaussian peaks. (c) Photon counting histogram (� =
3.78) where 7-photon events are resolved. (d) The detected
mean photon number per pulse (red dots) vs. the estimated
total number of incident photons onto the absorber area. The
slope of the linear fitting (blue curve) suggests the photon-
device coupling e�ciency is ⇡ 10% .

Fig. 2(a) shows a histogram of the optimally filtered
pulse height data for 2⇥104 pulse events measured from
the resonator with absorber width of 2 µm and volume
of 1.92 µm3. The first 3 peaks, which correspond to the
events of 0, 1, and 2 photons being absorbed in the de-
tector, are clearly observed. We fit the histogram to a
model of a superposition of 4 Gaussian peaks with inde-
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frequency sweep. The red line is the averaged response pulse
after photon absorption and the red arrow shows the rising-
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and dissipation responses, with directions tangent and normal
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responses of the pulse in time domain. (c) A schematic of the
MKID design. The resonator has a lumped-element design,
with a small volume of inductive strip (red) in parallel with
a large interdigitated capacitor (IDC), which is capped by a
layer of aluminum (blue). (d) Homodyne detection scheme
used to read out MKIDs.

formance on the absorber geometry. All the resonance
frequencies are designed to be around 6 GHz and all the
resonators are coupled to a common microstrip feedline
with coupling quality factor Qc ⇡ 1.5⇥ 104.

The detectors are cooled in a dilution refrigerator to
a base temperature of 40 mK. At this temperature, the
internal quality factors of the resonators are measured
to be around 105. A 1550 nm laser diode driven by a
function generator at room temperature is used to gen-
erate optical pulses with a width of 200 ns at a repeti-
tion frequency of 120 Hz. The incident photons are then
attenuated and guided into the device box mounted at
the mixing chamber stage through a bare optical fiber.
In this demonstration experiment, we did not optimize
the optical coupling to the absorber and the light ex-
iting the fiber flood illuminates the entire chip instead
of being focused only onto the absorber area. As a re-
sult, the optical e�ciency is rather low, which we plan
to improve in future experiments. As shown in Fig. 1(d),
the standard homodyne scheme is used to read out the
resonators. We probe the resonators at a microwave fre-
quency that maximizes the frequency response �S21/�fr
and the microwave power is chosen to be 2 dB below bi-

furcation power to avoid the strong non-linear e↵ects [17]
in the resonator. For each optical pulse, the correspond-
ing response of the detector is digitized at a sampling
rate of 2.5 Ms/s. The raw data are converted to the fre-
quency and dissipation responses. Only the frequency re-
sponse data are further analyzed, because the dissipation
response is smaller compared to the frequency response
and the pulse decay time is much faster (see Fig1. (b))due
to the anomalous electrodynamic e↵ect found previously
in TiN films [20, 22, 24]. We analyze the pulse data by
using standard Weiner optimal filter procedures and the
filtered pulse height data are used to generate photon-
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FIG. 2: [Color online] (a) A histogram of the optimally filtered
(O.F.) pulse height (normalized by the template pulse) using
frequency readout. A 4-peak Gaussian fit to the data is shown
by the red line. Inset: the probability of the n-photon event
(calculated by the area in each Gaussian peak normalized by
the total area) fit to a Poisson distribution with � = 0.61. (b)
Photon counting histogram (� = 1.95), fit by a superposition
of 6 Gaussian peaks. (c) Photon counting histogram (� =
3.78) where 7-photon events are resolved. (d) The detected
mean photon number per pulse (red dots) vs. the estimated
total number of incident photons onto the absorber area. The
slope of the linear fitting (blue curve) suggests the photon-
device coupling e�ciency is ⇡ 10% .

Fig. 2(a) shows a histogram of the optimally filtered
pulse height data for 2⇥104 pulse events measured from
the resonator with absorber width of 2 µm and volume
of 1.92 µm3. The first 3 peaks, which correspond to the
events of 0, 1, and 2 photons being absorbed in the de-
tector, are clearly observed. We fit the histogram to a
model of a superposition of 4 Gaussian peaks with inde-

Coun%ng	Near	Infrared	Photons	with	Microwave	Kine%c	Inductance	Detectors	  
Guo,	W.	et	al,	arXiv:1702.07993

ΔE = 0.22 eV

https://arxiv.org/abs/1702.07993
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High scalability  
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ARCONS:	A	2024	Pixel	Op%cal	through	Near-IR	Cryogenic	Imaging	Spectrophotometer	
Mazin,	B.A.	et	al,	PASP,	123,	933,	2013.

http://www.jstor.org/stable/10.1086/674013
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High scalability  

6

ARCONS:	A	2024	Pixel	Op%cal	through	Near-IR	Cryogenic	Imaging	Spectrophotometer	
Mazin,	B.A.	et	al,	PASP,	123,	933,	2013.

