

University of Bologna & INFN

Kalman Filter 4 FOOT first results

Matteo Franchini

16 February 2017

matteo.franchini@cern.ch

- Use Kalman Filter method to combine hits form different detectors into a precise track reconstruction (momentum!).
- Goal: momentum resolution < 4%!
- To be used as a test of the configuration of FOOT (geo + performance).
- Main problem: harmonise multiple sub-detector inputs.

Technical step until now

- Using the Reconstruction framework, including GenFit (thank Alessio).
- Starting from Drift Chamber package:
 - ***** geometry implementation from the one in FLUKA's input files.
 - # mirroring Beam Monitor (thanks Yun).
 - # code restyling (FIRST->FOOT, improve in/out, stability, class for wires, ...)
 - * reading event info from ntuple: tests+fixes, add truth matching to hits, fix local/global coordinates transformations(managed by sub detector itself by now).
- C++ class to interface with GenFit and make the Kalman (core code!) + store tracks.
 - * takes hits from different sub-detectors, transmutes in GenFit-like inputs and interpret the fit results.
 - * Use global material and geometry (from each sub-detector) [to be finalised]
- Implementation of the Magnetic Field [last minute!].

DC view

Graph		to a												
•	- top													
8-	×	×	×	~	×	×	×	×	×	×	×	×	J	
F	x	-	Ŷ	-	ŝ	-	Ŷ	<u></u>	Ŷ	-	ŝ	-		
E	x	×	x	×	x	×	×	×	x	×	×	×	- Q	
e														
o														
×	×	×	×	\times	×	×	×	\times	×	\times	\times	×		
~	•	\times	•	\times	٠	\times	•	\times	•	\times	•	×		
4 ⊶	×	×	\times	×										
·-														
F														
_⊢	\times	×	\times	×										
2⊢	×	٠	×	•	\times	٠	×	•	\times	•	\times	٠	×	
F	×	×	×	\times	×	×	×	×	×	\times	\times	×	A	
E														
∩														
Uč	×	X	×	×	×	X	×	×	×	×	×	X		
Ê		Č		Š		Š		Š		Š		Č		
Ê	~	~	~	^	~	~	~	~	~	~	~	~		
2⊢														
	~	\sim	~	\sim	\sim	\sim								
F	ŝ	<u></u>	ŝ	<u></u>	Ŷ	ê	ŝ	<u></u>	Ŷ	<u></u>	ŝ	<u></u>	g	
•F	x	×	x	×	x	×	×	×	x	×	×	×	- Q	
4⊢	-		-	_	-	-			-		-			
E														
k	×	×	\times	×	×	×	×	\times	\times	\times	\times	×		
6×	•	×	٠	×	٠	\times	٠	\times	٠	\times	٠	×		
U _k	\times													
L.		1	1 1		1 1	1				1 1	1	1		
	_	4		-2		(0 2			· 4				

Preliminary results 1

B field OFF

- Input file:
 12C_C2H4_noMag_highThres.root;
- Lithium hits <u>ONLY</u>;

FOOT

Drift Chamber <u>ONLY</u>;

- no-DC materials still missing (air bubble).
- **Seed:** (0,0,30)cm, pz=2.4GeV, proton.
- tot nEvents: 17511

Preliminary results 2

B field ON

- Input file:
 12C_C2H4_Mag_highThres.root;
- Lithium hits <u>ONLY</u>;
- Drift Chamber <u>ONLY</u>;

- no-DC materials still missing (air bubble).
- **Seed:** (0,0,30)cm, pz=2.4GeV, proton.

Next Steps

- **CHECKS!!!** and tuning of the fitter (seed, mass, measurement handling, ...)
 - Add pixel detector, Vertex + Internal Tracker. [ongoing]
- Implement all the material, at lest between target and DC. [ongoing]
- Hit selection strategy before the KF. [dreamworld stage]
 - **Testing different Foot configurations:**
 - * vacuum "inside" magnets;
 - * no Internal Tracker;

Kalman Filter

- R.E.Kalman proposed an iterative method to estimate the states of a dynamic system starting from a series of measurement points on N surfaces.
- Initially used to calculate the trajectory of ballistic missiles. Later introduced in particle physics (1984).
- Precise as a global χ^2 fitting;
- *Fast*;
- Best *track paramete*r found *for each hit!!!*

"A new approach to linear filtering and prediction problems" Trans. ASME J. Basic Eng. 82 (1960), 35

- 1. Take an **ideal particle** in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

- Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to **M.S.** and **energy loss**.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

- Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some **measurement hits** on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

- Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. **Propagate** the first hit to the next layer. Propagator Matrix **F**.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

- Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.

5. Iterate 3 and 4 for the next leayers.

- Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

- 1. Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- 4. Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. **Iterate** 3 and 4 for the next leavers.

- 1. Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- 4. Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

Nota bene

- The curve found has an associated uncertainty that decrease layer after layer...
- ...so we redo the filtering backward! (Smoothing)

- 1. Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- 4. Find the best compromise between the propagated point and the closest hit on the 2nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next leayers.

Nota bene

- At each layer we do not evaluate a point in space, but a curve (helix) that best approximate the trajectory at _point;
- The curve found has an associated uncertainty that <u>decrease</u> layer after layer...
- ...so we redo the filtering backward! (<u>Smoothing</u>)