

Low Noise Amplification with HEMTs and PARAMPs

Dr Mark McCulloch The University of Manchester

Introduction

- Noise
 - Look at common sources of noise and quantum noise in particular
- Low noise amplifiers
 - Types
 - The HEMT
 - Techniques for lowering the noise temperature
 - Current state of the art and commercial options
- Parametric amplifiers
 - Examples
 - Four wave mixing
 - Kinetic Inductance
- Towards the quantum limit and noise squeezing
- Electron Paramagnetic Resonance

Sources of Noise

- Thermal (Nyquist) Noise
 - Thermal vibrations of bound charges (Cooling)
- Quantum Noise
 - Due to quantized nature of particles (Squeezing)

Quantum Noise

- The quantum noise limit: $T_n \sim hf/k_B$ - ~50mK/GHz
- In escapable result (or is it) of quantum mechanics
 - Arises because, once detected by an antenna, the amplitude (and phase) of light's electric field is transduced into an amplitude (and phase) of a current, neither of which can be known simultaneously with complete accuracy

No officer, I don't know how fast I was going. But I know exactly where I am. -Werner Heisenberg at traffic step

Quantum Noise

- Light: sinusoidal electric field E(t) can be expressed by: $E(t) = \frac{1}{2}[a(t) + a^*(t)]$
- a(t) are phasors that rotate in the complex plane: $a(t) \cdot e^{-i\omega t}$ where a is a complex amplitude a = x + ip, $a^* = x - ip$, $x = \frac{1}{2}(a + a^*)$, $p = \frac{1}{2i}(a - a^*)$
- We can now express the field:

$$E(t) = x \cos W t + p \sin W t$$

Figure 1. Phasor and quadrature-component representations of the electric field for monochromatic classical light.

6

Quantum Noise

- E(t), a(t), a^{*}(t), x and p can be viewed as quantum mechanical operators.
- a and a^{*} are the bosonic annihilation and creation operators
- Commutation relation: $[a(t), a^{\dagger}(t)] = a(t)a^{\dagger}(t) - a^{\dagger}(t)a(t) = 1$
- This also means that x and p do not commute $[x, p] = \frac{i}{2}$

Low Noise Amplifiers

- To increase the amplitude with as little extra noise as possible.
- Key figures of merit:
 - Gain

- Noise Figure =
$$\frac{S_i/N_i}{S_o/N_o}$$

• Noise Temperature = $T_{Ambient} (10^{NF/10} - 1)$

Examples

7

- MASERs
 - Very low noise, narrow bandwidth
- Transistors
 - BJTs, MOSFETs, MESFETs, HEMTs
 - Low noise and wide bandwidths are possible
- Parametric Amplifiers
 - Reactance based, so very low noise temperatures are possible

HEMTS

- Indium Phosphide substrate offers the lowest noise
- Electrons confined to a 2dimensional conduction channel
- This channel is in an undoped semiconductor, which increases the mobility of the electrons

The University of Manchester

Technology

- MIC or Hybrid
 - Discrete components, time consuming to build, lowest noise
- MMIC
 - All components integrated onto a single chip, suitable for mass production, tuning options are restricted.
- T+MMIC
 - Discrete first stage (optimized for low noise) transistor followed by a MMIC (for gain)

McCulloch et al (2015)

Cooling LNAs

- Cooling usually results in an order of magnitude decrease in the noise temperature
- Improvement in noise temperature becomes increasing negligible below 20-30K

McCulloch et al (2017)

HEMT Limitations

- Below 30K, the conduction channel starts to remain hotter than its surroundings.
- This is because phonon blackbody radiation is no longer capable of transporting the heat away
- This limits the effectiveness of further cooling
- The drain temperature now remains substantially above ambient temperature
- Restricts HEMT based technologies to ~2-3 times the quantum limit

= 10 k

200

X (nm)

400

600

-300

Schleeh et al (2015)

200

X (nm)

400

600

-300

Current State of the Art LNAs

Band	Substrate	Technology	Freq (GHz)	Noise Temp (K)	Year	Lead Author / Organisation
S	InP	MMIC	2	1.2 (0.09)	2017	LNF
С	InP	MMIC	7	3.0 (0.34)	2012	Schleeh
Х	InP	MIC	8.4	4.0 (0.40)	2001	Bautista
Ка	InP	MIC	30	5.0 (1.44)	2009	PLANCK
W	InP	MMIC	85	22 (4.08)	2009	Bryerton

Quantum Noise Limit

Commercial Options

- LNF in Sweden.
 - 0.3 to 115GHz
 - www.lownoisefactory.com/products

Model	Frequency (GHz)	Noise Temperature (K)
LNF-LNC0.6_2A	0.6 – 2	1.7
LNF-LNC4_16B	4 - 16	3.8
LNF-LNC23_42WB	26 - 40	9.0
LNF-LNC65_115WA	65 - 110	28

Parametric Amplifiers

- Early work
 - Electron-Beam Parametric
 Amplifier developed in 1958
 - Josephson Junctions began to be used in the 1970's
 - Typically they have been inherently narrowband
- Recently the travelling wave parametric amplifier has been developed. These utilise either arrays of Josephson Junctions or electrically long superconducting transmission lines

Above: A section of a W-band traveling-wave kinetic inductance parametric (TKIP) amplifier. It consists of a 0.15 m length of NbTiN coplanar waveguide (CPW) line arranged in double spirals. The thickness of the line is 35 nm and the center conductor and gap widths are 1 micron.

