<ロト < 同 ト < 三 ト < 三 ト 三 の < ○</p>

Magnetized Media as Detectors for Galactic Axions

C. Braggio University of Padova and INFN for the AXIOMA collaboration

March 27, 2017

AXION COUPLING

AXION-FERMION interaction

detection of atomic transitions $|0\rangle \rightarrow |i\rangle$ in which axions are absorbed

- QUAX ⇒ axions are converted to *magnons* in a ferri-/para-magnet

AXIOMA - AN UPCONVERSION SCHEME

- pump laser resonant with transition $2 \rightarrow 3$
- material transparent to the pump until an IR photon is absorbed $(1 \rightarrow 2)$
- level 3 is fluorescent ⇒ detection can be accomplished via conventional detectors (PMT or PD)
- such energy level scheme can be realized in wide bandgap materials doped with trivalent rare-earth ions

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959)

<ロト < 団 > < 三 > < 三 > < 三 < つへで</p>

P. Sikivie, PRL 113, 201301 (2014)

 $1\% \longleftrightarrow \sim 10^{20} \text{ target atoms/cm}^3 \longleftrightarrow \gtrsim 1 \text{ liter ACTIVE VOLUME}$

Energy level diagram of RE^{3+} in $LaCl_{3}$

- 4f electrons - electrostatic interaction 10^4 cm⁻¹ – further splitting by spin-orbit interaction $10^3 \, \text{cm}^{-1}$ – crystal field (Stark splitting)

RE IN INORGANIC MATRICES

POSSIBLE UPCONVERSION SCHEMES IN Er^{3+} and detector intrinsic threshold

RE IN INORGANIC MATRICES

IMPROVING THE DETECTOR INTRINSIC THRESHOLD

pump laser tuned to ${}^{4}I_{15/2,5/2,+} \rightarrow {}^{4}I_{9/2,9/2,+}$ transition ($\lambda \sim 809$ nm) \rightarrow IR fluorescence

 $\begin{array}{l} 0.5\,{\rm T} < B_0 < 2.5\,{\rm T} \\ 20\,{\rm GHz} < \nu_a < 110\,{\rm GHz} \end{array}$

 $83 \,\mu eV < m_a < 0.45 \,m eV$ ("dressed" e^-)

~) Q (~

A DRESSED ELECTRON

The Er^{3+} , 4f shell electrons are dressed of their interaction with the matrix.

Calculated Zeeman level energies as a function of B_0 magnetic field parallel to c (solid lines) or to a (dashed lines) in Er:YLF. (a) ${}^{4}I_{13/2}(0)$ and ${}^{4}I_{13/2}(1)$ (b) ${}^{4}I_{15/2}(0)$

LASER-INDUCED IR FLUORESCENCE AND AXION TRANSITION

- Er:YLF (0.01%, 1% doping), oriented
- immersed in liquid He (4.2 K)/superfluid He (1.51 K)
 - \implies axion transition saturated
- tunable laser (Ti:Sa)
- infrared (1.5 μ m) fluorescence scheme
- $B_0 = 370 \,\mathrm{mT}$ (permanent magnet)

- identify Zeeman splitting
- investigate laser-induced noise (in a LIF scheme that involves phonon generation)

 $B \neq 0$

AXIOMA 00000000000000

By comparison with data in the literature we are able to identify the splitting of the ground state in the (A) upconversion scheme with $B \parallel c$.

