27/03/2017

Workshop on axion physics and experiment - Roma

Superconducting resonators in quantum engineering

Samuel Deléglise Lab. Kastler Brossel (CNRS)

Superconducting resonators in quantum engineering

Superconducting microwave cavities

Manipulating the microwave field with Rydberg atoms

Quantum transducers: using radiation pressure to convert quantum signals from microwave to optical photons

C E C CITA

Microwave superconducting cavity: Storage box for photons

- best Fabry-Pérot resonator so far
- 1.4 billion bounces on the mirrors
- a light travel distance of 39 000 km (one full turn around the Earth)

2.8 cm

Microwave superconducting cavity: Storage box for photons

Circular Rydberg atoms

- ideal two-level atoms
- large dipole moment (~ 400 $d_{D_2}^{
 m ^{87}Rb}$)
- long lifetime ~ 30ms

5 cm

³⁵ Rubidium atom

Atom-cavity in the strong coupling regime

2<mark>.8 cm</mark>

damping rates << vacuum Rabi frequency (Ω_0^{\sim} 49 kHz)

resonance

n = 50 (level g)

Experimental setup

The microwave cavity

The bottom mirror in its mount...

...and the fully mounted cavity

S.Kuhr et al, Appl.Phys.Lett. 90, 164101 (2007)

Energy conservation + adiabatic coupling : the field is preserved

phase shift of atomic coherence (light shift)

$$\varphi(n) = (n + 1/2)\varphi_0$$

 $\varphi_0 = \frac{\Omega_0^2}{2\delta} t_{\text{int}}$ Phase shift per photon

QND measurement of parity

1. Trigger of the atom clock: resonant $\pi/2$ pulse

QND measurement of parity

 $|e\rangle$ 1. Trigger of the atom clock: $\frac{\pi}{2}$ Resonant $\pi/2$ pulse 2. Dephasing of the clock: $|g\rangle$ interaction with the cavity field $|e\rangle$ $|-_x, n = 2k +$ $arphi_0$ $\neq_x, n = 2k$

Phase shift per photon adjusted to $\varphi_0 = \pi$

→ atom "spin" correlated to photon number parity

QND measurement of parity

 $|e\rangle$

|g
angle

- 1. Trigger of the atom clock: Resonant $\pi/2$ pulse
- 2. Dephasing of the clock: interaction with the cavity field
- 3. Measurement of the clock: $2^{nd} \pi/2$ pulse & atomic state detection

$$T = 0.8 \,\mathrm{K}$$

 $\bar{n}_{\mathrm{th}} = 0.05 \,\mathrm{ph}$

3800 atoms detected: 200 atoms/Tcav

Gleyzes et al. Nature 446, 297-300 (2007).

- Experimental constraints:
 - Well defined $\neq 0$ electric field \rightarrow Fabry-Perot geometry required
 - Toroidal mirror shape to lift the degeneracy between orthogonal polarizations
 - In-situ tuning via Piezo-electric spacers
- Cavity Fabrication:
 - 1. High-precision machining of a 30-mm thick copper substrate (<10 nm rms roughness), long-range precision better than 300 nm.
 - 2. A 12 μ m Nb layer is deposited by dc cathode sputtering in a magnetron discharge (technic developed for acceleration cavities of particle colliders).
 - 3. No coupling waveguides (to avoid surface defects on the mirrors)
- → No transmission/reflection measurements possible For more details, see: S.Kuhr et al, Appl. Phys. Lett. *90, 164101 (2007)*

Cavity lifetime measurement

- 1. Inject a mesoscopic field in the cavity via an external antenna
- 2. Let the field decay everywhere except for the cavity mode
- 3. Send atoms initialy in the ground states after a given delay time
- 4. Repeat the experiment for different delays and initial field strength

- Down to 1.6 K, the Q factor is limited by the finite resistivity predicted by BCS theory at $\neq 0$ frequency
- Below 1.4 K, Q-factor is limited by surface scattering and clipping.
- \rightarrow Comparable to the Q-factors obtained with closed cylindrical cavities.

- Long distance-room temperature transmission via optical fibers
- Difficult to store and manipulate

See Schliesser Nature 517 2014 « Optical detection of microwave through a nanomechanical transducer»

Microwave photons are very

sensitive to thermal decoherence

•

Photonic crystal reflector $(F > 10\ 000\ demonstrated)$

Lumped element superconducting resonator High tensile stress Silicon Nitride membrane (+ phononic shield)

Lumped-elements superconducting resonators

Lumped element resonator

18/24

LKB

- \rightarrow Maximizes the electrostatic energy stored in the membrane vicinity
- Coupling to the membrane via dielectric gradient forces
- Microfabrication by e-beam lythography in the ENS cleanroom
- Analytical model for the coupling strength

→ Reduce tooth spacing $(a \approx h)$

 \rightarrow Use low ϵ substrate (SiO₂)

Resonator optimized for electromechanical coupling

19/24

C)

Transmission measurements in the complex plane

- Asymetric Fano-lineshape due to standing-waves in the transmission lines
- The effect can be properly taken into account by using the following formula instead of a Lorentzian:

$$S_{21} = 1 - \frac{\frac{Q_0}{Q_c} - 2iQ_0 \frac{\delta\omega}{\omega_0}}{1 + 2iQ_0 \frac{\omega - \omega_0}{\omega_0}}$$

Geerlings et al. APL (2012)

20/24

LKB

- Measurements down to 376 mK
- Internal Q factors up to 7.5×10^4

...Power dependence

- For large surface/volume ratio resonators, surface losses dominates.
- The Two-Level-Systems responsible for microwave damping can be saturated by large intracavity fields

Also observed with larger interdigitated capacitors See Geerlings et al. APL (2012)

Lumped-element resonators: state-of-the-art

Geerlings et al. APL (2012) + Geerlings PhD thesis (2013)

- Fabry-Perot/3D cavities
 - Q-factors > 10^{10}
 - Large mode volume
- Lumped-element cavities
 - Q-factors $\approx 10^5$, limited by TLS
 - On-chip
 - Strong confinement of the electrostatic energy
- Towards 3d transmons coupled to a nanomechanical resonator

25/24

Lumped-element resonators

Detailled optimization of the geometry: Geerlings et al. APL (2012) + Geerlings PhD thesis