http://www.jstor.org/stable/10.1086/674013
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CALDER: light detectors with KIDs
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The maximum sensible area is of few mm2 (wavelength limited). 
Scaling to several cm2: indirect detection mediated by phonons 

State of the art Goal
 Area Area [eV 

RMS] Area
few mm2 5x5 cm2 difficult

 ΔE [eV RMS] < 1 < 20 achievable
 Twork [mK] 80 10 pro

Substrate of silicon 
 (5x5cm2 x100-300µm)

10 KIDs  (~2mm2 x 40-nm)

Incident photons convert into athermal phonons

Diffused phonons  
can be absorbed  

by the KIDs

supports  

E.S. Battistelli, et al, EPJ C75 (2015) 353

http://arxiv.org/abs/1505.01318
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The CALDER research team
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Sapienza University of Rome: 
F. Bellini, C. Cosmelli, L. Minutolo, M. Martinez.

Istituto Nazionale di Fisica Nucleare:  
L. Cardani, N. Casali, A. Cruciani,  
A. D’Addabbo, C. Tomei and M. Vignati.

Consiglio Nazionale delle Ricerche:  
Detector fabrication.
I. Colantoni and M.G. Castellano.

Università degli studi di Genova:  
Electronics and DAQ.
S. Di Domizio. 

Grants 
2014 - 2018
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First phase 2013-2016
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10 mK  
dilution 

refrigerator 

HEMT 
amplifier

40 cryogenic runs
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The KID signal
1. Frequency sweep to measure the 

transmission S21 past the resonator:

2. Determine the resonant frequency and 
bias the detector at that frequency.

3. Measure Phase and Amplitude 
Modulation of the wave transmitted past 
the resonator
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 First results
• Prototype with 4 Aluminum resonators 

on silicon substrate (2x2 cm2)

• Total phonon efficiency ~ 18%

• Combined Baseline resolution ~150 eV
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a low frequency noise is limiting the resolution: 

L. Cardani, et al, APL 107 (2015) 093508 

http://dx.doi.org/10.1063/1.4929977
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Detector improvement

• Keep resonant frequency above 2 GHz (electronics constraint).

• Higher thickness: provides better quality of the superconductor.

• Higher resonator Q  (from  104 to  105): increases the sensitivity. 

• Wider area: increases the phonon absorption efficiency.
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80 eV: First milestone achieved 
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L. Cardani, et al, APL 110 (2017) 033504
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factor ~4 improvement on a single KID

http://dx.doi.org/10.1063/1.4974082
http://arxiv.org/abs/1606.04565
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80 eV: First milestone achieved
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• Result obtained by combining the phase and amplitude signals

• Resolution independent from temperature up to 200 mK.

• Amplitude resolution better than the phase one.
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Phase noise still there
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Heterodyne readout development
• So far using an electronics able to handle up to 12 KIDs in parallel.

• We are developing a custom FPGA firmware on top of the ROACH 
opensource hardware and software board. 

‣ Goal: 100 KIDs in parallel.

• Developed by a wide (mostly astro-) community. 
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ROACH readout system

FPGA board (Virtex6) for signal processing
On-board PowerPc for FPGA control
16-bit 500Msps dual DAC
14-bit 400Msps dual ADC
4x 10Gbe interfaces for data streaming
Up/down conversion w clock-distribution board
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End of 2016: New cryostat, new lab
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Base 
temperature

wre

< 10 mK 

Cooling 
Power

400 uW  
@100 mK

Experimental 
Volume

44h x 24⌀ cm3

Bath Cooling Pulse tube 

Dilution unit 3He - 4He (50 L)

Model Oxford Triton 
200

Run mode Automatic
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Test of new superconductors
If we do not find the noise origin, we 
have to increase the response in the 
superconductor.
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Al TiAl
AlTiAl Ti+TiN TiN

sub- stoic.
TC [K] 1.2 0.6-0.9 0.5-0.8 0.5

L  
[pH/square] 0.5 1 6 up to 50

Q max 105-6 105-6 ? ?
phonon 

collection 𝛆 10% 5-10% low? low?

Producer IFN 
CNR

CSNSM 
Neel-CNRS FBK IFN 

CNR

Status Completed First results Production Material R&D

�E / TC

✏
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Al-Ti-Al

The phase noise is substantially lowered

This pushes the sensitivity close to our 2nd milestone of 20 eV
19
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Summary and program
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2013-2014 
Started activity from scratch.  
First aluminum prototypes with low Q.

2014-2016 
Aluminum: Q up to 300k, resolution from 150 to 80  eV.

2016-2017 
New lab.  
Compounds with Titanium: about to reach the goal of 
20 eV. 
2017-2018 Build a demonstrator at LNGS: an array of 
TeO2/ZnSe bolometers monitored by the new light 
detectors.