Parametric Amplifiers

- Electrically long ~60 400λ coplanar waveguide or microstrip superconducting transmission lines
- Examples
 - Eom (2012), Bockstiegel (2015),NASA Microdevices Laboratory (2012), Shan (2016)

Four Wave Mixing

- Actually use non-degenerate four wave mixing with
 - 1 pump (ω_p)
 - 1 signal (ω_s)
 - 1 idler (ω_i)

Energy will be transferred from the pump to the signal (GAIN) and generated idler so long as

- Energy is conserved $2\omega_p = \omega_s + \omega_i$
- A phase matching condition is maintained

$$\Delta\beta = \beta(\omega_{\rm s}) + \beta(\omega_{\rm i}) - 2\beta(\omega_{\rm p}) = 0$$

with β the propagation constant

• Dispersion engineering is used to prevent the formation of harmonic shock fronts and to control the phase matching

Kinetic Inductance

- FWM requires a non-linearity
- In optic parametric amplifier, this non-linearity is provided by the Kerr effect.
- In superconducting transmission line, the kinetic inductance (L_k) can also provide the necessary non-linearity.

 $- L_k(I) = L_k(O) \left[1 + (I/I_*)^2\right]$

- With I_{*} , which is comparable to the critical current, setting the scale of the non-linearity
- From the Mattis Bardeen theory of superconductivity:
 - $-L_k \propto R_n$
 - $-I_{\star} \propto 1/R_n$
 - Hence a superconductor's kinetic inductance and its non-linearity are enhanced by thin films with a high normal state resistivity (R_n)

Kinetic Inductance

 The film must be thin (~20nm), this ensures a uniform current density

Mazin 2004, Ch 3

Material	Т _с (К)	Δ ₀ (μeV)	ρ _n (μΩ cm)
Nb	9.2	1395	10
NbTi	8.5	1289	74
NbN	11.8	1790	240
NbSi	1.05	159	500
TiN	4.1	622	100
NbTiN	14.8	224	1700

Shim (2015)

Drawbacks

- The Pump signal
- Gain "Jitter"
- Impedance mismatches at the input and output are the likely cause
- Still much development work required

Eom et al (2012) Fig. 3

Towards and perhaps below the Quantum Limit

- Eom *et al* report an added noise of 3.4±0.2 photons at 9.4GHz
- Other groups investigating travelling wave parametric amplifiers also report noise temperatures approaching the quantum limit, e.g Macklin *et al* (2015)
- Can we go below???

Noise Squeezing

• Recalling the earlier idea that a sinusoidal electric field can be expressed as the sum of two quadratures

 $E(t) = x \cos W t + p \sin W t$

• Caves (1982, 2012), expresses the quantum limit as an amplifier uncertainty principle

$$A_1 A_2 \ge \frac{1}{16} \left| 1 - (G_1 G_2)^{-1/2} \right|^2$$

• Where G1 and G2 are the gains of each quadrature and A1 and A2 represent the noise added to each quadrature

Noise Squeezing

• For phase insensitive amplifiers (phase preserving) the uncertainty principle reduces to

$$A \geq \frac{1}{2} |1 - G^{-1}|$$

- Which in the high gain limit implies that the amplifier adds at least ½ a quantum of noise to the input (the quantum limit)
- HOWEVER, phase sensitive or non phase preserving amplifiers can respond differently to each of the quadratures

$$A_1 A_2 \ge \frac{1}{16} \left| 1 - (G_1 G_2)^{-1/2} \right|^2$$

- Generally, if the noise added to one of this quadratures is reduced, the noise in the other must be increased.
- Except, if $G_1G_2 = 1$ the amplifier need not add any noise to either quadrature
- Hence sub quantum noise
 amplification may be possible

FIG. 3. Thermal-equilibrium-noise squeezing at 4.2 K. The open-circle data, taken with AT of Fig. 2 set for a maximum attenuation, establish the baseline. When pump power is delivered to the Josephson-parametric amplifier the noise (filled circles) drops below the baseline for certain settings of the relative phase between the LO and the pump. The smooth curve is a comparison of theory with experiment with no adjustable parameters.

Extract from Yurke, Phys Rev Lett, 60 (1988) 19.4GHz Josephson Parametric Amplifier Minimum noise temperature 0.28K Quantum limit @ 19.4K 0.47K

Applications

As an amplification system for an axion detection system

Adapted from Eom et al (2012)

Applications

 There has been interest in using RF resonant cavities as axion detectors (Graham et al 2016, QUAX).

- We have developed a 300mK electron paramagnetic system (Melhuish *et al* 2017) that could be adapted for an axion experiment.
 - Resonant frequency ~34GHz
 - TE011 cavity
 - Q factor 24000
 - Magnetic field ~2T

Conclusions

- Reviewed the current state of HEMT based LNA technology.
 - Shown that LNAs are possible with noise temperatures a few times the quantum limit.
- Outlined an exciting new technology, the travelling wave parametric amplifier
 - Discussed how it offers the potential for amplification with a noise temperature at or below the quantum limit
- Briefly commented on how this technology could be applied to axion detection.

References and Further Reading

- Quantum Noise
 - C. Caves, "Quantum limits on noise in linear amplifiers", *Phys Rev D*, 1982
 - C. Caves, "Quantum limits on phase preserving linear amplifiers", Phys Rev A, 2012
- Noise in HEMTs
 - M. Pospieszalski, "Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004", IEEE Microwave Magazine, 2005
- Four Wave Mixing
 - J. Hansryd, "Fiber-based optical parametric amplifiers and their applications", IEEE Jour of selected topics in quant elec, 2002
- Travelling Wave Parametric Amplifier
 - B. Eom, A wideband, low-noise superconducting amplifier with high dynamic range", *Nature*, 2012

Applications

- As an axion detector, with noise squeezing
- Control of φ allows the squeezed quadrature to be accessed.

Adapted from Eom *et al* (2012) and Yurke *et al* 1988

Low phase noise synthesise