NO ATOMS IN THE EXCITED STATE REQUEST

 $N_A e^{-(m_a/T)} < 0.1 \leftrightarrow T = 12 \,\mathrm{mK} \left[\frac{m_a(eV)}{0.6 \cdot 10^{-4}} \right] = 15.6 \,\mathrm{mK} \Longrightarrow \Uparrow B_0$ field (thus m_a) to operate at $T \sim 200 \,\mathrm{mK}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is the laser **heating** the crystal? / At which level is the **transparency condition** not satisfied? Measure the temperature of the active volume of the detector via LIF from the Stark levels.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

LASER-INDUCED BACKGROUNDS

Measure the temperature of the active volume of the detector via LIF from the Stark levels: LIF from (15/2,15/2) at two different temperatures scales as the ratio of the Boltzmann factors P(E)

T [K]	kT [meV]	kT [cm-1]	P(E) GS	P(E) 1S
1.67	0.144	1.162	1.0000	4.40e-07
2.00	0.172	1.391	1.0000	4.93e-06
4.20	0.362	2.921	0.9970	0.00296
10.0	0.862	6.955	0.9053	0.0786
67.0	5.78	46.60	0.4459	0.310

LASER-INDUCED BACKGROUNDS

Measure the temperature of the active volume of the detector via LIF from the Stark levels: LIF from (15/2,15/2) is linear with laser power

AXIOMA

 ${}^{4}F_{9/2}$

 ${}^{4}I_{9/2}$

 ${}^{4}I_{11/2}$

 ${}^{4}I_{13/2}$

 ${}^{4}I_{15/2, 5/2, +}$

MATCHING THE AXION LINEWIDTH

The linewidth $\Delta f = 1/\pi \tau_+$ (τ_+ lifetime of the upper Zeeman level) of the transition between the GS Zeeman-split levels should be matched to $Q_a \sim 2 \cdot 10^6$ (axion linewidth)

 $\tau_+ \sim 300 \,\mu s$ at 1T (20 GHz/1kHz) is compatible with an efficient upconversion process

BkUP

<ロト < 団 ト < 豆 ト < 豆 ト < 豆 - つくぐ</p>

AXIOMA

- results for a gas system New J. Phys. 17 (2015) 113025
- upconversion in RE-doped crystals Appl. Phys. Lett. 107 (2015) 93501
- solid crystals of inert gasses: demonstrated apparatus that allows high purity crystals growth and verified electrons emission through the solid-vacuum interface in s-Ne and s-CH4

Currently investigating:

- laser-induced noise
- matching Q_a with the Zeeman transition (τ_m)
- upconversion efficiency and lifetime of the excited state

BACKUP SLIDES

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AXION DETECTION IN A GAS SYSTEM

- ► BGC (buffer gas cooling). ¹⁶O₂ cooled by collisions with a helium-3 thermal bath at temperature $T_{He} \simeq 280 \text{ mK} \Longrightarrow W_{ba}(B_{\min}) = 11 \text{ cm}^{-1} (1.4 \text{ eV})$
- magnetic field region: *W_{ba}* saturates for *B* > *B_{max}* = 18 T 1.4 eV< *m_a* <1.9 eV

- detection: REMPI (resonance-enhanced multi-photon ionization spectroscopy)
- ► $N_{\text{refl}} = 13500$ to maximize the fraction of molecules that interacts with the laser beam $\mathcal{F} = (N_{\text{refl}} \pi w^2)/(h d + h^2 \tan \theta)$

New J. Phys. 17 (2015) 113025

GAS SYSTEM: ULTRACOLD MOLECULAR OXYGEN $^{16}O_2$

In 1s, the number of oxygen molecules that have been exposed to the axion field is

$$N_{\rm molec} = \frac{n_{\rm max}}{4} \pi (d/2)^2 v_m$$

where $v_m = \sqrt{(8 k_B T)/\pi m}$ and $n_{\text{max}} \simeq (1/30) n_{\text{He}} = 10^{15} \text{ cm}^{-3}$ max molecular density that can be cooled to T_{He}

 \implies the axion-induced absorption event number

$$N = N_{\text{molec}} \frac{\bar{h}}{v_m} \mathcal{R}_{ab} \mathcal{F}(n_{\text{days}} \cdot 24 \cdot 3600)$$

In the worst case $\mathcal{R}_{ab} = 1 \,\mathrm{Hz}/N_A \rightarrow N \simeq 1$ for an acquisition time of 10 days

... is it possible to increase the density?